Uniformly square Banach spaces
(joint work with J. Langemets and V. Lima)

Trond A. Abrahamsen

Department of Mathematics
University of Agder
NORWAY

Banach Algebras and Applications
dedicated to the memory of William G. Bade
Gothenburg
JULY 29 - AUGUST 4, 2013
Table of Contents

1. Introduction
2. Examples
3. Connection to diameter 2 spaces
4. Characterizations
5. US spaces fail the IP
6. Open problems
Notation

- X will denote a Banach space and X^* its dual.
- B_X the unit ball, B_X^o the open unit ball of X.
- S_X the unit sphere of X.

X will denote a Banach space and X^* its dual.

- B_X the unit ball, B_X^o the open unit ball of X.
- S_X the unit sphere of X.

Notation

- X will denote a Banach space and X^* its dual.
- B_X the unit ball, B_X° the open unit ball of X.
- S_X the unit sphere of X.
Notation

- X will denote a Banach space and X^* its dual.
- B_X the unit ball, B_X^0 the open unit ball of X.
- S_X the unit sphere of X.
Basic definitions

Definition (Schäffer, 1976)

A point \(x \in S_X \) is called uniformly non-square if there exists \(\delta > 0 \) such that

\[
\max \| x \pm y \| \geq 1 + \delta \quad \text{for all} \quad y \in S_X.
\]

- If \(x \in S_X \), then
 \[
 2 \leq \| x + y \| + \| x - y \| \leq 2 \max \| x \pm y \| \quad \text{for all} \quad y \in X
 \]

- So \(x \in S_X \) is NOT uniformly non-square

 \[
 \downarrow
 \]

 there is \((y_n) \subset S_X\) with \(\| x \pm y_n \| \rightarrow 1 \).
Basic definitions

Definition (Schäffer, 1976)

A point \(x \in S_X \) is called uniformly non-square if there exists \(\delta > 0 \) such that

\[
\max ||x \pm y|| \geq 1 + \delta \text{ for all } y \in S_X.
\]

- If \(x \in S_X \), then
 \[
 2 \leq ||x + y|| + ||x - y|| \leq 2 \max ||x \pm y|| \text{ for all } y \in X
 \]
 \[
 \Downarrow
 \]
 So \(x \in S_X \) is NOT uniformly non-square

 there is \((y_n) \subset S_X \) with \(||x \pm y_n|| \rightarrow 1 \).
Basic definitions

Definition (Schäffer, 1976)

A point \(x \in S_X \) is called uniformly non-square if there exists \(\delta > 0 \) such that

\[
\max \| x \pm y \| \geq 1 + \delta \text{ for all } y \in S_X.
\]

- If \(x \in S_X \), then

 \[2 \leq \| x + y \| + \| x - y \| \leq 2 \max \| x \pm y \| \text{ for all } y \in X \]

- So \(x \in S_X \) is NOT uniformly non-square

 \[
 \text{there is } (y_n) \subset S_X \text{ with } \| x \pm y_n \| \to 1.
 \]
Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

$$\max \|x \pm y\| \geq 1 + \delta \text{ for all } y \in S_X.$$

- If $x \in S_X$, then

 $$2 \leq \|x + y\| + \|x - y\| \leq 2 \max \|x \pm y\| \text{ for all } y \in X.$$

- So $x \in S_X$ is NOT uniformly non-square

 \[\Downarrow \]

 there is $(y_n) \subset S_X$ with $\|x \pm y_n\| \to 1$.

Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

$$\max \|x \pm y\| \geq 1 + \delta$$

for all $y \in S_X$.

- If $x \in S_X$, then
 $$2 \leq \|x + y\| + \|x - y\| \leq 2 \max \|x \pm y\|$$

- So $x \in S_X$ is NOT uniformly non-square
 $$\downarrow$$

 there is $(y_n) \subset S_X$ with $\|x \pm y_n\| \to 1$.
Basic definitions

Definition

\(X \) is

a) locally uniformly square (\(LUS \)) if for every \(x \in S_X \) there is a sequence \((y_n) \subset S_X \) such that \(\|x \pm y_n\| \to 1 \).

b) weakly uniformly square (\(\omega US \)) if \(X \) is \(LUS \) and \(y_n \to 0 \) weakly.

c) uniformly square (\(US \)) if for every \((x_i)_{i=1}^N \subset S_X \) there is a sequence \((y_n) \subset S_X \) such that \(\|x_i \pm y_n\| \to 1 \) for every \(i = 1, \ldots, N \).

Obviously b) \(\Rightarrow \) a) and c) \(\Rightarrow \) a).

We will show: c) \(\Rightarrow \) b).
Basic definitions

Definition

X is

a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$.

b) weakly uniformly square (ωUS) if X is LUS and $y_n \to 0$ weakly.

c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $\|x_i \pm y_n\| \to 1$ for every $i = 1, \ldots, N$.

- Obviously b) \Rightarrow a) and c) \Rightarrow a).
- We will show: c) \Rightarrow b).
Basic definitions

Definition

\(X \) is

a) locally uniformly square (\textit{LUS}) if for every \(x \in S_X \) there is a sequence \((y_n) \subset S_X \) such that \(\|x \pm y_n\| \to 1 \).

b) weakly uniformly square (\textit{\(\omega \)US}) if \(X \) is \textit{LUS} and \(y_n \to 0 \) weakly.

c) uniformly square (\textit{US}) if for every \((x_i)_{i=1}^N \subset S_X \) there is a sequence \((y_n) \subset S_X \) such that \(\|x_i \pm y_n\| \to 1 \) for every \(i = 1, \ldots, N \).

- Obviously b) \(\Rightarrow \) a) and c) \(\Rightarrow \) a).
- We will show: c) \(\Rightarrow \) b).
Basic definitions

Definition

X is

a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that \(\|x \pm y_n\| \to 1\).

b) weakly uniformly square (ωUS) if X is LUS and $y_n \to 0$ weakly.

c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that \(\|x_i \pm y_n\| \to 1\) for every $i = 1, \ldots, N$.

- Obviously $b) \Rightarrow a)$ and $c) \Rightarrow a)$.
- We will show: $c) \Rightarrow b)$.
Basic definitions

Definition

X is

a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$.

b) weakly uniformly square (ωUS) if X is LUS and $y_n \to 0$ weakly.

c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $\|x_i \pm y_n\| \to 1$ for every $i = 1, \ldots, N$.

- Obviously b) \Rightarrow a) and c) \Rightarrow a).
- We will show: c) \Rightarrow b).
Basic definitions

Definition

X is

a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$.

b) weakly uniformly square (ωUS) if X is LUS and $y_n \to 0$ weakly.

c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $\|x_i \pm y_n\| \to 1$ for every $i = 1, \ldots, N$.

- Obviously b) \Rightarrow a) and c) \Rightarrow a).
- We will show: c) \Rightarrow b).
Table of Contents

1. Introduction
2. Examples
3. Connection to diameter 2 spaces
4. Characterizations
5. US spaces fail the IP
6. Open problems
Examples
The space of null-sequences - c_0

Let $x = (x_k) \in S_{c_0}$. Then $\|x \pm e_n\| \to 1$ where e_n is the n'th canonical unit vector in c_0. So c_0 is LUS, ...

... and ωUS as $e_n \to 0$ weakly. ...

... and US by the same idea as for the LUS case.

Actually: $c_0(X_i)$ is US for any sequence of spaces X_i.
Examples
The space of null-sequences - c_0

- Let $x = (x_k) \in S_{c_0}$. Then $\|x \pm e_n\| \to 1$ where e_n is the n'th canonical unit vector in c_0. So c_0 is LUS,
- ... and ωUS as $e_n \to 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i.
Examples
The space of null-sequences - c_0

- Let $x = (x_k) \in S_{c_0}$. Then $\|x \pm e_n\| \to 1$ where e_n is the n'th canonical unit vector in c_0. So c_0 is LUS,
- ... and ωUS as $e_n \to 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i.
Examples
The space of null-sequences - c_0

- Let $x = (x_k) \in S_{c_0}$. Then $\|x \pm e_n\| \to 1$ where e_n is the n'th canonical unit vector in c_0. So c_0 is LUS,
- ... and ωUS as $e_n \to 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i.
Examples
The space of null-sequences - c_0

- Let $x = (x_k) \in S_{c_0}$. Then $\|x \pm e_n\| \to 1$ where e_n is the n’th canonical unit vector in c_0. So c_0 is LUS,
- ... and ωUS as $e_n \to 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i.
Examples
The space of null-sequences - c_0

- Let $x = (x_k) \in S_{c_0}$. Then $\|x \pm e_n\| \to 1$ where e_n is the n’th canonical unit vector in c_0. So c_0 is LUS,
- ... and ωUS as $e_n \to 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i.
Examples
The space of convergent sequences - \(c \)

- Let \(x = (1, 1, \ldots, 1, \ldots) \in S_c \). Now, if \(\|x \pm y_n\| \to 1 \), then \(\|y_n\| \neq 1 \). Because: if the value of one term of \(y_n \) were close to \(\pm 1 \), then the maximum of that term of \(x \pm y_n \) would be close to 2. So \(c \) is not \(LUS \).

- Actually \(\|y_n\| \to 0 \). Reason: \(x = (1, 1, \ldots, 1, \ldots) \) is a strong extreme point in \(S_c \).

Fact

The unit ball of LUS spaces cannot have strong extreme points.
Examples
The space of convergent sequences - c

- Let $x = (1, 1, \ldots, 1, \ldots) \in S_c$. Now, if $\|x \pm y_n\| \to 1$, then $\|y_n\| \neq 1$. Because: if the value of one term of y_n were close to ± 1, then the maximum of that term of $x \pm y_n$ would be close to 2. So c is not LUS.

- Actually $\|y_n\| \to 0$. Reason: $x = (1, 1, \ldots, 1, \ldots)$ is a strong extreme point in S_c.

Fact

The unit ball of LUS spaces cannot have strong extreme points.
Examples
The space of convergent sequences - \(c \)

- Let \(x = (1, 1, \ldots, 1, \ldots) \in S_c \). Now, if \(\|x \pm y_n\| \to 1 \), then \(\|y_n\| \neq 1 \). Because: if the value of one term of \(y_n \) were close to \(\pm 1 \), then the maximum of that term of \(x \pm y_n \) would be close to 2. So \(c \) is not \(LUS \).

- Actually \(\|y_n\| \to 0 \). Reason: \(x = (1, 1, \ldots, 1, \ldots) \) is a strong extreme point in \(S_c \).

Fact

The unit ball of \(LUS \) spaces cannot have strong extreme points.
Examples
The space of convergent sequences - c

- Let $x = (1,1,\ldots,1,\ldots) \in S_c$. Now, if $\|x \pm y_n\| \to 1$, then $\|y_n\| \neq 1$. Because: if the value of one term of y_n were close to ± 1, then the maximum of that term of $x \pm y_n$ would be close to 2. So c is not LUS.

- Actually $\|y_n\| \to 0$. Reason: $x = (1,1,\ldots,1,\ldots)$ is a strong extreme point in S_c.

Fact

The unit ball of LUS spaces cannot have strong extreme points.
Examples

The space of convergent sequences - c

- Let \(x = (1, 1, \ldots, 1, \ldots) \in S_c \). Now, if \(\|x \pm y_n\| \to 1 \), then \(\|y_n\| \neq 1 \). Because: if the value of one term of \(y_n \) were close to \(\pm 1 \), then the maximum of that term of \(x \pm y_n \) would be close to 2. So \(c \) is not LUS.

- Actually \(\|y_n\| \to 0 \). Reason: \(x = (1, 1, \ldots, 1, \ldots) \) is a strong extreme point in \(S_c \).

Fact

The unit ball of LUS spaces cannot have strong extreme points.
Examples

The space of convergent sequences - c

- Let $x = (1, 1, \ldots, 1, \ldots) \in S_c$. Now, if $\|x \pm y_n\| \to 1$, then $\|y_n\| \neq 1$. Because: if the value of one term of y_n were close to ± 1, then the maximum of that term of $x \pm y_n$ would be close to 2. So c is not LUS.

- Actually $\|y_n\| \to 0$. Reason: $x = (1, 1, \ldots, 1, \ldots)$ is a strong extreme point in S_c.

Fact

The unit ball of LUS spaces cannot have strong extreme points.
Examples
The space of convergent sequences - c

- Let $x = (1, 1, \ldots, 1, \ldots) \in S_c$. Now, if $\|x \pm y_n\| \to 1$, then $\|y_n\| \neq 1$. Because: if the value of one term of y_n were close to ± 1, then the maximum of that term of $x \pm y_n$ would be close to 2. So c is not LUS.

- Actually $\|y_n\| \to 0$. Reason: $x = (1, 1, \ldots, 1, \ldots)$ is a strong extreme point in S_c.

Fact

The unit ball of LUS spaces cannot have strong extreme points.
More examples not containing c_0

- $L_1[0, 1]$ is ωUS, but not US.

Theorem (Kubiak, to appear)

The Cesaro function spaces C_p, $1 \leq p < \infty$ are ωUS.

For $1 \leq p < \infty$, $C_p = \{ f \in L_p : \int_0^1 (1/x \int_0^x |f(t)|dt)^p < \infty \}$

with norm $\|f\| = (\int_0^1 (1/x \int_0^x |f(t)|dt)^p)^{1/p}$.

- Note that C_p is strictly convex.
More examples

not containing c_0

- $L_1[0, 1]$ is ωUS, but not US.

Theorem (Kubiak, to appear)

*The Cesaro function spaces C_p, $1 \leq p < \infty$ are ωUS.***

For $1 \leq p < \infty$, $C_p = \{ f \in L_p : \int_0^1 (1/x \int_0^x |f(t)|dt)^p < \infty \}$ with norm $\|f\| = (\int_0^1 (1/x \int_0^x |f(t)|dt)^p)^{1/p}$.

- Note that C_p is strictly convex.
More examples
not containing \(c_0 \)

- \(L_1[0, 1] \) is \(\omega US \), but not \(US \).

Theorem (Kubiak, to appear)

The Cesaro function spaces \(C_p, 1 \leq p < \infty \) are \(\omega US \).

For \(1 \leq p < \infty \), \(C_p = \{ f \in L_p : \int_0^1 (1/x \int_0^x |f(t)| dt)^p < \infty \} \) with norm \(\|f\| = (\int_0^1 (1/x \int_0^x |f(t)| dt)^p)^{1/p} \).

- Note that \(C_p \) is strictly convex.
More examples
not containing c_0

- $L_1[0, 1]$ is ωUS, but not US.

Theorem (Kubiak, to appear)

The Cesaro function spaces C_p, $1 \leq p < \infty$ are ωUS.

For $1 \leq p < \infty$, $C_p = \{f \in L_p : \int_0^1 (1/x \int_0^x |f(t)|dt)^p < \infty\}$
with norm $\|f\| = (\int_0^1 (1/x \int_0^x |f(t)|dt)^p)^{1/p}$.

- Note that C_p is strictly convex.
X is called M-embedded if $X^{***} = X^* \oplus_1 X^\perp$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: $c_0(\Gamma)$, $K(H)$, $K(\ell_p, \ell_q)$ where $1 < p \leq q < \infty$ are US.
- $c_0(\ell_1)$ is US, but not M-embedded.
Even more examples
M-embedded spaces

- X is called M-embedded if $X^{***} = X^* \oplus_1 X^\perp$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: $c_0(\Gamma)$, $K(H)$, $K(\ell_p, \ell_q)$ where $1 < p \leq q < \infty$ are US.
- $c_0(\ell_1)$ is US, but not M-embedded.
Even more examples
M-embedded spaces

- X is called M-embedded if $X^{***} = X^* \oplus_1 X^\perp$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: $c_0(\Gamma)$, $K(H)$, $K(\ell_p, \ell_q)$ where $1 < p \leq q < \infty$ are US.
- $c_0(\ell_1)$ is US, but not M-embedded.
Even more examples
M-embedded spaces

- X is called M-embedded if $X^{***} = X^* \oplus_1 X^\perp$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: $c_0(\Gamma)$, $K(H)$, $K(\ell_p, \ell_q)$ where $1 < p \leq q < \infty$ are US.
- $c_0(\ell_1)$ is US, but not M-embedded.
Even more examples
M-embedded spaces

- X is called M-embedded if $X^{***} = X^* \oplus_1 X^\perp$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: $c_0(\Gamma)$, $K(H)$, $K(\ell_p, \ell_q)$ where $1 < p \leq q < \infty$ are US.
- $c_0(\ell_1)$ is US, but not M-embedded.
X is called M-embedded if $X^{***} = X^* \oplus_1 X^\perp$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: $c_0(\Gamma)$, $K(H)$, $K(\ell_p, \ell_q)$ where $1 < p \leq q < \infty$ are US.
- $c_0(\ell_1)$ is US, but not M-embedded.
A Banach space X has the

i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.

ii) *diameter 2 property (D2P)* if every non-empty relatively weakly open subset of B_X has diameter 2.

iii) *strong diameter 2 property (SD2P)* if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

$LD2P \not\Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

$D2P \not\Rightarrow SD2P$.
Definition

A Banach space X has the

i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.

ii) *diameter 2 property (D2P)* if every non-empty relatively weakly open subset of B_X has diameter 2.

iii) *strong diameter 2 property (SD2P)* if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

$LD2P \not\Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

$D2P \not\Rightarrow SD2P$.
Definition

A Banach space X has the

i) *local diameter 2 property* ($LD2P$) if every slice of B_X has diameter 2.

ii) *diameter 2 property* ($D2P$) if every non-empty relatively weakly open subset of B_X has diameter 2.

iii) *strong diameter 2 property* ($SD2P$) if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

$LD2P \not\Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

$D2P \not\Rightarrow SD2P$.
Definition

A Banach space X has the

i) **local diameter 2 property (LD2P)** if every slice of B_X has diameter 2.

ii) **diameter 2 property (D2P)** if every non-empty relatively weakly open subset of B_X has diameter 2.

iii) **strong diameter 2 property (SD2P)** if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

$LD2P \nRightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

$D2P \nRightarrow SD2P$.

A Banach space X has the

i) **local diameter 2 property (LD2P)** if every slice of B_X has diameter 2.

ii) **diameter 2 property (D2P)** if every non-empty relatively weakly open subset of B_X has diameter 2.

iii) **strong diameter 2 property (SD2P)** if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

$LD2P \nRightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

$D2P \nRightarrow SD2P$.
* US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

- \(LUS \Rightarrow LD2P \).
- \(\omega US \Rightarrow D2P \).
- \(US \Rightarrow SD2P \).
∗US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

- $LUS \Rightarrow LD2P$.
- $\omega US \Rightarrow D2P$.
- $US \Rightarrow SD2P$.

∗US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

- \(LUS \Rightarrow LD2P \).
- \(\omega US \Rightarrow D2P \).
- \(US \Rightarrow SD2P \).
LUS ⇒ LD2P

Sketch of proof.
Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and

$$S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$$

be a slice of B_X. Choose $x \in S \cap B_X$ and find a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$. Then $x \pm y_n \in S$ for large ns, and then we get

$$\|x + y_n - (x - y_n)\| = 2\|y_n\| = 2.$$

Similarly $\omega US \Rightarrow D2P$ and $US \Rightarrow SD2P$.
Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and

$S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X. Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$. Then $x \pm y_n \in S$ for large ns, and then we get

$$\|x + y_n - (x - y_n)\| = 2\|y_n\| = 2.$$

Similarly $\omega US \Rightarrow D2P$ and $US \Rightarrow SD2P$.
Sketch of proof.

Let \(\varepsilon > 0, x^* \in S_{X^*} \), and
\[
S = S(x^*, \varepsilon) = \{ x \in B_X : x^*(x) > 1 - \varepsilon \}
\]
be a slice of \(B_X \). Choose \(x \in S \cap S_X \) and find a sequence \((y_n) \subset S_X \) such that
\[
\|x \pm y_n\| \to 1.
\]
Then \(x \pm y_n \in S \) for large \(n \), and then we get
\[
\|x + y_n - (x - y_n)\| = 2\|y_n\| = 2.
\]

Similarly \(\omega US \Rightarrow D2P \) and \(US \Rightarrow SD2P \).
LUS ⇒ **LD2P**

Sketch of proof.

Let \(\varepsilon > 0 \), \(x^* \in S_{X^*} \), and

\[
S = S(x^*, \varepsilon) = \{ x \in B_X : x^*(x) > 1 - \varepsilon \}
\]

be a slice of \(B_X \). Choose \(x \in S \cap S_X \) and find a sequence \((y_n) \subset S_X \) such that

\[
\|x \pm y_n\| \to 1.
\]

Then \(x \pm y_n \in S \) for large \(ns \), and then we get

\[
\|x + y_n - (x - y_n)\| = 2\|y_n\| = 2.
\]

Similarly \(\omega US \Rightarrow D2P \) and \(US \Rightarrow SD2P \).
Sketch of proof.

Let \(\varepsilon > 0 \), \(x^* \in S_{X^*} \), and
\[
S = S(x^*, \varepsilon) = \{ x \in B_X : x^*(x) > 1 - \varepsilon \}
\]
be a slice of \(B_X \). Choose \(x \in S \cap S_X \) and find a sequence \((y_n) \subset S_X \) such that
\[
\|x \pm y_n\| \to 1.
\]
Then \(x \pm y_n \in S \) for large \(ns \), and then we get
\[
\|x + y_n - (x - y_n)\| = 2\|y_n\| = 2.
\]

Similarly \(\omega US \Rightarrow D2P \) and \(US \Rightarrow SD2P \).
Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and

$S = S(x^*, \varepsilon) = \{ x \in B_X : x^*(x) > 1 - \varepsilon \}$ be a slice of B_X. Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$. Then $x \pm y_n \in S$ for large ns, and then we get

$$\|x + y_n - (x - y_n)\| = 2\|y_n\| = 2.$$

Similarly $\omega US \Rightarrow D2P$ and $US \Rightarrow SD2P$.
Table of Contents

1 Introduction
2 Examples
3 Connection to diameter 2 spaces
4 Characterizations
5 US spaces fail the IP
6 Open problems
A characterization of \textit{LUS} spaces

\begin{theorem}
For a Banach space \(X \). TFAE.
\begin{enumerate}
 \item \(X \) is LUS.
 \item For every \(\varepsilon > 0 \) and every 1-dimensional subspace \(F \subset X \) there exists \(y \in S_X \) such that
 \[
 (1 - \varepsilon) \max\{\|x\|, |\lambda|\} \leq \|x + \lambda y\| \leq (1 + \varepsilon) \max\{\|x\|, |\lambda|\}
 \]
 for all \(x \in F \) and \(\lambda \in \mathbb{R} \).
\end{enumerate}
\end{theorem}

\begin{corollary}
LUS spaces contain almost isometric copies of \(\ell^2_\infty \).
\end{corollary}
A characterization of *LUS* spaces

Theorem

For a Banach space X. TFAE.

i) X is *LUS*.

ii) For every $\varepsilon > 0$ and every 1-dimensional subspace $F \subset X$ there exists $y \in S_X$ such that

$$(1 - \varepsilon) \max\{\|x\|, |\lambda|\} \leq \|x + \lambda y\| \leq (1 + \varepsilon) \max\{\|x\|, |\lambda|\}$$

for all $x \in F$ and $\lambda \in \mathbb{R}$.

Corollary

LUS spaces contain almost isometric copies of ℓ^2_∞.
A characterization of \(LUS \) spaces

Theorem

For a Banach space \(X \). TFAE.

i) \(X \) is LUS.

ii) For every \(\varepsilon > 0 \) and every 1-dimensional subspace \(F \subset X \) there exists \(y \in S_X \) such that

\[
(1 - \varepsilon) \max\{\|x\|, |\lambda|\} \leq \|x + \lambda y\| \leq (1 + \varepsilon) \max\{\|x\|, |\lambda|\}
\]

for all \(x \in F \) and \(\lambda \in \mathbb{R} \).

Corollary

\(LUS \) spaces contain almost isometric copies of \(\ell_2^2 \).
A characterization of US spaces

Theorem

For a Banach space X. TFAE.

i) X is US.

ii) For every $\varepsilon > 0$, and finite dimensional subspace F of X there exist sequences $\varepsilon_n \downarrow 0$ and $(y_n)_{n=1}^{\infty}$ in S_X such that

$$(1 - \varepsilon_n) \max\{\|f\|, |\lambda|\} \leq \|f + \lambda y_n\| \leq (1 + \varepsilon_n) \max\{\|f\|, |\lambda|\},$$

for every $f \in F_n = \text{span}\{F, (y_i)_{i=1}^{n-1}\}$ and $\lambda \in \mathbb{R}$. Moreover, $Y = \overline{\text{span}}(y_n)$ is ε-isometric to c_0.
A characterization of \textit{US} spaces

\textbf{Theorem}

For a Banach space X. TFAE.

\begin{enumerate}[i)]
\item X is US.
\item For every $\varepsilon > 0$, and finite dimensional subspace F of X there exist sequences $\varepsilon_n \downarrow 0$ and $(y_n)_{n=1}^{\infty}$ in S_X such that
\begin{equation*}
(1 - \varepsilon_n) \max\{\|f\|, |\lambda|\} \leq \|f + \lambda y_n\| \leq (1 + \varepsilon_n) \max\{\|f\|, |\lambda|\},
\end{equation*}
for every $f \in F_n = \text{span}\{F, (y_i)_{i=1}^{n-1}\}$ and $\lambda \in \mathbb{R}$. Moreover, $Y = \overline{\text{span}}(y_n)$ is ε-isometric to c_0.
\end{enumerate}
Properties of \textit{US} spaces

Corollary

\textit{US} spaces contain almost isometric copies of \(c_0 \). (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces \(C_p, 1 \leq p < \infty \) are not \textit{US}.

Corollary

\textit{If X is US, then} \(0 \in \overline{\text{ext}^\omega \cdot B_{X^*}} \).
Properties of \textit{US} spaces

\textbf{Corollary}

\textit{US} spaces contain almost isometric copies of \(c_0\). (actually asymptotically isometric copies).

\textbf{Corollary}

The Cesaro function spaces \(C_p, 1 \leq p < \infty\) are not US.

\textbf{Corollary}

If \(X\) is US, then \(0 \in \overline{\text{ext}}^{\omega^*} B_{X^*}\).
Corollary

US spaces contain almost isometric copies of c_0. (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces C_p, $1 \leq p < \infty$ are not US.

Corollary

If X is US, then $0 \in \overline{\text{ext}}^\omega B_{X^*}$.

Corollary

US spaces contain almost isometric copies of c_0. (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces C_p, $1 \leq p < \infty$ *are not US.*

Corollary

If X *is US, then* $0 \in \overline{\text{ext}}^{\omega^*} B_{X^*}$.
Proposition

If X is US, then it is ωUS.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $\| (x_i, \pm e_n) \| = 1$ in $F \oplus_\infty c_0$. Define $S : F \oplus_\infty c_0 \to \text{span } (F, Y)$ by $S(f, x) = f + T(x)$ where $T : c_0 \to Y$ is the ε-isometry. Then $\| S(x_i, \pm e_n) \| = \| x_i \pm T(e_n) \| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0. □
Proposition

If X is US, then it is ωUS.

Sketch of proof.

Choose $(x_i)_{i=1}^{N} \subset S_F$. Then $\|(x_i, \pm e_n)\| = 1$ in $F \oplus_{\infty} c_0$. Define $S : F \oplus_{\infty} c_0 \to \text{span} (F, Y)$ by $S(f, x) = f + T(x)$ where $T : c_0 \to Y$ is the ε-isometry. Then $\|S(x_i, \pm e_n)\| = \|x_i \pm T(e_n)\| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0. \(\square\)
\textbf{US} \implies \omega \textbf{US}

\textbf{Proposition}

\textit{If }X\text{ is US, then it is }\omega \text{US.}

\textbf{Sketch of proof.}

Choose \((x_i)_{i=1}^N \subset S_F\). Then \(\|(x_i, \pm e_n)\| = 1\) in \(F \oplus \infty c_0\). Define \(S : F \oplus \infty c_0 \rightarrow \text{span}(F, Y)\) by \(S(f, x) = f + T(x)\) where \(T : c_0 \rightarrow Y\) is the \(\varepsilon\)-isometry. Then \(\|S(x_i, \pm e_n)\| = \|x_i \pm T(e_n)\| \rightarrow 1\), and \(T(e_n) \rightarrow 0\) weakly in \(X\) as \(e_n \rightarrow 0\) weakly in \(c_0\). \qed
Proposition

If X is US, then it is ωUS.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $\|(x_i, \pm e_n)\| = 1$ in $F \oplus_\infty c_0$. Define $S : F \oplus_\infty c_0 \to \text{span}(F, Y)$ by $S(f, x) = f + T(x)$ where $T : c_0 \to Y$ is the ε-isometry. Then $\|S(x_i, \pm e_n)\| = \|x_i \pm T(e_n)\| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0. \qed
Proposition

If X is US, then it is ωUS.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $\|(x_i, \pm e_n)\| = 1$ in $F \oplus_\infty c_0$. Define $S : F \oplus_\infty c_0 \to \text{span}(F, Y)$ by $S(f, x) = f + T(x)$ where $T : c_0 \to Y$ is the ε-isometry. Then $\|S(x_i, \pm e_n)\| = \|x_i \pm T(e_n)\| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0.

\square
Proposition

If X is US, then it is ωUS.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $\|(x_i, \pm e_n)\| = 1$ in $F \oplus \infty c_0$. Define $S : F \oplus \infty c_0 \to \text{span} (F, Y)$ by $S(f, x) = f + T(x)$ where $T : c_0 \to Y$ is the ϵ-isometry. Then $\|S(x_i, \pm e_n)\| = \|x_i \pm T(e_n)\| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0. \qed
Table of Contents

1 Introduction
2 Examples
3 Connection to diameter 2 spaces
4 Characterizations
5 US spaces fail the IP
6 Open problems
The intersection property - \textit{IP}

\textbf{Definition (Behrends and Harmand)}

\(X\) has the intersection property (\textit{IP}) if for all \(\varepsilon > 0\) there exist \((x_i)_{i=1}^{N} \subset B_X^o\) such that \(\|y\| \leq \varepsilon\) if \(\|x_i \pm y\| \leq 1\) for every \(i = 1, \ldots, N\), i.e. the intersection of the balls \(B(\pm x_i, 1)\) is contained in \(B(0, \varepsilon)\).

If \(X\) fails the \textit{IP} then there exists \(\varepsilon > 0\) such that for all \((x_i)_{i=1}^{N} \subset B_X^o\) there is \(y\) with \(\|y\| > \varepsilon\) and \(\|x_i \pm y\| \leq 1\) for every \(i = 1, \ldots, N\).
Definition (Behrends and Harmand)

X has the intersection property (IP) if for all $\varepsilon > 0$ there exist $(x_i)_{i=1}^N \subset B_X^\circ$ such that $\|y\| \leq \varepsilon$ if $\|x_i \pm y\| \leq 1$ for every $i = 1, \ldots, N$, i.e. the intersection of the balls $B(\pm x_i, 1)$ is contained in $B(0, \varepsilon)$.

If X fails the IP then there exists $\varepsilon > 0$ such that for all $(x_i)_{i=1}^N \subset B_X^\circ$ there is y with $\|y\| > \varepsilon$ and $\|x_i \pm y\| \leq 1$ for every $i = 1, \ldots, N$.
The intersection property - \textit{IP}

Definition (Behrends and Harmand)

X has the intersection property (\textit{IP}) if for all $\varepsilon > 0$ there exist $(x_i)_{i=1}^N \subset B_X^\circ$ such that $\|y\| \leq \varepsilon$ if $\|x_i \pm y\| \leq 1$ for every $i = 1, \ldots, N$, i.e. the intersection of the balls $B(\pm x_i, 1)$ is contained in $B(0, \varepsilon)$.

If X fails the \textit{IP} then there exists $\varepsilon > 0$ such that for all $(x_i)_{i=1}^N \subset B_X^\circ$ there is y with $\|y\| > \varepsilon$ and $\|x_i \pm y\| \leq 1$ for every $i = 1, \ldots, N$.

Proposition

\[US \Rightarrow \text{fails the IP. But the converse is not true.} \]

Proof.

Characterization of \(US \). The \(G \)-space:

\[X = \{ f \in C[0,1] : f(0) = 2f(1) \} \]

fails \(IP \) but is not \(US \) (not even \(LUS \)).
Proposition

US ⇒ *fails the IP*. But the converse is not true.

Proof.

Characterization of **US**. The *G*-space:

\[X = \{ f \in C[0, 1] : f(0) = 2f(1) \}. \]

fails *IP* but is not **US** (not even **LUS**).
Proposition

$US \Rightarrow$ fails the IP. But the converse is not true.

Proof.

Characterization of US. The G-space:

$$X = \{ f \in C[0, 1] : f(0) = 2f(1) \}.$$

fails IP but is not US (not even LUS).
Table of Contents

1 Introduction
2 Examples
3 Connection to diameter 2 spaces
4 Characterizations
5 US spaces fail the IP
6 Open problems
Open problems

Question

Can dual spaces be US?

Question

Can every space containing c_0 be renormed to be US?

Question

Does $LUS \Rightarrow \omega US$?
Open problems

Question

Can dual spaces be US?

Question

Can every space containing c_0 be renormed to be US?

Question

Does $LUS \Rightarrow \omega US$?
Open problems

Question
Can dual spaces be US?

Question
Can every space containing c_0 be renormed to be US?

Question
Does LUS \Rightarrow ωUS?
Open problems

Question
Can dual spaces be US?

Question
Can every space containing c_0 be renormed to be US?

Question
Does $LUS \Rightarrow \omega US$?