
FOURIER AND LAPLACE TRANSFORMS

BO BERNDTSSON

1. FOURIER SERIES

The basic idea of Fourier analysis is to write general functions as sums (or superpositions) of
trigonometric functions, sometimes called harmonic oscillations. This idea is clearest in the case
of functions on a bounded interval, that for simplicity we take to be I = (0, 2π). In that case we
want to write a function f(t) on I as

f(t) =
∞∑
0

ak sin kt+ bk cos kt.

Since by Eulers formulas we can express the sine and cosine functions in terms of complex
exponentials eikt and e−ikt we can equivalently try a to write

f(t) =
∞∑
−∞

cke
ikt.

(Note that the sum here runs over positive and negative indices.) Suppose that we have such a
formula and that the sum converges uniformly. Then we can multiply by e−ilt and integrate

1

2π

∫ 2π

0

f(t)e−iltdt =
∑

ck
1

2π

∫ 2π

0

eikte−iltdt =
∑

ck
1

2π

∫ 2π

0

ei(k−l)tdt.

Now use that
1

2π

∫ 2π

0

e−imtdt = 1

if m = 0 and
1

2π

∫ 2π

0

e−imtdt = 0

if m 6= 0. We see that the only term that is not zero in our formula is when k = l so

(1.1) ck =
1

2π

∫ 2π

0

f(t)e−iktdt.

The coefficients ck that are defined in this way are the Fourier coefficients of f , and we have
seen that if the function f can be written as a sum of complex exponentials in a nice way, then
the coefficients must be the Fourier coefficients. Conversely, a general result ( from the course
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in Fourier analysis) says that ’nice’ functions indeeed can be written in this way. Here are some
examples of Fourier expansions:

t = π + i
∑
k 6=0

1

k
e−ikt,

and

t(2π − t) =
2π2

3
− 2

∑
k 6=0

1

k2
e−ikt.

Exercise: ’Prove’ these formulas by computing the Fourier coefficients by the formula (1.1).
�

Notice that the second formula gives with t = 0 that
∞∑
1

1

k2
=
π2

6
.

The idea to represent general functions as Fourier series is very old, but still very useful. The
idea from antiquity to write the orbits of the planets as a superposition of circular motions can
be seen as an early example. Other natural cases are to write ’the sound of music’ as a sum of
tones of different frequences, or the devolopment of economy as sums of business cycles. More
surprising is perhaps that Fourier’s original motivation came from the study of heat transfer or
that Fourier analysis lies behind medical tomography. This last application was awarded with the
Nobel prize for medicine in 1979 - one of many Nobel prizes to Fourier analysis.

In this course we will only study the similar Fourier transform for functions on (−∞,∞), and
we only use Fourier series as a motivating introduction.

2. THE FOURIER TRANSFORM

We shall look at functions f(t) defined on the real line (−∞,∞) and we will mostly assume
that they are absolutely integrable so that∫ ∞

−∞
|f(t)|dt <∞.

We shall say that such functions lie inL1. Our functions will be continuous or even differentiable,
but we also allow functions that are piecewise continuous or differentiable. This means that R
can be divided into a finite collection of intervals where f is continuous or differentiable.

Example 1. The function which equals t when −π < t < π and equals zero for other values of
t is piecewise differentiable. The function which equals t(2π − t) when 0 < t < 2π and is zero
otherwise is piecewise differentiable and continuous everywhere (not just piecewise continuous).

For such funtions we can define their Fourier transforms by

(2.1) f̂(x) =

∫ ∞
−∞

f(t)e−ixtdt,
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for x in R. Thus, the Fourier transform of a function on R is again a function on R. Compare the
definition of Fourier coefficients! The main differences are that the Fourier transform is defined
for functions on all of R, and that the Fourier transform is also a function on all of R, whereas the
Fourier coefficients are defined only for integers k. Here are two fundamental theorems about
the Fourier transform:

Theorem 2.1. (The Fourier inversion theorem) Assume that f is in L1 and that f̂ is also in L1.
Then f is continuous and

(2.2) f(t) =
1

2π

∫ ∞
−∞

f̂(x)eitxdx

for all t. In particular, the function is uniquely determined by its Fourier transform.

Note the similarity with Fourier series! If one looks at the integral as a generalized sum, we see
that Theorem 2.1 also expresses an almost general function as a ’sum’ of complex exponentials,
but instead of summing over all integers (frequencies) k we take a continuous ’sum’ over all
frequencies x in R.

Theorem 2.2. (Parsevals formula) Assume that f is in L1 and that f̂ is also in L1. Then

(2.3)
∫ ∞
−∞
|f(t)|2dt =

1

2π

∫ ∞
−∞
|f̂(x)|2dx.

More generally, if f and g are two functions in L1 whose Fourier transforms also lie in L1, we
have

(2.4)
∫ ∞
−∞

fḡdt =
1

2π

∫ ∞
−∞

f̂(x)ĝ(x)dx.

We look at a few examples.

Example 2. Let
f(t) = e−|t|.

Then

f̂(x) =

∫ ∞
0

e−(t+itx)dt+

∫ 0

−∞
e(t−itx)dt = 1/(1 + ix) + 1/(1− ix) = 2/(1 + x2).

Example 3. Let g(t) = 1/(1 + t2). Then

ĝ(x) =

∫ ∞
−∞

e−itx

1 + t2
dt.

This is less easy to compute directly, but fortunately we can use residue calculus! Let us first
assume that x ≤ 0. Then we can apply the residue method by adding a semicircle in the upper
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halfplane. ( Compare with the notes on residues; we take the upper half plane because e−izx is
bounded there if x ≤ 0 !) The only singular point of the function

f(z) =
e−izx

1 + z2

in the upper half plane is z = i and the residue there is

Resi(f) = ex/(2i).

Hence the integral becomes

ĝ(x) = 2πiex/(2i) = πex = πe−|x|.

If x > 0 we can either do the same computation with a semicircle in the lower half plane or note
that ĝ(x) = ĝ(−x). The second way is easiest, and we find that if x ≥ 0

ĝ(x) = ĝ(−x) = πe−|−x| = πe−|x|.

So ĝ(x) = πe−|x| for all x in R.

Let us now compare these two examples. The Fourier inversion theorem says that if h = f̂

then ĥ(−t) = 2πf(t). If we take f(t) = e−|t| we found that h = f̂ = 2g, where g is the function
in the second example. By example 3, ĥ(−t) = 2ĝ(−t) = 2πe−|t| = 2πf(t), exactly as predicted
by the inversion formula!

We next write down a few useful formulas for the Fourier transform.

Proposition 2.3. We have:
a. Linearity: The Fourier transform is linear; if h = af + bg where a and b are complex

numbers, then ĥ = af̂ + bĝ.
b. Derivative: If f is continuous and piecewise differentiable with f ′ in L1, then f̂ ′(x) =

ixf̂(x).
c. Translates: If a is real and fa(t) = f(t− a), then f̂a(x) = e−iaxf̂(x).
d. Scaling: If a 6= 0 is real and g(t) = f(at), then ĝ(x) = f̂(x/a)/|a|.
e. Multiplication by t: Assume that tf(t) lies in L1. Then t̂f(t) = i(d/dx)f̂(x).

Proof. We leave (a) as an exercise and prove (b) when f is (not only piecewise) differentiable.
Then

f̂ ′(x) = lim
R→∞

∫ R

−R
f ′(t)e−ixtdt =

= lim
R→∞

(
[f(t)e−ixt]R−R + ix

∫ R

−R
f(t)e−ixtdt

)
.

One can prove that if f and f ′ lie in L1, then lim f(R) as R→∞ equals zero (try!). This gives

f̂ ′(x) = lim
R→∞

ix

∫ R

−R
f(t)e−ixtdt = ixf̂(x).
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The proof of (c) is easier:

f̂a(x) =

∫ ∞
−∞

f(t− a)e−ixtdt =

∫ ∞
−∞

f(t)e−ix(t+a)dt = e−iaxf̂(x).

We also leave (d) as an exercise. Finally (e) is obtained formally by differentiating under the
integral sign, but we omit the rigorous justification. �

Let us now use these rules to compute a few Fourier transforms.

Example 4. Let f(t) = e−t
2/2. It is not so easy to compute the Fourier transform from the

definition (but it can be done, using Cauchy’s theorem). Instead we look at the derivative. Note
that

f ′(t) + tf(t) = 0.

Take the Fourier transform of this equation. Then we get by (b) and (e)

ixf̂(x) + i(d/dx)f̂(x) = 0,

so f̂ solves the same equation as f ! Using the method of integrating factor we find that

(d/dx)
(
ex

2/2f̂(x)
)

= ex
2/2((d/dx)f̂ + xf̂) = 0.

Hence
f̂(x) = ce−x

2/2.

What is c? One way to compute c is to note that

c = f̂(0) =

∫
e−t

2/2dt =
√

2π.

Or, we can apply the inversion theorem by taking the Fourier transform once more:

2πf(t) =
̂̂
f(−t) = c2f(−t) = c2f(t),

since f is an even function. Hence, again, c =
√

2π.

Example 5. What is the Fourier transform of

g(t) = (t2 + 4t+ 5)−1?

Write t2 +4t+5 = (t+2)2 +1 . Hence g(t) = f(t+2) if f(t) = (t2 +1). We know by example
3 that f̂(x) = πe−|x|, so by (c)

ĝ(x) = e2ixf̂(x) = e2ixπe−|x|.

Example 6. Let f be the function that equals zero if |t| ≥ 1, equals 1 − t when 0 < t < 1 and
equals 1 + t when −1 < t < 0. What is the Fourier transform of f? This function is continuous
and piecewise smooth. Its derivative f ′ = g has Fourier transform

ĝ(x) =

∫ 0

−1
e−ixtdt−

∫ 1

0

e−ixtdt =
2(cosx− 1)

ix
.
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By (b)

f̂(x) = (ix)−1ĝ(x) = 2
1− cosx

x2
.

Example 7. Another computation of the Fourier transform of f(t) = e−t
2/2. From the definition

we get, completing squares, that

f̂(x) =

∫ ∞
−∞

e−t
2/2e−itxdt =

∫ ∞
−∞

e−(t+ix)
2/2dt e−x

2/2.

Our claim that f̂(x) = ce−x
2/2 where c is constant, is therefore equivalent to saying that

Ix =

∫ ∞
−∞

e−(t+ix)
2/2dt

does not depend on x. But, Ix can be written

Ix =

∫
Im z=x

e−z
2/2dz.

The fact that Ix = I0 is therefore formally a consequence of Cauchy’s integral theorem, since
the curve Im z = x is homotopic to the curve Im z = 0. This is of course only formal since
Cauchy’s theorem is about closed finite curves, but the argument can be made precise by looking
at integrals over rectangles ΓR with horizontal sides [−R,R] and [−R + ix, R + ix] connected
by two vertical lines (draw a figure). The integral of f(z) = e−z

2/2 over ΓR is zero, and the proof
follows if we can prove that the integrals over the vertical sides goes to zero as R→∞.

Exercise: Prove this, i e prove that

lim
R→∞

∫ R+ix

R

f(z)dz = 0

for any x. �

Another formula for the Fourier transform concerns the convolution, (faltning) of two func-
tions.

Definition 1. If f and g are two functions in L1, their convolution is the function

f ∗ g(t) =

∫ ∞
−∞

f(s)g(t− s)ds.

The operation of convolution is interesting in several connections. It arises e g naturally in
probability theory: If f and g are probability ditsributions for two stochastic variables, then
f ∗ g is the distribution of their sum. Convolutions also tend to pop up in solution formulas for
differential equations, as we will see later when we discuss Laplace transforms.

Theorem 2.4. If h = f ∗ g then
ĥ(x) = f̂ ĝ(x).
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Proof. By definition

ĥ(x) =

∫ ∞
−∞

(

∫ ∞
−∞

f(s)g(t− s)ds)e−ixtdt =

∫ ∞
−∞

(

∫ ∞
−∞

g(t− s)e−ixtdt)f(s)ds =

=

∫ ∞
−∞

(

∫ ∞
−∞

g(t)e−ixte−ixsdt)f(s)ds = ĝ(x)

∫ ∞
−∞

f(s)e−ixsds = ĝf̂ .

�

Example 8. Let f = e−t
2/2. What is g = f ∗ f ?

We know that f̂(x) =
√

2πe−x
2/2. By the theorem ĝ(x) = 2πe−x

2 , so we want to find a
function that has this Fourier transform. Since

e−x
2

= e−(x
√
2)2/2

we find from (d) in Proposition 2.3 that
√

2
√

2πe−x
2

is the Fourier transform of e−(t/
√
2)2/2. Therefore ĝ is the Fourier transform of

√
πe−(t/

√
2)2/2.

Hence
g(t) =

√
πe−t

2/4.

One of the points with the convolution operator - and indeed with all of Fourier analysis - is
that it sometimes permits us to write down explicit formulas for the solutions to some differential
equations. In the next example we shall study an example of how this is done.

Example 9. Consider the differential equation on the real line

−u′′(t) + u(t) = g(t),

where g is a given function. We assume that g, u and u′ are in L1, so that they have Fouriertrans-
forms; then by the equation u′′ is also in L1. By (b) in Proposition 2.3 we get that û′ = ixû and
û′′ = −x2û. Hence we get from our differential equation that

(1 + x2)û = ĝ,

so
û =

1

1 + x2
ĝ.

By Theorem 2.4, Example 2 and the fact that we can recover a function from its Fourier trans-
form, this means that

u(t) = ((1/2)−1e−|t|) ∗ g = (1/2)−1
∫ ∞
−∞

e−|s−t|g(s)ds,

so we have a solution formula for the equation. Notice however that this way we only find the
solutions that lie in L1. If u solves the equation, then u(t) + cet also solves the equation, but
these solution can not be found by our formula, since the exponential function does not lie in L1.
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Exercises:
1. Compute the Fourier transforms of

a. f(t) = 1 if |t| < σ, f(t) = 0 if |t| ≥ σ. (Answer: (2 sinσx)/x.)

b. Take σ = 1/2 in the previous exercise. Use Theorem 2.4 to show that f ∗ f equals the
function in Example 6.

c. The square of the function in example 6. (Answer: (4/x2)[1− sinx/x].)

d. (a2 + b2t2)−1 where a,b>0. ( Answer: (ab)−1πe−|ax|/b.)

2. Prove that f ∗ g = g ∗ f .

3. Use formula (2.4) to prove that∫ ∞
−∞

sin ax sin bx

x2
dx = πmin(a, b).

4. Compute ∫ ∞
−∞

1

1 + s2
1

1 + (s− t)2
ds

using Theorem 2.4 and Proposition 2.3 d. (Answer: 2π/(4 + t2).)

5. Compute ∫ ∞
−∞

ds

(1 + s2)2

using formula (2.3). Check you answer against the previous exercise for t = 0.

6. Compute ∫ ∞
−∞

ds

(1 + s2)2

using residues.



9

3. THE LAPLACE TRANSFORM

One main point of the Fourier transform is that it exchanges differentiation and multiplication
by t, under suitable hypotheses

f̂ ′(x) = ixf̂(x).

We saw an application of this when we computed the Fourier transform of e−t2/2. In principle
one can use this to solve differential equations, as we saw in Example 9. However this does not
work so well in many cases, mainly because the functions that solve our equations do not fulfil
our ’ suitable hypotheses’. If for example we try to solve a very simple equation

f ′ = f

or even
f ′ = 0

we get only f = 0 as solutions. This is because the solutions to these equations, f = cet and
f = c, are not in L1, so they have no Fourier transforms. The Laplace transform is a way around
this difficulty. It operates on functions defined only on the interval [0,∞), that do not grow faster
than exponentially.

Definition 2. Let f(t) be a function defined on [0,∞) which satisfies an estimate

|f(t)| ≤ AeBt

for some constants A and B. Then its Laplace transform is the function

(3.1) f̃(s) = L(f)(s) =

∫ ∞
0

f(t)e−stdt.

It is defined for complex numbers s such that Re s > B; then the integral in the definition is
convergent.

First of all we note that the Laplace transform determines the function uniquely - if we know
the Laplace tranform we can in principle compute the function.

Proposition 3.1. If f̃ = 0, then f = 0.

Proof. The Laplace transform is defined for all complex s with Re s > b. Fix some c > b and
look at f̃(s) for s = c+ iy, with y real. Then define a function

g(t) = f(t)e−ct

for t ≥ 0 and
g(t) = 0

for t < 0. Then

(3.2) f̃(c+ iy) =

∫ ∞
0

f(t)e−(c+iy)tdt =

∫ ∞
−∞

g(t)e−iytdt = ĝ(y).

Hence, if f̃ = 0, then ĝ = 0, so g = 0 by Fourier inversion, and it follows that f = 0. �

Looking at this argument more closely we arrive at an inversion formula for the Laplace trans-
form.
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Theorem 3.2. Inversion formula for the Laplace transform. If |f(t)| ≤ aebt for t ≥ 0 and if
c > b and ∫ ∞

−∞
|f̃(c+ iy)|dy <∞,

then
f(t) =

1

2πi

∫
Re s=c

f̃(s)estds,

for t > 0.

Proof. By the inversion formula for the Fourier transform we have that

g(t) = (1/2π)−1
∫ ∞
−∞

ĝ(y)eiytdy.

Now we use the formula for ĝ in (3.2) and get

g(t) = (1/2π)−1
∫ ∞
−∞

f̃(c+ iy)eiytdy.

Then recall that f(t) = ectg(t) for t > 0, so

f(t) = (1/2π)−1
∫ ∞
−∞

f̃(c+ iy)e(c+iy)tdy.

Finally we think of y → s = (c+ iy) as the parametrization of the curve Re s = c in the complex
plane and rewrite the last integral as

1

2π

∫
Re s=c

f̃(s)estd(s/i) =
1

2πi

∫
Re s=c

f̃(s)estds

(note that ds = idy), which completes the proof. �

This formula is useful, but in many cases one uses instead a table of known Laplace transforms
to invert the Laplace transform. Then we will also have use for a list of basic rules of compu-
tation for the Laplace transform, similar to Proposition 2.3 (this time we do not state the exact
hypotheses).

Proposition 3.3. We have:
a. Linearity: The Laplace transform is linear; if h = af + bg where a and b are complex

numbers, then h̃ = af̃ + bg̃.

b. Derivative: If f is continuous and piecewise differentiable then

f̃ ′(s) = sf̃(s)− f(0).

c. Higher derivatives:
L(f (n)) = snL(f)− sn−1f(0)− sn−2f ′(0)− ...f (n−1)(0).

d. Multiplication by exponentials:

L(ectf)(s) = f̃(s− c).
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e. Translation Let f be a function defined for t ≥ 0 and let a > 0. Define a new function fa,
by letting fa(t) = 0 if t < a and fa(t) = f(t− a) if t ≥ a. Then

L(fa)(s) = e−saf̃(s).

f. Multiplication by t:
L(tf)(s) = (−d/ds)f̃(s).

Let us look at some examples:

1. L(1) = 1/s; this follows from direct computation.

2. L(t) = 1/s2; this follows from 1. and f. in Proposition 3.3.

3. L(ect) = 1/(s− c); this follows from direct computation or 1. together with d.

4.
L(sin ct)(s) =

c

c2 + s2
.

To see this we use that
sin ct = (eict − e−ict)/(2i).

Hence by 3.

L(sin ct) =

(
1

s− ic
− 1

s+ ic

)
/(2i) =

c

c2 + s2
.

5. Similarily one finds that

L(cos ct)(s) =
s

c2 + s2
.

Example 10. We solve the initial value problem

u′′(t) + u(t) = 0

for t > 0, u(0) = a, u′(0) = b. We first take the Laplace transform using the rules above and get

s2ũ− sa− b+ ũ = 0.

Hence

ũ = a
s

s2 + 1
+ b

1

s2 + 1
.

Looking in our list of transforms we see that u(t) = a cos t+ b sin t. (Check that this indeed does
solve the problem!)



12

Example 11. Solve the initial value problem

u′′(t) + u(t) = 1

for t > 0, u(0) = a, u′(0) = b. We first take the Laplace transform using the rules above and get

s2ũ− sa− b+ ũ = 1/s.

Hence

ũ = a
s

s2 + 1
+ b

1

s2 + 1
+

1

s(s2 + 1)
.

We therefore need to find the inverse Laplace transform of
1

s(s2 + 1)
.

For this we expand our functions in partial fractions

1

s(s2 + 1)
=
A

s
+
Bs+ C

s2 + 1
=

1

s
− s

s2 + 1
.

Altogether
u(t) = a cos t+ b sin t+ 1− cos t.

In order to attack more complicated problems we also need to use the convolution. We define
this as before, but using the convention that all functions are considered to be zero for t < 0.
This means that

f ∗ g(t) =

∫ t

0

f(s)g(t− s)ds,

since

f ∗ g(t) =

∫ ∞
−∞

f(s)g(t− s)ds =

∫ ∞
0

f(s)g(t− s)ds =

∫ t

0

f(s)g(t− s)ds

( g(t− s) = 0 if s > t !).

Proposition 3.4. Let

f ∗ g(t) =

∫ t

0

f(s)g(t− s)ds.

Then
L(f ∗ g) = f̃ g̃.

Example 12. Solve the initial value problem

u′′(t) + u(t) = g(t)

for t > 0, u(0) = 0, u′(0) = 0, where g is any given function. Arguing as in the previous
examples we find that

ũ(s) =
g̃

s2 + 1
.
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By Proposition 3.4 we see that

g̃

s2 + 1
= L(g ∗ sin t)(s).

Therefore

u(t) =

∫ t

0

g(s) sin(s− t)ds.

Exercises:
1. Compute the Laplace transforms of the following functions:

a. sinhAt (Answer: A(s2 − A2)−1)

b. coshAt (Answer: s(s2 − A2)−1)

c. t2eat ( Answer: 2/(s− a)3)

d. eat cos t. (Answer: (s− a)/((s− a)2 + 1).)

2. (Reality check) Check that the inverse Laplace transform of

A

A2 + s2

is really sinAt using the inversion formula in Theorem 3.2 and the residue theorem.

3. Solve the following initial value problems using Laplace transforms.
a. u′′ − 2u′ + 2u = 6e−t; u(0) = 0, u′(0) = 1.

b. u′′ + u = g(t), where g(t) = 0 for 0 < t < π and g(t) = 1 for t > π, u(0) = u′(0) = 0.
( Answer: u(t) = 0 if t < π, u(t) = 1 + cos t if t > π.)

4. Find the functions that have the following Laplace transforms.
a. s/(s2 + 1)2 ( Answer: (t/2)(sin t).)

b. (s− a)−4 ( Answer: t3eat/3!.)

5. Solve the following system of equations

x′(t) = 2x(t)− y(t)

y′(t) = 3x(t)− 2y(t)

for t > 0 with the initial conditions x(0) = 0 and y(0) = 1. (Answer: x(t) = (e−t − et)/2,
y(t) = (3e−t − et)/2.)
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4. THE Z-TRANSFORM.

The Z-transform is analogous to the Laplace transform, but operates on sequences {ak}∞0
instead of functions. It can be used to solve difference equations and to compute explicitly
sequences that are recursively defined.

Definition 3. Let α = {ak}∞0 be a sequence of complex numbers that grow at most exponentially,
i e there are constants M and r0 such that

|ak| ≤Mrk0

for k = 0, 1, 2, .... Then the Z-transform of α is

Z(α)(z) =
∞∑
0

ak
zk
.

Notice that if |z| > r0, then r = r0/|z| < 1 and |ak/zk| ≤ M(r0/|z|) = Mrk so the sum
converges and defines a holomorphic function of z. The Z-transform is a Laurent series, but we
could also have defined it as

∞∑
0

akw
k,

and instead get a holomorphic function in a disk with radius 1/r0. Why did we choose to define
it as a power series in 1/z instead? I don’t have the faintest idea but once this unfortunate
convention has been chosen it is best to stay with it.

Example 13. Let ak = 2k. Then

Z(α) =
∞∑
0

(2/z)k =
1

1− 2/z
=

z

z − 2
.

If bk = 1/k! we see that Z(β) = e1/z.

The first rule of computation for the Z-transform is a variant of the formula for the Laplace
transform of a derivative. It involves the shift operator.

Definition 4. If α is a sequence then β = S(α) is defined by

bk = ak+1, k = 0, 1, 2...

Then

Z(β) =
∞∑
0

ak+1/z
k = z(

∞∑
1

ak/z
k).

Therefore we get

(4.1) Z(S(α))(z) = z[Z(α)− a0].
In a similar way we get that

(4.2) Z(SN(α)) = zN

[
Z(α)−

N−1∑
0

ak/z
k

]
.
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The only other formula we need in our toolbox involves the convolution of two sequences.

Definition 5. Let α and β be two sequences. Then their convolution is the sequence γ = {ck} =
α ∗ β defined by

ck =
k∑
0

ajbk−j.

Notice the similarity of this definition with the convolution of functions on the positive hal-
faxis.

Proposition 4.1.
Z(α ∗ β) = Z(α)Z(β).

Proof.

Z(α)(z)Z(β)(z) =
∞∑
0

aj/z
j

∞∑
0

bk/z
k =

∞∑
0

z−n
n∑
0

ajbn−j = Z(γ)(z).

�

Let us now look at a simple example to see how this works.

Example 14. Let us look at the very simple difference equation

ak+1 − ak = bk, k = 0, 1, 2...,

where bk are given and we have the initial value condition a0 = a. If we let α be the sequence
{ak} and β = {bk}, the equation says that

S(α)− α = β.

Taking the Z-tranform and using (4.1) we get

z[Z(α)− a]− Z(α) = Z(β).

Hence
Z(α) =

z

z − 1
a+

1

z − 1
Z(β).

Now,
z

z − 1
=

1

1− 1/z
=
∞∑
0

z−k = Z(I),

if I stands for the sequence that is identically equal to 1. Moreover
1

z − 1
= Z(I ′),

if I ′ is the sequence 0, 1, 1, 1..... Hence

ak = a+ (β ∗ I ′)k = a+
k−1∑
0

bj,

which of course is easy to see directly (how?).
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Exercises:
1. Compute the Z-transform of the following sequences:
a. ak = 2k/k!

b. ak = k

c. ak = k(k − 1)

d. ak = k2

2. Find the sequences that have the Z-transforms
a. cos 1/z

b. (1− z)−2

c. (z − 1)−1(z − 2)−1

3. Use the Z-transform to solve

ak+1 − ak = k, a0 = 0.
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