Norms of idempotent Schur multipliers

Rupert Levene

University College Dublin

Banach Algebras and Applications

29 July 2013
Outline

1. Schur multipliers
2. Some norm calculations
3. Gaps in the set of norms
Schur multipliers

- The Schur product of $A, B \in M_{m \times n}$ is $A \bullet B = [a_{ij}b_{ij}]$ (a.k.a. the Hadamard product)

- The Schur multiplier corresponding to B is the linear map

\[S_B : M_{m \times n} \to M_{m \times n}, \quad S_B(A) = A \bullet B. \]

- We also consider “$m = n = \infty$”: change $M_{m \times n}$ to $B(\ell^2)$ and take infinite matrices B that give bounded maps S_B.

- These form a commutative semisimple Banach algebra.
Idempotent Schur multipliers

- In this talk B will be a matrix of 0s and 1s.
- Then $B \bullet B = B \implies S_B \circ S_B = S_B$, so S_B is idempotent.

Motivating question

What are the possible values of $\|S_B : M_{m \times n} \to M_{m \times n}\|$?

- Trivially, 0 and 1 are possible values, but nothing in between:
 \[
 \|S_B\| = \|S_B^2\| \leq \|S_B\|^2 \implies \|S_B\| \in \{0\} \cup [1, \infty).
 \]
- We can have $\|S_B\| > 1$:
 \[
 B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ has } \|S_B\| \geq \|U \bullet B\| = \sqrt{\frac{4}{3}} \text{ for } U = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix}.
 \]
 \[
 C = B \otimes^k \text{ has } \|S_C\| = \|S_B\|^k \to \infty \text{ as } k \to \infty.
 \]
Showing that \(\| S_{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} } \| = \sqrt{\frac{4}{3}} \)

Theorem (Grothendieck)

\[\| S_B \| \leq 1 \iff \exists \ v_i, w_j \in \text{ball}(\ell^2): B = [\langle v_i, w_j \rangle] \]

- \[[\langle v_i, w_j \rangle] = \sqrt{\frac{3}{4}} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \]
- So \(\| S_{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} } \| = \sqrt{\frac{4}{3}} \| S_{ \sqrt{\frac{3}{4}} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} } \| \leq \sqrt{\frac{4}{3}} \).
- Have unitary \(U \) with \(\| S_{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} } (U) \| = \sqrt{\frac{4}{3}} \), so we have equality.
- In fact, \(\| S_{ \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} } \| = \sqrt{\frac{4}{3}} \) too:
“Diagonal + superdiagonal” idempotents

Let $B = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} \in M_{n \times n}$ and $C = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} \in M_{n \times (n+1)}$.

Theorem (L., 2012)

$$\|S_B\| = \|S_C\| = \frac{2}{n+1} \cot \frac{\pi}{2(n+1)}.$$

Question

Given a matrix Y, which submatrices X have $\|S_X\| = \|S_Y\|$?

Example [Davidson–Donsig 2007]

For n odd, $D = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} \in M_{(n+1) \times (n+1)}$ has $\|S_D\| = \frac{2}{n+1} \cot \frac{\pi}{2(n+1)}$.

Note that B and C are both submatrices.
Livshits’ two gaps theorem

Theorem (Livshits, 1995)

For any $0–1$ matrix B, we have $\|S_B\| \in \{0, 1\} \cup \left[\sqrt{\frac{4}{3}}, \infty\right)$.

We can say more: there are at least six gaps.
Bipartite graphs

\{0–1 matrices in \(M_{m \times n} \) \} \leftrightarrow \{ (m,n) bipartite graphs \}

rows and columns \leftrightarrow \text{vertices}

entries equal to 1 \leftrightarrow \text{edges}

Examples

\[B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \leftrightarrow G_B = \begin{array}{cc} \bullet & \bullet \\ \bullet & \bullet \end{array} \]

\[C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \leftrightarrow G_C = \begin{array}{cc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \]

\[B \oplus C = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \leftrightarrow G_{B \oplus C} = \begin{array}{cc} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array} \]
Dictionary of operations

<table>
<thead>
<tr>
<th>0–1 matrix B</th>
<th>bipartite graph G_B</th>
<th>norm $|S_B|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>shuffle rows or columns</td>
<td>bipartite graph isomorphism</td>
<td>equal</td>
</tr>
<tr>
<td>duplicate rows or columns</td>
<td>duplicate vertices and their edges</td>
<td>equal</td>
</tr>
<tr>
<td>submatrix</td>
<td>induced subgraph</td>
<td>decreases</td>
</tr>
<tr>
<td>direct sum</td>
<td>disjoint union</td>
<td>max</td>
</tr>
</tbody>
</table>
A proof of Livshits’ theorem in this language

Theorem (Livshits, 1995)

For any 0–1 matrix B, we have $\|S_B\| \in \{0, 1\} \cup \left[\sqrt{\frac{4}{3}}, \infty\right)$.

Proof.

- Let $G = G_B$. WLOG: G is connected.
- If G is complete bipartite then $\|S_B\| \in \{0, 1\}$.
- Otherwise, take vertices c and r so that:
 - c and r are in different parts of the bipartition;
 - (r, c) is not an edge of G; and
 - the distance from c to r is as small as possible
- A minimal path joining c to r starts with the subgraph \mathcal{N}
- Minimality $\implies c$ and r are the ends of this path
- (c, r) not an edge of G $\implies \mathcal{N}$ is an induced subgraph of G
 $\implies \|S_B\| \geq \sqrt{\frac{4}{3}}$.

Rupert Levene (Dublin)
Small idempotent Schur multipliers

Define η_k, E_k, F_k for $1 \leq k \leq 6$ as follows:

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_k</td>
<td>0</td>
<td>$\sqrt{\frac{4}{3}}$</td>
<td>$\frac{1+\sqrt{2}}{2}$</td>
<td>$\frac{1}{15} \sqrt{169 + 38\sqrt{19}}$</td>
<td>$\sqrt{\frac{3}{2}}$</td>
<td>$\frac{2}{5} \sqrt{5 + 2\sqrt{5}}$</td>
<td></td>
</tr>
<tr>
<td>E_k</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_k</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theorem (L., 2012)

If $G = G_B$ is a connected, duplicate-free bipartite graph and $1 \leq k \leq 6$, then the following are equivalent:

1. $\|S_B\| = \eta_k$
2. $\eta_{k-1} < \|S_B\| \leq \eta_k$
3. $E_k \leq G \leq F_k$
Small idempotent Schur multipliers

Define η_k, E_k, F_k for $1 \leq k \leq 6$ as follows:

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_k</td>
<td>0</td>
<td>1</td>
<td>$\sqrt{\frac{4}{3}}$</td>
<td>$\frac{1+\sqrt{2}}{2}$</td>
<td>$\frac{1}{15} \sqrt{169 + 38\sqrt{19}}$</td>
<td>$\sqrt{\frac{3}{2}}$</td>
<td>$\frac{2}{5} \sqrt{5 + 2\sqrt{5}}$</td>
</tr>
<tr>
<td>E_k</td>
<td>.</td>
<td>.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>F_k</td>
<td>.</td>
<td>.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Corollary

If $G = G_B$ is any bipartite graph and $1 \leq k \leq 6$, then the following are equivalent:

1. $\| S_B \| = \eta_k$
2. $\eta_{k-1} < \| S_B \| \leq \eta_k$
3. (i) Some component H of $df(G)$ has $E_k \leq H \leq F_k$, and
 (ii) Every component H of $df(G)$ has $E_j \leq H \leq F_j$ for some $j \leq k$.
Six gaps

Corollary

If S_B is any idempotent Schur multiplier, then

\[\|S_B\| \in \{\eta_0, \eta_1, \eta_2, \eta_3, \eta_4, \eta_5\} \cup [\eta_6, \infty). \]

Using tools of Katavolos–Paulsen (2005), this generalises:

Theorem

The same is true if we replace S_B with any idempotent normal masa-bimodule map $S: B(H) \to B(H)$ where H is a separable Hilbert space.
Some natural questions

\[\mathcal{N} = \{ \|S_B\| : B \in \{0, 1\}^{m \times n}, \ m, n \in \mathbb{N} \cup \{\infty\} \} \] contains left accumulation points, such as \(\frac{4}{\pi} = \lim_{n \to \infty} \frac{2}{n+1} \cot\left(\frac{\pi}{2(n+1)}\right) \).

Is \(\frac{4}{\pi} \) the smallest accumulation point in \(\mathcal{N} \)?

- Is \(\mathcal{N} \) countable?
- Does \(\mathcal{N} \) contain an open interval?
- Which graphs give Schur idempotents of the same norm?
- Find a combinatorial characterisation of the idempotent Schur multipliers on \(B(\ell^2) \).
Thank you!