
Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

Uniformly square Banach spaces

(joint work with J. Langemets and V. Lima)

Trond A. Abrahamsen

Department of Mathematics

University of Agder

NORWAY

Banach Algebras and Applications
dedicated to the memory of William G. Bade

Gothenburg
JULY 29 - AUGUST 4, 2013



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

Table of Contents

1 Introduction

2 Examples

3 Connection to diameter 2 spaces

4 Characterizations

5 US spaces fail the IP

6 Open problems



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

Notation

X will denote a Banach space and X ∗ its dual.
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X the open unit ball of X .
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Basic definitions

Definition (Schäffer, 1976)

A point x ∈ SX is called uniformly non-square if there exists δ > 0
such that

max ‖x ± y‖ ≥ 1 + δ for all y ∈ SX .

If x ∈ SX , then

2 ≤ ‖x + y‖+ ‖x − y‖ ≤ 2max ‖x ± y‖ for all y ∈ X

.

So x ∈ SX is NOT uniformly non-square
⇓

there is (yn) ⊂ SX with ‖x ± yn‖ → 1.
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Basic definitions

Definition

X is

a) locally uniformly square (LUS) if for every x ∈ SX there is a
sequence (yn) ⊂ SX such that ‖x ± yn‖ → 1.

b) weakly uniformly square (ωUS) if X is LUS and yn → 0
weakly.

c) uniformly square (US) if for every (xi)
N
i=1 ⊂ SX there is a

sequence (yn) ⊂ SX such that ‖xi ± yn‖ → 1 for every
i = 1, . . . ,N.

Obviously b) ⇒ a) and c) ⇒ a).

We will show: c) ⇒ b).
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Examples
The space of null-sequences - c0

Let x = (xk) ∈ Sc0 . Then ‖x ± en‖ → 1 where en is the n’th
canonical unit vector in c0. So c0 is LUS ,

... and ωUS as en → 0 weakly.

... and US by the same idea as for the LUS case.

Actually: c0(Xi ) is US for any sequence of spaces Xi .
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Examples
The space of convergent sequences - c

Let x = (1, 1, . . . , 1, . . .) ∈ Sc . Now, if ‖x ± yn‖ → 1, then
‖yn‖ 6= 1. Because: if the value of one term of yn were close
to ±1, then the maximum of that term of x ± yn would be
close to 2. So c is not LUS .

Actually ‖yn‖ → 0. Reason: x = (1, 1, . . . , 1, . . .) is a strong
extreme point in Sc .

Fact

The unit ball of LUS spaces cannot have strong extreme points.
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More examples
not containing c0

L1[0, 1] is ωUS , but not US .

Theorem (Kubiak, to appear)

The Cesaro function spaces Cp, 1 ≤ p < ∞ are ωUS.

For 1 ≤ p < ∞, Cp = {f ∈ Lp :
∫ 1

0
(1/x

∫ x

0
|f (t)|dt)p < ∞}

with norm ‖f ‖ = (
∫ 1

0
(1/x

∫ x

0
|f (t)|dt)p)1/p .

Note that Cp is strictly convex.
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Even more examples
M-embedded spaces

X is called M-embedded if X ∗∗∗ = X ∗ ⊕1 X
⊥.

Theorem

Non-reflexive M-embedded spaces are US.

In particular: c0(Γ), K (H), K (ℓp, ℓq) where 1 < p ≤ q < ∞
are US .

c0(ℓ1) is US , but not M-embedded.
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Definition

A Banach space X has the

i) local diameter 2 property (LD2P) if every slice of BX has
diameter 2.

ii) diameter 2 property (D2P) if every non-empty relatively
weakly open subset of BX has diameter 2.

iii) strong diameter 2 property (SD2P) if every finite convex
combination of slices of BX has diameter 2.

Theorem (Becerra Guerrero, López-Pérez, Rueda Zoca)

LD2P 6⇒ D2P.

Theorem (Haller, Langemets, Põldvere and Acosta, BG, LP indep.)

D2P 6⇒ SD2P.
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∗US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

LUS ⇒ LD2P.

ωUS ⇒ D2P.

US ⇒ SD2P .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

∗US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

LUS ⇒ LD2P.

ωUS ⇒ D2P.

US ⇒ SD2P .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

∗US spaces are diameter 2 spaces

Proposition (Kubiak, to appear)

LUS ⇒ LD2P.

ωUS ⇒ D2P.

US ⇒ SD2P .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

LUS ⇒ LD2P

Sketch of proof.

Let ε > 0, x∗ ∈ SX∗ , and
S = S(x∗, ε) = {x ∈ BX : x∗(x) > 1− ε} be a slice of BX . Choose
x ∈ S ∩ SX and find a sequence (yn) ⊂ SX such that
‖x ± yn‖ → 1. Then x ± yn ∈ S for large ns, and then we get

‖x + yn − (x − yn)‖ = 2‖yn‖ = 2.

Similarly ωUS ⇒ D2P and US ⇒ SD2P .
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A characterization of LUS spaces

Theorem

For a Banach space X . TFAE.

i) X is LUS.

ii) For every ε > 0 and every 1-dimensional subspace F ⊂ X
there exists y ∈ SX such that

(1− ε)max{‖x‖, |λ|} ≤ ‖x + λy‖ ≤ (1 + ε)max{‖x‖, |λ|}

for all x ∈ F and λ ∈ R.

Corollary

LUS spaces contain almost isometric copies of ℓ2∞.
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A characterization of US spaces

Theorem

For a Banach space X . TFAE.

i) X is US.

ii) For every ε > 0, and finite dimensional subspace F of X there
exist sequences εn ↓ 0 and (yn)

∞
n=1 in SX such that

(1− εn)max{‖f ‖, |λ|} ≤ ‖f + λyn‖ ≤ (1 + εn)max{‖f ‖, |λ|},

for every f ∈ Fn = span {F , (yi )
n−1
i=1 } and λ ∈ R. Moreover,

Y = span(yn) is ε-isometric to c0.
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Properties of US spaces

Corollary

US spaces contain almost isometric copies of c0. (actually
asymptotically isometric copies).

Corollary

The Cesaro function spaces Cp, 1 ≤ p < ∞ are not US.

Corollary

If X is US, then 0 ∈ extω∗BX∗ .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c0. (actually
asymptotically isometric copies).

Corollary

The Cesaro function spaces Cp, 1 ≤ p < ∞ are not US.

Corollary

If X is US, then 0 ∈ extω∗BX∗ .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c0. (actually
asymptotically isometric copies).

Corollary

The Cesaro function spaces Cp, 1 ≤ p < ∞ are not US.

Corollary

If X is US, then 0 ∈ extω∗BX∗ .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

Properties of US spaces

Corollary

US spaces contain almost isometric copies of c0. (actually
asymptotically isometric copies).

Corollary

The Cesaro function spaces Cp, 1 ≤ p < ∞ are not US.

Corollary

If X is US, then 0 ∈ extω∗BX∗ .



Introduction
Examples

Connection to diameter 2 spaces
Characterizations

US spaces fail the IP
Open problems

US ⇒ ωUS

Proposition

If X is US, then it is ωUS.

Sketch of proof.

Choose (xi )
N
i=1 ⊂ SF . Then ‖(xi ,±en)‖ = 1 in F ⊕∞ c0. Define

S : F ⊕∞ c0 → span (F ,Y ) by S(f , x) = f + T (x) where
T : c0 → Y is the ε-isometry. Then
‖S(xi ,±en)‖ = ‖xi ± T (en)‖ → 1, and T (en) → 0 weakly in X as
en → 0 weakly in c0.
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The intersection property - IP

Definition (Behrends and Harmand)

X has the intersection property (IP) if for all ε > 0 there exist
(xi )

N
i=1 ⊂ BX

o such that ‖y‖ ≤ ε if ‖xi ± y‖ ≤ 1 for every
i = 1, . . . ,N, i.e. the intersection of the balls B(±xi , 1) is
contained in B(0, ε).

If X fails the IP then there exists ε > 0 such that for all
(xi )

N
i=1 ⊂ Bo

X there is y with ‖y‖ > ε and ‖xi ± y‖ ≤ 1 for every
i = 1, . . . ,N.
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Proposition

US ⇒ fails the IP. But the converse is not true.

Proof.

Characterization of US . The G -space:

X = {f ∈ C [0, 1] : f (0) = 2f (1)}.

fails IP but is not US (not even LUS).
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Open problems

Question

Can dual spaces be US?

Question

Can every space containing c0 be renormed to be US?

Question

Does LUS ⇒ ωUS?
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