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1. Bevisa att Bessel funktionerna, Jn, uppfyller:∑
n∈Z

Jn(x)zn = e
x
2
(z−1/z).

The proof here is already available in the big proofs document!

2. Bevisa att Hermite polynomen, Hn(x) = (−1)nex
2 dn

dxn e
−x2 , är ortogo-

nala i Hilbert-rummet L2
w(R) med w(x) = e−x

2
.

The proof here is already available in the big proofs document!

3. Beräkna:
∞∑
n=0

1

1 + n2
.

(Hint: Utveckla ex i Fourier-series i intervallet (−π, π)).

Okay, we follow the hint. We need to compute∫ π

−π
exe−inxdx =

ex(1−in)

1− in

∣∣∣∣∣
x=π

x=−π

=
eπe−inπ

1− in
−e
−πeinπ

1− in
= (−1)n

2 sinh(π)

1− in
.

Hence, the Fourier coefficients are

1

2π
(−1)n

2 sinh(π)

1− in
,

and the Fourier series for ex on this interval is

ex =

∞∑
−∞

(−1)n sinh(π)

π(1− in)
einx, x ∈ (−π, π).

We can pull out some constant stuff,

ex =
sinh(π)

π

∞∑
−∞

(−1)neinx

1− in
, x ∈ (−π, π).



Now, we use the theorem which tells us that the series converges to
the average of the left and right hand limits at points of discontinuity,
like for example π. The left limit is eπ. Extending the function to be
2π periodic, means that the right limit approaching π is equal to e−π.
Hence

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
.

Now, we know that einπ = (−1)n, thus

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

1

1− in
.

We now consider the sum, and we pair together ±n for n ∈ N, writing

∞∑
−∞

1

1− in
= 1 +

∑
n∈N

1

1− in
+

1

1 + in
= 1 +

∑
n∈N

2

1 + n2
.

Hence we have found that

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
=

sinh(π)

π

(
1 +

∑
n∈N

2

1 + n2

)
.

The rest is mere algebra. On the left we have the definition of cosh(π).
So, moving over the sinh(π) we have

π cosh(π)

sinh(π)
= 1 + 2

∑
n∈N

1

1 + n2
=⇒

(
π cosh(π)

sinh(π)
− 1

)
1

2
=
∑
n∈N

1

1 + n2
.

Wow.

4. Hitta siffrorna a0, a1, och a2 ∈ C som minimerar∫ π

0
|x− a0 − a1 cos(x)− a2 cos(2x)|2dx.

This is a straightforward best approximation problem, using the co-
sine expansion on (0, π). The way it works is that we think of the
function f(x) = x on (0, π), and we extend it to (−π, π) to an even
function. This extension is thus f(x) = |x|. Then, if we were to ex-
pand in a Fourier series, the sine coefficients would drop out. The
cosine coefficients,

αn =
1

π

∫ π

−π
f(x) cos(nx)dx =

2

π

∫ π

0
f(x) cos(nx)dx, n ≥ 0.



We just need to compute the first three of these guys, that is for
n = 0, 1, 2. Thus,

α0 =
2

π

∫ π

0
xdx =

2

π

π2

2
= π.

Next,

α1 =
2

π

∫ π

0
x cos(x)dx =

−4

π
.

Similarly, we compute

α2 =
2

π

∫ π

0
x cos(2x)dx = 0.

So the numbers we seek are

a0 =
α0

2
, a1 = α1, a2 = α2.

5. Lös problemet:
ut − uxx = 0, t > 0, x ∈ R,

u(x, 0) = 20e−x
2

Let’s solve the homogeneous heat equation with initial data 20e−x
2
.

We know this to be

1√
4πt

∫
R
e−(x−y)

2/(4t)20e−y
2
dy.

6. Vi definerar
L̂Pα(f) := f̂χ(−α,α).

Beräkna LPα(f) med

f(x) =
1

1 + x2
.

We go backwards. L̂Pα(f) is the product of the Fourier transform of
f , together with the characteristic function. We look up in our handy
BETA that the Fourier transform of x−1 sin(αx) = χ(−α,α). So, we
know that

L̂Pα(f) = f̂
̂sin(αx)

x
.



What does the Fourier transform do to convolutions? It turns them
into products! Hence, we know that

LPα(f) =

∫
R
f(x− y)y−1 sin(αy)dy.

It’s fine to leave your answer this way. You could try to solve this doing
a contour integral, but I couldn’t find a contour to make it work. So,
if you got this and you left it that way, fine. Alternatively, we can also
look in our handy β to find that f̂(ξ) = πe−|ξ|. Then, we use the FIT
to say that

LPα(f)(y) =
1

2π

∫
R
χ(−α,α)(x)πe−|x|eixydx

=
1

2

∫ α

−α
e−|x|eixydx

=
1

2

(∫ 0

−α
ex+ixydx+

∫ α

0
e−x+ixydx

)
=

1

2

(
1

1 + iy
− e−α(1+iy)

1 + iy
+
eα(−1+iy)

−1 + iy
− 1

−1 + iy

)

=
1

2

(
−1 + iy

−1− y2
− e−αe−iy(−1 + iy)

−1− y2
+
e−αeiy(1 + iy)

−1− y2
− 1 + iy

−1− y2

)
=

1

2

(
2

1 + y2
+
e−α2 cos(y)

−1− y2
+
e−α(iy)(2i sin(y))

−1− y2

)
=

1 + e−α(y sin(y)− cos(y))

1 + y2
.

7. Lös problemet:

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = 20,

ux(4, t) = 0,

u(0, t) = 20.

The boundary conditions and initial condition are inhomogeneous. So,
we first solve the homogeneous PDE with these inhomogeneous con-
ditions. It’s pretty simple, because the constant function 20 does the
job.



Next, we solve the inhomogeneous PDE but with homogeneous BC
and IC, specifically, we now solve

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = 0,

ux(4, t) = 0,

u(0, t) = 0.

If we add the solution to the constant, 20, then the sum will do the
job. First, we think about the homogeneous PDE, which would give
us

T ′

T
− X ′′

X
= 0 =⇒ X ′′

X
=
T ′

T
= constant.

We have the nice boundary conditions for X,

X(0) = X ′(4) = 0 =⇒ Xn(x) = sin((n+ 1/2)πx/4),

X ′′n(x) = −λ2nXn(x), λn =
(n+ 1/2)π

4
.

up to constant factor. By the SLP theory, these guys form an orthog-
onal basis for L2(0, 4), so we can expand the function tx in terms of
this basis,

tx = t
∑
n≥0

x̂nXn(x),

where

x̂n =
1

2

∫ 4

0
x sin((n+ 1/2)πx/4)dx =

8(−1)n

(n+ 1/2)2
.

Now, we set up the PDE for

u(x, t) =
∑
n≥1

cn(t)Xn(x).

We apply the heat operator, and we want to solve∑
n≥1

c′n(t)Xn(x)− cn(t)X ′′n(x) = tx =
∑
n≥1

tx̂nXn(x).



We use the equation satisfied by Xn to change this around to∑
n≥1

(
c′n(t) + λ2ncn(t)

)
Xn(x) =

∑
n≥1

tx̂nXn(x).

We equate coefficients,

c′n(t) + λ2ncn(t) = tx̂n.

This is an ODE. We also have the IC, that we want cn(0) = 0. A
particular solution to the ODE is a linear function of t, that is

at+ b.

Let’s substitute a function of that type into the ODE above,

a+ λ2n(at+ b) = tx̂n.

Then equating coefficients, we need that

a = an =
x̂n
λ2n
, a+ λ2nb = 0 =⇒ b =

−a
λ2n

=
−x̂n
λ4n

.

The particular solution is then

x̂n
λ2n

(
t− λ−2n

)
.

We would like cn(0) = 0. However, this is not necessarily the case
above. How to remedy this dilemma? We include a solution to the
homogeneous ode,

f ′ + λ2nf = 0.

This is solved by constant multiples of e−λ
2
nt. So, the solution we seek

is then

cn(t) =
x̂n
λ2n

(
t− λ−2n

)
+ bne

−λ2nt.

Setting cn(0) = 0, we see that the constant we seek is

bn =
x̂n
λ4n
.

Thus

cn(t) =
x̂n
λ2n

(
t− 1

λ2n
+

1

λ2ne
λ2nt

)
.

Our total solution is then

20 +
∑
n≥1

cn(t)Xn(x).



8. Lös problemet:

utt − uxx − uyy = 0, x2 + y2 < 1 och y > 0, t > 0,

I polara koordinaterna (r, θ),

utt − urr − r−1ur − r−2uθθ = 0, 0 < r < 1, och 0 < θ < π,

med

u(1, θ, t) = sin(2θ), t > 0,

u(r, θ, 0) = 0, 0 < r < 1, 0 < θ < π,

ut(r, θ, 0) = 0, 0 < r < 1, 0 < θ < π.

On inspection, we should separate θ from r and t. Doing this, we
consider

v(r, t)Θ(θ).

In order to satisfy the boundary condition, we want

v(1, t) = 1, Θ(θ) = sin(2θ).

Then, we know that Θ′′(θ) = −4Θ(θ). We insert this information into
the PDE, so we consider

Θ(vtt−vrr−r−1vr)−r−2Θ′′v = 0 ⇐⇒ vtt − vrr − r−1vr
v

−r−2(−4) = 0.

The boundary condition v(1, t) = 1 shows that we should try to find
a sort of steady state solution, that is look for a function f(r) which
satisfies

−f ′′ − r−1f ′

f
+ 4r−2 = 0.

We do this. The equation can be equivalently written as

−r2f ′′(r)− rf ′(r) + 4f(r) = 0.

This is an Euler equation. We seek solutions of the form f(r) = rx.
This implies the equation for x,

−x(x− 1)− x+ 4 = 0 =⇒ x = ±2.



We don’t want f(0) = 0−2. So, we choose x = 2, and f(r) = r2. Next,
we want to solve for v(r, t) to satisfy

vtt − vrr − r−1vr
v

+ 4r−2 = 0,

and

v(1, θ) = 0, t > 0,

v(r, 0) = −r2, 0 < r < 1, 0 < θ < π,

vt(r, 0) = 0, 0 < r < 1, 0 < θ < π.

To do this, we separate variables, writing v(r, t) = R(r)T (t), and we
deal with R first, because it’s got nice conditions, namely R(1) = 0.
Separating variables, the PDE becomes

T ′′R− TR′′ − r−1TR′

TR
+ 4r−2 = 0 =⇒ T ′′

T
= −4r−2 +

R′′

R
+ r−1

R′

R
.

Hence both sides are equal to a constant, and we call it −λ2. The
equation for R is then

−λ2r2R = −4R+ r2R′′ + rR′ ⇐⇒ r2R′′ + rR′ − 4R+ λ2r2R = 0.

This should start to look familiar. To solve the ODE, we do the
substitution x = λr, J(x) = R(λr), then the equation for J becomes,

x2J ′′(x) + xJ ′(x) + (x2 − 4)J(x) = 0.

This is Bessel’s equation of order 2. The solution is thus J2(x). That’s
why we chose the letter J for this function. Now, we want that J2(1) =
0. Returning to our function

R(λr) = J2(x) = J2(λr), J2(λ) = 0 =⇒ λn = n-th positive root of J2.

Hence our solutions are
J2(λnr),

and the equation for T is now

T ′′

T
= −λ2n.



Thus,
Tn(t) = an cos(λnt) + bn sin(λnt).

We have the initial condition that the derivative with respect to t of
our solution should vanish at t = 0, so this shows that the sin part
should drop out, leaving

Tn(t) = an cos(λnt).

Next, we need to get our initial condition, so putting the T and R
together, we write ∑

n≥1
J2(λnr)an cos(λnt).

Setting t = 0, we have ∑
n≥1

J2(λnr)an = −r2.

By some magical theorem, we know that {J2(λnr)} are an orthogonal
basis for L2(0, 1) with the measure rdr. So, we can expand the function
−r2 in terms of this basis. Doing this, we have

an =

∫ 1

0
−r2J2(λnr)rdr

(∫ 1

0
J2
2 (λnr)rdr

)−1
.

The total solution to our problem is thenr2 +
∑
n≥1

an cos(λnt)J2(λnr)

 sin(2θ).


