Uniformly square Banach spaces (joint work with J. Langemets and V. Lima)

Trond A. Abrahamsen

Department of Mathematics University of Agder NORWAY

Banach Algebras and Applications dedicated to the memory of William G. Bade Gothenburg JULY 29 - AUGUST 4, 2013

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Table of Contents

1 Introduction

- 2 Examples
- 3 Connection to diameter 2 spaces
- 4 Characterizations
- US spaces fail the IP
- 6 Open problems

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

- X will denote a Banach space and X^* its dual.
- B_X the unit ball, B_X^o the open unit ball of X.

• S_X the unit sphere of X.

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

- X will denote a Banach space and X^* its dual.
- B_X the unit ball, B_X^o the open unit ball of X.

• S_X the unit sphere of X.

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

- X will denote a Banach space and X^* its dual.
- B_X the unit ball, B_X^o the open unit ball of X.

∄ ▶ ∢ ∃

• S_X the unit sphere of X.

Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

 $\max \|x \pm y\| \ge 1 + \delta \text{ for all } y \in S_X.$

• If $x \in S_X$, then

 $2 \le ||x + y|| + ||x - y|| \le 2 \max ||x \pm y||$ for all $y \in X$

• So $x \in S_X$ is NOT uniformly non-square $\downarrow \downarrow$ there is $(y_n) \subset S_X$ with $||x \pm y_n|| \to 1$.

Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

 $\max \|x \pm y\| \ge 1 + \delta \text{ for all } y \in S_X.$

• If $x \in S_X$, then

 $2 \le ||x + y|| + ||x - y|| \le 2 \max ||x \pm y||$ for all $y \in X$

• So $x \in S_X$ is NOT uniformly non-square $\downarrow \downarrow$ there is $(y_n) \subset S_X$ with $||x \pm y_n|| \to 1$.

Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

 $\max \|x \pm y\| \ge 1 + \delta \text{ for all } y \in S_X.$

• If $x \in S_X$, then

 $2 \le \|x+y\| + \|x-y\| \le 2 \max \|x \pm y\|$ for all $y \in X$

• So $x \in S_X$ is NOT uniformly non-square $\downarrow \downarrow$ there is $(y_n) \subset S_X$ with $||x \pm y_n|| \to 1$.

Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

 $\max \|x \pm y\| \ge 1 + \delta \text{ for all } y \in S_X.$

• If $x \in S_X$, then

 $2 \le ||x + y|| + ||x - y|| \le 2 \max ||x \pm y||$ for all $y \in X$

• So $x \in S_X$ is NOT uniformly non-square \downarrow there is $(y_n) \subset S_X$ with $||x \pm y_n|| \to 1$.

Basic definitions

Definition (Schäffer, 1976)

A point $x \in S_X$ is called uniformly non-square if there exists $\delta > 0$ such that

 $\max \|x \pm y\| \ge 1 + \delta \text{ for all } y \in S_X.$

• If $x \in S_X$, then

 $2 \le ||x + y|| + ||x - y|| \le 2 \max ||x \pm y||$ for all $y \in X$

• So $x \in S_X$ is NOT uniformly non-square \downarrow there is $(y_n) \subset S_X$ with $||x \pm y_n|| \to 1$.

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Basic definitions

Definition

X is

- a) locally uniformly square (*LUS*) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$.
- b) weakly uniformly square (ωUS) if X is LUS and $y_n \rightarrow 0$ weakly.
- c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x_i \pm y_n|| \to 1$ for every $i = 1, \ldots, N$.
- $\bullet \ \mbox{Obviously b}) \Rightarrow a) \ \mbox{and c}) \Rightarrow a).$
- We will show: c) \Rightarrow b).

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Basic definitions

Definition

X is

- a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$.
- b) weakly uniformly square (ωUS) if X is LUS and $y_n \rightarrow 0$ weakly.

c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x_i \pm y_n|| \to 1$ for every $i = 1, \ldots, N$.

- $\bullet \ \mbox{Obviously b}) \Rightarrow a) \ \mbox{and c}) \Rightarrow a).$
- We will show: c) \Rightarrow b).

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Basic definitions

Definition

X is

- a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$.
- b) weakly uniformly square (ωUS) if X is LUS and $y_n \rightarrow 0$ weakly.
- c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x_i \pm y_n|| \to 1$ for every $i = 1, \ldots, N$.

イロト イポト イヨト イヨト

- Obviously b) \Rightarrow a) and c) \Rightarrow a).
- We will show: c) \Rightarrow b).

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Basic definitions

Definition

X is

- a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$.
- b) weakly uniformly square (ωUS) if X is LUS and $y_n \rightarrow 0$ weakly.
- c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x_i \pm y_n|| \to 1$ for every $i = 1, \ldots, N$.

(日) (同) (三) (三)

- Obviously b) \Rightarrow a) and c) \Rightarrow a).
- We will show: c) \Rightarrow b).

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Basic definitions

Definition

X is

- a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$.
- b) weakly uniformly square (ωUS) if X is LUS and $y_n \rightarrow 0$ weakly.
- c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x_i \pm y_n|| \to 1$ for every $i = 1, \ldots, N$.

(日) (同) (三) (三)

- Obviously b) \Rightarrow a) and c) \Rightarrow a).
- We will show: c) \Rightarrow b).

Examples Connection to diameter 2 spaces Characterizations *US* spaces fail the *IP* Open problems

Basic definitions

Definition

X is

- a) locally uniformly square (LUS) if for every $x \in S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$.
- b) weakly uniformly square (ωUS) if X is LUS and $y_n \rightarrow 0$ weakly.
- c) uniformly square (US) if for every $(x_i)_{i=1}^N \subset S_X$ there is a sequence $(y_n) \subset S_X$ such that $||x_i \pm y_n|| \to 1$ for every $i = 1, \ldots, N$.

イロト イポト イヨト イヨト

- $\bullet \ \mbox{Obviously b}) \Rightarrow a) \ \mbox{and c}) \Rightarrow a).$
- We will show: c) \Rightarrow b).

Table of Contents

Introduction

- 2 Examples
- 3 Connection to diameter 2 spaces
- 4 Characterizations
- 5 US spaces fail the IP
- 6 Open problems

- Let $x = (x_k) \in S_{c_0}$. Then $||x \pm e_n|| \to 1$ where e_n is the *n*'th canonical unit vector in c_0 . So c_0 is LUS,
- ... and ωUS as $e_n \rightarrow 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i .

- Let $x = (x_k) \in S_{c_0}$. Then $||x \pm e_n|| \rightarrow 1$ where e_n is the *n*'th canonical unit vector in c_0 . So c_0 is LUS,
- ... and ωUS as $e_n \rightarrow 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i .

- Let $x = (x_k) \in S_{c_0}$. Then $||x \pm e_n|| \rightarrow 1$ where e_n is the *n*'th canonical unit vector in c_0 . So c_0 is LUS,
- ... and ωUS as $e_n \rightarrow 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i .

- Let $x = (x_k) \in S_{c_0}$. Then $||x \pm e_n|| \rightarrow 1$ where e_n is the *n*'th canonical unit vector in c_0 . So c_0 is LUS,
- ... and ωUS as $e_n \rightarrow 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i .

- Let $x = (x_k) \in S_{c_0}$. Then $||x \pm e_n|| \rightarrow 1$ where e_n is the *n*'th canonical unit vector in c_0 . So c_0 is LUS,
- ... and ωUS as $e_n \rightarrow 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i .

- Let $x = (x_k) \in S_{c_0}$. Then $||x \pm e_n|| \rightarrow 1$ where e_n is the *n*'th canonical unit vector in c_0 . So c_0 is LUS,
- ... and ωUS as $e_n \rightarrow 0$ weakly.
- ... and US by the same idea as for the LUS case.
- Actually: $c_0(X_i)$ is US for any sequence of spaces X_i .

Examples The space of convergent sequences - c

- Let $x = (1, 1, ..., 1, ...) \in S_c$. Now, if $||x \pm y_n|| \to 1$, then
 - to ± 1 , then the maximum of that term of $x \pm y_n$ would be close to 2. So *c* is not *LUS*.
- Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

Examples The space of convergent sequences - c

• Let $x = (1, 1, \dots, 1, \dots) \in S_c$. Now, if $||x \pm y_n|| \to 1$, then

 $||y_n|| \neq 1$. Because: if the value of one term of y_n were close to ± 1 , then the maximum of that term of $x \pm y_n$ would be close to 2. So *c* is not *LUS*.

Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

Examples The space of convergent sequences - c

Let x = (1,1,...,1,...) ∈ S_c. Now, if ||x ± y_n|| → 1, then ||y_n|| ≠ 1. Because: if the value of one term of y_n were close to ±1, then the maximum of that term of x ± y_n would be close to 2. So c is not LUS.

Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

Examples The space of convergent sequences - c

- Let x = (1,1,...,1,...) ∈ S_c. Now, if ||x ± y_n|| → 1, then ||y_n|| ≠ 1. Because: if the value of one term of y_n were close to ±1, then the maximum of that term of x ± y_n would be close to 2. So c is not LUS.
- Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

Examples The space of convergent sequences - c

- Let x = (1,1,...,1,...) ∈ S_c. Now, if ||x ± y_n|| → 1, then ||y_n|| ≠ 1. Because: if the value of one term of y_n were close to ±1, then the maximum of that term of x ± y_n would be close to 2. So c is not LUS.
- Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

Examples The space of convergent sequences - c

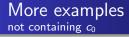
- Let x = (1,1,...,1,...) ∈ S_c. Now, if ||x ± y_n|| → 1, then ||y_n|| ≠ 1. Because: if the value of one term of y_n were close to ±1, then the maximum of that term of x ± y_n would be close to 2. So c is not LUS.
- Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

Examples The space of convergent sequences - c

- Let x = (1,1,...,1,...) ∈ S_c. Now, if ||x ± y_n|| → 1, then ||y_n|| ≠ 1. Because: if the value of one term of y_n were close to ±1, then the maximum of that term of x ± y_n would be close to 2. So c is not LUS.
- Actually ||y_n|| → 0. Reason: x = (1, 1, ..., 1, ...) is a strong extreme point in S_c.

Fact

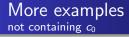


• $L_1[0,1]$ is ωUS , but not US.

Theorem (Kubiak, to appear)

The Cesaro function spaces C_p , $1 \le p < \infty$ are ωUS .

For $1 \le p < \infty$, $C_p = \{f \in L_p : \int_0^1 (1/x \int_0^x |f(t)| dt)^p < \infty\}$ with norm $||f|| = (\int_0^1 (1/x \int_0^x |f(t)| dt)^p)^{1/p}$.

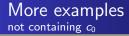


• $L_1[0,1]$ is ωUS , but not US.

Theorem (Kubiak, to appear)

The Cesaro function spaces C_p , $1 \le p < \infty$ are ωUS .

For $1 \le p < \infty$, $C_p = \{f \in L_p : \int_0^1 (1/x \int_0^x |f(t)| dt)^p < \infty\}$ with norm $||f|| = (\int_0^1 (1/x \int_0^x |f(t)| dt)^p)^{1/p}$.

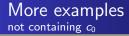


• $L_1[0,1]$ is ωUS , but not US.

Theorem (Kubiak, to appear)

The Cesaro function spaces C_p , $1 \le p < \infty$ are ωUS .

For $1 \le p < \infty$, $C_p = \{f \in L_p : \int_0^1 (1/x \int_0^x |f(t)| dt)^p < \infty\}$ with norm $||f|| = (\int_0^1 (1/x \int_0^x |f(t)| dt)^p)^{1/p}$.



• $L_1[0,1]$ is ωUS , but not US.

Theorem (Kubiak, to appear)

The Cesaro function spaces C_p , $1 \le p < \infty$ are ωUS .

For
$$1 \le p < \infty$$
, $C_p = \{f \in L_p : \int_0^1 (1/x \int_0^x |f(t)| dt)^p < \infty\}$
with norm $||f|| = (\int_0^1 (1/x \int_0^x |f(t)| dt)^p)^{1/p}$.

Even more examples M-embedded spaces

• X is called M-embedded if $X^{***} = X^* \oplus_1 X^{\perp}$.

Theorem

Non-reflexive M-embedded spaces are US.

• In particular: $c_0(\Gamma)$, K(H), $K(\ell_p, \ell_q)$ where 1 are US.

• $c_0(\ell_1)$ is *US*, but not M-embedded.

Even more examples M-embedded spaces

• X is called M-embedded if $X^{***} = X^* \oplus_1 X^{\perp}$.

Theorem

Non-reflexive M-embedded spaces are US.

• In particular: $c_0(\Gamma)$, K(H), $K(\ell_p, \ell_q)$ where 1 are US.

• $c_0(\ell_1)$ is *US*, but not M-embedded.

Even more examples M-embedded spaces

• X is called M-embedded if $X^{***} = X^* \oplus_1 X^{\perp}$.

Theorem

Non-reflexive M-embedded spaces are US.

In particular: c₀(Γ), K(H), K(ℓ_p, ℓ_q) where 1

伺 ト イヨ ト イヨト

• $c_0(\ell_1)$ is US, but not M-embedded.

Even more examples M-embedded spaces

• X is called M-embedded if $X^{***} = X^* \oplus_1 X^{\perp}$.

Theorem

Non-reflexive M-embedded spaces are US.

• In particular: $c_0(\Gamma)$, K(H), $K(\ell_p, \ell_q)$ where 1 are US.

伺 ト イヨ ト イヨト

• $c_0(\ell_1)$ is US, but not M-embedded.

Even more examples M-embedded spaces

• X is called M-embedded if $X^{***} = X^* \oplus_1 X^{\perp}$.

Theorem

Non-reflexive M-embedded spaces are US.

• In particular: $c_0(\Gamma)$, K(H), $K(\ell_p, \ell_q)$ where 1 are US.

• $c_0(\ell_1)$ is US, but not M-embedded.

Even more examples M-embedded spaces

• X is called M-embedded if $X^{***} = X^* \oplus_1 X^{\perp}$.

Theorem

Non-reflexive M-embedded spaces are US.

- In particular: c₀(Γ), K(H), K(ℓ_p, ℓ_q) where 1
- $c_0(\ell_1)$ is US, but not M-embedded.

Table of Contents

Introduction

- 2 Examples
- 3 Connection to diameter 2 spaces
- 4 Characterizations
- 5 US spaces fail the IP

6 Open problems

Definition

A Banach space X has the

- i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.
- ii) diameter 2 property (D2P) if every non-empty relatively weakly open subset of B_X has diameter 2.
- iii) strong diameter 2 property (SD2P) if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

 $LD2P \Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.) $D2P \Rightarrow SD2P$.

Definition

- A Banach space X has the
 - i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.
 - ii) diameter 2 property (D2P) if every non-empty relatively weakly open subset of B_X has diameter 2.
 - iii) strong diameter 2 property (SD2P) if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

 $LD2P \Rightarrow D2P.$

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.) D2P *⇒ S*D2P.

Definition

A Banach space X has the

- i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.
- ii) diameter 2 property (D2P) if every non-empty relatively weakly open subset of B_X has diameter 2.
- iii) strong diameter 2 property (SD2P) if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

 $LD2P \Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

 $D2P \Rightarrow SD2P$.

Definition

A Banach space X has the

- i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.
- ii) diameter 2 property (D2P) if every non-empty relatively weakly open subset of B_X has diameter 2.
- iii) strong diameter 2 property (SD2P) if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

 $LD2P \Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

 $D2P \Rightarrow SD2P$.

Definition

- A Banach space X has the
 - i) *local diameter 2 property (LD2P)* if every slice of B_X has diameter 2.
 - ii) diameter 2 property (D2P) if every non-empty relatively weakly open subset of B_X has diameter 2.
 - iii) strong diameter 2 property (SD2P) if every finite convex combination of slices of B_X has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

 $LD2P \Rightarrow D2P$.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

 $D2P \Rightarrow SD2P$.

イロン イボン イヨン イヨン

3

*US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

- $LUS \Rightarrow LD2P$.
- $\omega US \Rightarrow D2P$.

• $US \Rightarrow SD2P$.

3

*US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

- $LUS \Rightarrow LD2P$.
- $\omega US \Rightarrow D2P$.

• $US \Rightarrow SD2P$.

э

*US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

- $LUS \Rightarrow LD2P$.
- $\omega US \Rightarrow D2P$.
- $US \Rightarrow SD2P$.

Sketch of proof

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and $S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X . Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$. Then $x \pm y_n \in S$ for large *n*s, and then we get

$$||x + y_n - (x - y_n)|| = 2||y_n|| = 2.$$

$LUS \Rightarrow LD2P$

Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and $S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X . Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $\|x \pm y_n\| \to 1$. Then $x \pm y_n \in S$ for large *ns*, and then we get

$$||x + y_n - (x - y_n)|| = 2||y_n|| = 2.$$

$LUS \Rightarrow LD2P$

Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and $S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X . Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$. Then $x \pm y_n \in S$ for large *n*s, and then we get

$$||x + y_n - (x - y_n)|| = 2||y_n|| = 2.$$

$LUS \Rightarrow LD2P$

Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and $S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X . Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$. Then $x \pm y_n \in S$ for large *n*s, and then we get

$$||x + y_n - (x - y_n)|| = 2||y_n|| = 2.$$

$LUS \Rightarrow LD2P$

Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and $S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X . Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$. Then $x \pm y_n \in S$ for large *n*s, and then we get

$$||x + y_n - (x - y_n)|| = 2||y_n|| = 2.$$

$LUS \Rightarrow LD2P$

Sketch of proof.

Let $\varepsilon > 0$, $x^* \in S_{X^*}$, and $S = S(x^*, \varepsilon) = \{x \in B_X : x^*(x) > 1 - \varepsilon\}$ be a slice of B_X . Choose $x \in S \cap S_X$ and find a sequence $(y_n) \subset S_X$ such that $||x \pm y_n|| \to 1$. Then $x \pm y_n \in S$ for large *n*s, and then we get

$$||x + y_n - (x - y_n)|| = 2||y_n|| = 2.$$

Table of Contents

Introduction

- 2 Examples
- 3 Connection to diameter 2 spaces
- 4 Characterizations
- 5 US spaces fail the IP

6 Open problems

A characterization of LUS spaces

Theorem

For a Banach space X. TFAE.

i) X is LUS.

ii) For every $\varepsilon > 0$ and every 1-dimensional subspace $F \subset X$ there exists $y \in S_X$ such that

 $(1-\varepsilon)\max\{\|x\|, |\lambda|\} \le \|x+\lambda y\| \le (1+\varepsilon)\max\{\|x\|, |\lambda|\}$

A (1) > A (1) > A

for all $x \in F$ and $\lambda \in \mathbb{R}$.

Corollary

LUS spaces contain almost isometric copies of ℓ_{∞}^2

A characterization of LUS spaces

Theorem

For a Banach space X. TFAE.

- i) X is LUS.
- ii) For every $\varepsilon > 0$ and every 1-dimensional subspace $F \subset X$ there exists $y \in S_X$ such that

 $(1-\varepsilon)\max\{\|x\|,|\lambda|\} \le \|x+\lambda y\| \le (1+\varepsilon)\max\{\|x\|,|\lambda|\}$

for all $x \in F$ and $\lambda \in \mathbb{R}$.

Corollary

LUS spaces contain almost isometric copies of ℓ_{∞}^2

A characterization of LUS spaces

Theorem

For a Banach space X. TFAE.

- i) X is LUS.
- ii) For every $\varepsilon > 0$ and every 1-dimensional subspace $F \subset X$ there exists $y \in S_X$ such that

 $(1-\varepsilon)\max\{\|x\|,|\lambda|\} \le \|x+\lambda y\| \le (1+\varepsilon)\max\{\|x\|,|\lambda|\}$

for all $x \in F$ and $\lambda \in \mathbb{R}$.

Corollary

LUS spaces contain almost isometric copies of ℓ_{∞}^2 .

A characterization of US spaces

Theorem

For a Banach space X. TFAE.

i) X is US.

ii) For every ε > 0, and finite dimensional subspace F of X there exist sequences ε_n ↓ 0 and (y_n)_{n=1}[∞] in S_X such that

 $(1-\varepsilon_n)\max\{\|f\|,|\lambda|\} \le \|f+\lambda y_n\| \le (1+\varepsilon_n)\max\{\|f\|,|\lambda|\},$

for every $f \in F_n = span \{F, (y_i)_{i=1}^{n-1}\}$ and $\lambda \in \mathbb{R}$. Moreover, $Y = \overline{span}(y_n)$ is ε -isometric to c_0 .

A characterization of US spaces

Theorem

For a Banach space X. TFAE.

- i) X is US.
- ii) For every $\varepsilon > 0$, and finite dimensional subspace F of X there exist sequences $\varepsilon_n \downarrow 0$ and $(y_n)_{n=1}^{\infty}$ in S_X such that

 $(1-\varepsilon_n)\max\{\|f\|,|\lambda|\} \le \|f+\lambda y_n\| \le (1+\varepsilon_n)\max\{\|f\|,|\lambda|\},$

for every $f \in F_n = \text{span} \{F, (y_i)_{i=1}^{n-1}\}$ and $\lambda \in \mathbb{R}$. Moreover, $Y = \overline{\text{span}}(y_n)$ is ε -isometric to c_0 .

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c_0 . (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces C_p , $1 \le p < \infty$ are not US.

Corollary

If X is US, then $0 \in \overline{ext}^{\omega^*}B_{X^*}$.

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c_0 . (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces C_p , $1 \le p < \infty$ are not US.

Corollary

If X is US, then $0 \in \overline{ext}^{\omega^*}B_{X^*}$.

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c_0 . (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces C_p , $1 \le p < \infty$ are not US.

Corollary

If X is US, then $0 \in \overline{ext}^{\omega^*}B_{X^*}$.

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c_0 . (actually asymptotically isometric copies).

Corollary

The Cesaro function spaces C_p , $1 \le p < \infty$ are not US.

Corollary

If X is US, then $0 \in \overline{ext}^{\omega*}B_{X^*}$.

Propositior

If X is US, then it is ω US.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $||(x_i, \pm e_n)|| = 1$ in $F \oplus_\infty c_0$. Define $S : F \oplus_\infty c_0 \to \text{span}(F, Y)$ by S(f, x) = f + T(x) where $T : c_0 \to Y$ is the ε -isometry. Then $||S(x_i, \pm e_n)|| = ||x_i \pm T(e_n)|| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0 .

Proposition

If X is US, then it is ω US.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $||(x_i, \pm e_n)|| = 1$ in $F \oplus_\infty c_0$. Define $S : F \oplus_\infty c_0 \to \text{span}(F, Y)$ by S(f, x) = f + T(x) where $T : c_0 \to Y$ is the ε -isometry. Then $||S(x_i, \pm e_n)|| = ||x_i \pm T(e_n)|| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0 .

Proposition

If X is US, then it is ω US.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $||(x_i, \pm e_n)|| = 1$ in $F \oplus_\infty c_0$. Define $S : F \oplus_\infty c_0 \to \text{span} (F, Y)$ by S(f, x) = f + T(x) where $T : c_0 \to Y$ is the ε -isometry. Then $||S(x_i, \pm e_n)|| = ||x_i \pm T(e_n)|| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0 .

Proposition

If X is US, then it is ω US.

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $||(x_i, \pm e_n)|| = 1$ in $F \oplus_{\infty} c_0$. Define $S : F \oplus_{\infty} c_0 \to \text{span} (F, Y)$ by S(f, x) = f + T(x) where $T : c_0 \to Y$ is the ε -isometry. Then $||S(x_i, \pm e_n)|| = ||x_i \pm T(e_n)|| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0 .

Proposition

If X is US, then it is ωUS .

Sketch of proof.

Choose $(x_i)_{i=1}^N \subset S_F$. Then $||(x_i, \pm e_n)|| = 1$ in $F \oplus_{\infty} c_0$. Define $S : F \oplus_{\infty} c_0 \to \text{span}(F, Y)$ by S(f, x) = f + T(x) where $T : c_0 \to Y$ is the ε -isometry. Then $||S(x_i, \pm e_n)|| = ||x_i \pm T(e_n)|| \to 1$, and $T(e_n) \to 0$ weakly in X as $e_n \to 0$ weakly in c_0 .

Proposition

If X is US, then it is ω US.

Sketch of proof.

Choose
$$(x_i)_{i=1}^N \subset S_F$$
. Then $||(x_i, \pm e_n)|| = 1$ in $F \oplus_\infty c_0$. Define
 $S : F \oplus_\infty c_0 \to \text{span} (F, Y)$ by $S(f, x) = f + T(x)$ where
 $T : c_0 \to Y$ is the ε -isometry. Then
 $||S(x_i, \pm e_n)|| = ||x_i \pm T(e_n)|| \to 1$, and $T(e_n) \to 0$ weakly in X as
 $e_n \to 0$ weakly in c_0 .

Table of Contents

Introduction

- 2 Examples
- 3 Connection to diameter 2 spaces
- 4 Characterizations
- 5 US spaces fail the IP
- 6 Open problems

The intersection property - IP

Definition (Behrends and Harmand)

X has the intersection property (*IP*) if for all $\varepsilon > 0$ there exist $(x_i)_{i=1}^N \subset B_X^\circ$ such that $||y|| \le \varepsilon$ if $||x_i \pm y|| \le 1$ for every $i = 1, \ldots, N$, i.e. the intersection of the balls $B(\pm x_i, 1)$ is contained in $B(0, \varepsilon)$.

If X fails the *IP* then there exists $\varepsilon > 0$ such that for all $(x_i)_{i=1}^N \subset B_X^o$ there is y with $||y|| > \varepsilon$ and $||x_i \pm y|| \le 1$ for every $i = 1, \ldots, N$.

The intersection property - IP

Definition (Behrends and Harmand)

X has the intersection property (*IP*) if for all $\varepsilon > 0$ there exist $(x_i)_{i=1}^N \subset B_X^\circ$ such that $||y|| \le \varepsilon$ if $||x_i \pm y|| \le 1$ for every $i = 1, \ldots, N$, i.e. the intersection of the balls $B(\pm x_i, 1)$ is contained in $B(0, \varepsilon)$.

If X fails the *IP* then there exists $\varepsilon > 0$ such that for all $(x_i)_{i=1}^N \subset B_X^o$ there is y with $||y|| > \varepsilon$ and $||x_i \pm y|| \le 1$ for every $i = 1, \ldots, N$.

The intersection property - IP

Definition (Behrends and Harmand)

X has the intersection property (*IP*) if for all $\varepsilon > 0$ there exist $(x_i)_{i=1}^N \subset B_X^{\circ}$ such that $||y|| \leq \varepsilon$ if $||x_i \pm y|| \leq 1$ for every $i = 1, \ldots, N$, i.e. the intersection of the balls $B(\pm x_i, 1)$ is contained in $B(0, \varepsilon)$.

If X fails the *IP* then there exists $\varepsilon > 0$ such that for all $(x_i)_{i=1}^N \subset B_X^o$ there is y with $||y|| > \varepsilon$ and $||x_i \pm y|| \le 1$ for every i = 1, ..., N.

Proposition

$US \Rightarrow$ fails the IP. But the converse is not true.

Proof.

Characterization of US. The G-space:

$$X = \{ f \in C[0,1] : f(0) = 2f(1) \}.$$

< 4 P > < E

fails *IP* but is not *US* (not even *LUS*).

Proposition

 $US \Rightarrow$ fails the IP. But the converse is not true.

Proof.

Characterization of US. The G-space:

$$X = \{ f \in C[0,1] : f(0) = 2f(1) \}.$$

fails *IP* but is not *US* (not even *LUS*).

Proposition

 $US \Rightarrow$ fails the IP. But the converse is not true.

Proof.

Characterization of US. The G-space:

$$X = \{ f \in C[0,1] : f(0) = 2f(1) \}.$$

fails IP but is not US (not even LUS).

Table of Contents

Introduction

- 2 Examples
- 3 Connection to diameter 2 spaces
- 4 Characterizations
- US spaces fail the IP

6 Open problems

Open problems

Question

Can dual spaces be US?

Question

Can every space containing c_0 be renormed to be US?

Question

Does LUS $\Rightarrow \omega US$?

Open problems

Question

Can dual spaces be US?

Question

Can every space containing c_0 be renormed to be US?

Question

Does LUS $\Rightarrow \omega US$?

Open problems

Question

Can dual spaces be US?

Question

Can every space containing c_0 be renormed to be US?

Question

Does $LUS \Rightarrow \omega US$?

Open problems

Question

Can dual spaces be US?

Question

Can every space containing c_0 be renormed to be US?

Question

Does $LUS \Rightarrow \omega US$?

▲日 ▼ ▲国 ▼ ▲ 国 ▼ ▲ 国 ▼ ▲ 国 ▼ ▲ 日 ▼