<table>
<thead>
<tr>
<th>Introduction</th>
<th>Background</th>
<th>Basic properties of C*-Segal algebras</th>
<th>Main results</th>
</tr>
</thead>
</table>

C*-Segal algebras with order unit

Martin Mathieu

(Queen’s University Belfast)

Gothenburg, 30 July 2013
Some literature

A^*-algebras

Throughout A will be a Banach algebra with norm $\| \cdot \|$ and involution *.

A is an A^*-algebra if it carries a (possibly different) C^*-norm $\| \cdot \|_C$ (so that $C = (A, \| \cdot \|_C) \sim$ is a C^*-algebra).

Facts: let A be an A^*-algebra; then

- the involution on A is continuous;
 thus can WLOG assume that the involution is isometric and that $\| x \|_C \leq \| x \| \quad \forall x \in A$.
- A is semisimple;
- A has a faithful *-representation on Hilbert space which is isometric w.r.t. $\| \cdot \|_C$.

Martin Mathieu (Queen's University Belfast)

C^*-Segal algebras with order unit
A^*-algebras

throughout A will be a Banach algebra with norm $\| \cdot \|$ and involution $*$

A is an A^*-algebra if it carries a (possibly different) C^*-norm $\| \cdot \|_C$ (so that $C = (A, \| \cdot \|_C)^\sim$ is a C^*-algebra).

Examples:

- $L^1(G) \subseteq C^*(G)$ for any locally compact group G;
- $C_p \subseteq K(H), \ p \geq 1$ the Schatten p-classes;
- $\ell^p \subseteq c_0, \ p \geq 1$.
C*-Segal algebras

Definition

An A^*-algebra A is called a *self-adjoint C*-Segal algebra* if it is an ideal in its surrounding C^*-algebra $C = (A, \| \cdot \| C)$.

Remark (Kassem–Rowlands 1987)

The auxiliary norm of a C^*-Segal algebra is unique.

Proposition

A Banach *-algebra A is a self-adjoint C^*-Segal algebra if and only if there is a (continuous) injective *-homomorphism from A into a C^*-algebra C such that the image of A is a dense ideal in C.

Alexander, Barnes, Burnham, Kassem–Rowlands, Leinert, Tomiuk, …
Definition
An A^*-algebra A is called a *self-adjoint C*-Segal algebra* if it is an ideal in its surrounding C*-algebra $C = (A, \| \cdot \|_C)$.

Question: How to locate A inside C?

Martin Mathieu

C-Segal algebras with order unit*
C*-Segal algebras

Example:
Let X be a locally compact Hausdorff space, and $C = C_0(X)$. Let $\omega : X \to \mathbb{R}$ be an upper semicontinuous function such that $\omega(t) \geq 1$ for every $t \in X$. Define

\[
C_b^\omega(X) = \{ f \in C(X) : \omega f \text{ is bounded on } X \}
\]
\[
C_0^\omega(X) = \{ f \in C(X) : \omega f \text{ vanishes at infinity on } X \},
\]

where $C(X)$ denotes all continuous complex-valued functions on X. Equipped with pointwise operations and the *weighted supremum norm*

\[
\| f \|_\omega := \sup_{t \in X} \omega(t) |f(t)|,
\]

$C_b^\omega(X)$ and $C_0^\omega(X)$ are self-adjoint C*-Segal algebras.
The key to understanding the algebras $C^\omega_b(X)$ and $C^\omega_0(X)$ is the fact that $\frac{1}{\omega}$ is an order unit in $C^\omega_b(X)$ whenever it is continuous on X;

endow the self-adjoint C^*-Segal algebra $A \subseteq C$ with the canonical order

$$x \leq y \text{ if } y - x \in A_+ := A \cap C_+ \quad (x, y \in A_h),$$

where A_h denote the real vector space of self-adjoint elements of A. An element $u \in A_+$ is called an order unit of A if each $x \in A_h$ satisfies $x \leq \gamma u$ for some constant $\gamma > 0$.

Such u strictly positive, i.e., $\varphi(u) > 0$ for every positive functional $\varphi \neq 0$ on A.

Martin Mathieu
(Queen’s University Belfast)
Order unit C^*-Segal algebras

Definition

By an *order unit C^*-Segal algebra* we mean a pair (A, u), where A is a self-adjoint C^*-Segal algebra and u is an order unit of A satisfying

$$
\|a\| = \inf\{\gamma > 0 : -\gamma u \leq a \leq \gamma u\}
$$

for all $a \in A_h$.
A characterisation

Theorem (Kauppi–Mathieu)

Let A be a C^*-Segal algebra in the C^*-algebra C, and let $u \in A_+$ be strictly positive. Put $v = u^{1/2} \in C_+$. The following conditions are equivalent:

(a) (A, u) is an order unit C^*-Segal algebra;

(b) there exists a self-adjoint C-subbimodule D of $M(C)$ containing C and 1 such that $A = vDv$, $vC = Cv$ and $\|vdv\| = \|d\|_C$ for all $d \in D_h$.

In this case, the surrounding C^*-algebra C is σ-unital (i.e., it contains a countable contractive approximate identity) and $E_A = vCv = uC = Cu$ and $M_C(A) = vM(C)v = uM(C) = M(C)u$.
The commutative case

Theorem (Arhipainen–Kauppi)

Let A in the above theorem be commutative. Then A is isometrically *-isomorphic to a closed self-adjoint subalgebra of $C^\omega_b(X)$ for a locally compact Hausdorff space X and a continuous real-valued function ω on X with $\omega(t) \geq 1$ for all $t \in X$.

In particular, up to an isometric *-isomorphism, $E_A = C^\omega_0(X)$, $M_C(A) = C^\omega_b(X)$ and $M(C) = C_b(X)$.
Multiplier modules

let \(A \) be a (not necessarily self-adjoint) \(C^* \)-Segal algebra in the \(C^* \)-algebra \(C \) and let \(M(C) \) denote the multiplier algebra of \(C \);

let \(M_C(A) = \{ m \in M(C) : mC + Cm \subseteq A \} \) be the \textit{multiplier module of \(A \) with respect to \(C \)};

then \(M_C(A) \) is a Banach subalgebra of \(\mathcal{L}(C, A) \) and a Banach \(C \)-bimodule;

under the \textit{strict topology} defined by the semi-norms

\[
m \mapsto \| mx \| + \| xm \| \quad (x \in C)
\]

\(M_C(A) \) is a complete locally convex algebra.
The approximate ideal

Lemma

Let A be a C^*-Segal algebra in the C^*-algebra C. Then

$$
\|a\|_M := \sup_{\|b\| \leq 1} \{ \|ab\|, \|ba\| \} \quad (a, b \in A)
$$

defines a norm $\| \cdot \|_M$ which is equivalent to $\| \cdot \|_C$ on A. Furthermore, $A_M = (A, \| \cdot \|_M)$ has a bounded approximate identity which is contractive under the norm on C.
The approximate ideal

Let \(\tilde{A}_M \) denote the completion of \(A_M \);

Proposition

Let \(A \) be a \(C^* \)-Segal algebra in the \(C^* \)-algebra \(C \) and let \((e_\alpha)_{\alpha \in \Omega} \) be a bounded approximate identity in \(A_M \). Then

(i) \(\tilde{A}_M A = \tilde{A}_M A \) is a closed ideal in \(A \);

(ii) \(\tilde{A}_M \) is the set \(\{ a \in A : \| ae_\alpha - a \| \to 0 \text{ and } \| e_\alpha a - a \| \to 0 \} \);

(iii) \(\tilde{A}_M \) has an approximate identity;

(iv) every closed ideal of \(A \) with an approximate identity is contained in \(\tilde{A}_M \).
The approximate ideal

Definition

We put $E_A := \widetilde{A\tilde{A}}_M$ and call it the *approximate ideal* of A.

Example: let $A = C_0^\omega(X)$ with ω as above; then $C = C_0(X)$, $M(C) = C_b(X)$, $E_A = A$ and $M_C(A) = C_b^\omega(X)$.

Example (Mattas):

let $A = C_0(X, B)$ where B is a C^*-Segal algebra in C; then A is a C^*-Segal algebra in $C_0(X, C)$ and $E_A = C_0(X, E_B)$.
The approximate ideal

Definition

We put $E_A := \tilde{A}_M$ and call it the *approximate ideal* of A.

Some properties of E_A:

(i) A^2 is dense in E_A;
(ii) $AC = CA = E_A$;
(iii) E_A is a C^*-Segal algebra in C;
(iv) E_A is strictly dense in $M_C(A)$;
(v) if A is a self-adjoint C^*-Segal algebra then both E_A and $M_C(A)$ are self-adjoint C^*-Segal algebras.

$E_A \subseteq A \subseteq C \subseteq M_C(A) \subseteq M(C)$.
A characterisation

Theorem (Kauppi–Mathieu)

Let A be a \mathcal{C}^*-Segal algebra in the \mathcal{C}^*-algebra \mathcal{C}, and let $u \in A_+$ be strictly positive. Put $v = u^{\frac{1}{2}} \in \mathcal{C}_+$. The following conditions are equivalent:

(a) (A, u) is an order unit \mathcal{C}^*-Segal algebra;

(b) there exists a self-adjoint \mathcal{C}-subbimodule D of $\mathcal{M}(\mathcal{C})$ containing \mathcal{C} and 1 such that $A = vDv$, $vC = Cv$ and $\|vdv\| = \|d\|_{\mathcal{C}}$ for all $d \in D_h$.

In this case, the surrounding \mathcal{C}^*-algebra \mathcal{C} is σ-unital (i.e., it contains a countable contractive approximate identity) and $E_A = vCv = uC = Cu$ and $\mathcal{M}_{\mathcal{C}}(A) = v\mathcal{M}(\mathcal{C})v = u\mathcal{M}(\mathcal{C}) = \mathcal{M}(\mathcal{C})u$.

Martin Mathieu
(Queen's University Belfast)

\mathcal{C}^*-Segal algebras with order unit
An application

Let B be a C^*-algebra and let $u \in Z(M(B))_+$ be such that uB is faithful in B.

Put $A = uB$ and $C = A \| \cdot \|_B$. Then A is a self-adjoint C^*-Segal algebra in C under the norm $\|ux\|_u := \|x\|_B$ for $x \in B$.

It follows that $M_C(A)$ is an order unit C^*-Segal algebra containing A isometrically as a faithful ideal (an order unitisation of A).

Moreover, $E_A = AC = uBC = uC$ and hence uB has an approximate identity if and only if it is dense in B.