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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.02.05

Would you rather fight 100 duck sized horses or 1 horse sized duck? Even a
big opponent, if it’s just one, is easier to manage than 100 duck sized horses all at
once! A more depressing example is Russia in the second world war. Their soldiers
were (generally speaking) not as well equipped and trained as the Nazis. It is a
Russian saying that they defeated the Nazis by drowning them in Russian blood.
So, even though the Nazis were (generally speaking) more skilled, the Russians
were so numerous that they eventually drove the Nazis out of Russia. Well, this is
a vastly over-simplified version of how my Russian fiancé (whose grandfather fought
in WW2) describes it. I am just a mathematician, not knowing much about history.
Do have some cool WW2 stories from my own grandpa though. He was a fighter
pilot. Anyways, how this relates to math is that fighting too many opponents at
the same time is poor strategy. Don’t do it.

1.0.1. General principle: divide and conquer. Ideally, you want to deal with in-
homogeneous parts one at a time. So, you break the problem down into pieces
and try to solve the pieces: divide and conquer. Deal with each inhomogeneity
one at a time. Then add them up. It is difficult to give a definitive formula that
one can mindlessly use in every situation (like the formula for the solutions to
ax2 + bx+ c = 0). The best tactic is to keep these principles and examples in mind
(and at hand for reference while you are in the practicing/learning phase), and to
just do lots and lots of problems. Occasionally though, especially in future “real
world problems” you may come to a PDE which has no solution. Like that weird
one on the quiz. So, if you are really struggling, consider the possibility that maybe
what you’re trying to do is impossible. On exams, though, this won’t happen. In
the real (research & applied) world though....

1.0.2. IVP for inhomogeneous PDE with time independent inhomogeneity. Let’s
consider the problem

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π

u(−π, t) = u(π, t) = 0
1
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Figure 1. Just for fun, here is an old photo of my grandpa in his plane. Coinci-
dentally, he is a first generation Swede (his parents immigrated from Sweden to the
USA in the early 1900s). Note that I wrote is, because he’s going on 97.

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 5 x ∈ [−π, π], t > 0.

OH NO! It’s not a homogeneous PDE! What do we do?!?!? Don’t panic. Observe
that the inhomogeneity is independent of t.

Idea: Deal with time independent inhomogeneity in the PDE by
finding a steady state solution.

We look for a function f(x) which depends only on x which satisfies the boundary
conditions and also satisfies the inhomogeneous PDE. Since f only depends on x,
the PDE for f is

−f ′′(x) = 5.
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This means that

−f ′(x) = 5x+ b =⇒ −f(x) =
5x2

2
+ bx+ c =⇒ f(x) = −5x2

2
+ bx+ c.

Now, we want f to satisfy the boundary conditions. So, we want

−5π2

2
− bπ + c = 0 = −5π2

2
+ bπ + c ⇐⇒ b = 0.

There is no restriction on c, so we may as well let c = 0 for the sake of simplicity.
So, we now have a solution to

−f ′′(x) = 5, f(±π) = 0,

which is

f(x) = −5x2

2
.

If we then look for a solution to

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π
=: v(x)

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0,

and we add it to f , we will get

u(x, 0) + f(x) = v(x) + f(x) 6= v(x).

The initial condition gets messed up because of f . So, we need to compensate for
this. For that reason, we look for a solution to

u(x, 0) = −f(x) + v(x)

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0.

Then, our full solution will be

U(x, t) = u(x, t) + f(x).

It will now satisfy everything. Here it is important to note that when we add u
and f , the boundary condition still holds. So, please think about this, because in
certain variations on the theme, it could possibly not be true.

Anyhow, we are now just dealing with this nice IVP for the homogeneous wave
equation. We can recycle what we did on Friday. We had the heat equation there,
but watch what happens when we separate variables:

T ′′(t)X(x)−X ′′(x)T (t) = 0 =⇒ T ′′

T
=
X ′′

X
= λ,

is a constant. So, for the X part, we have the problem:

X ′′ = λX, X(±π) = 0.
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This is the SLP we solved on Friday. If you need to review how we did that, please
go back to the Day9 notes and read it! I will just skip to the good bit:1

Xn(x) = an cos(
√
|λn|x) + bn sin(

√
|λn|x),

an =

0 n = even(∫ π
−π cos(

√
|λn|x)2dx

)− 1
2

n = odd

bn =

0 n = odd(∫ π
−π sin(

√
|λn|x)2dx

)− 1
2

n = even

with √
|λn| =

n

2
, λn = −n

2

4
.

The partner functions,

Tn(t) = αn cos(
√
|λn|x) + βn sin(

√
|λn|x).

We shall determine the coefficients using the IC. First, we write

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

Next, we use the easier of the two ICs, which is

ut(x, 0) = 0.

So, we also compute

ut(x, t) =
∑
n≥1

T ′n(t)Xn(x).

When we plug in 0, we need to have

ut(x, 0) =
∑
n≥1

T ′n(0)Xn(x) = 0.

So, to get this, we need

T ′n(0) = 0∀n.
By definition of the Tn,

T ′n(0) = βn
√
|λn|.

So, to make this zero, since
√
|λn| 6= 0, we need

βn = 0∀n.
Hence, our solution looks like

u(x, t) =
∑
n≥1

αn cos(
√
|λn|t)Xn(x).

The other IC says

u(x, 0) = −f(x) + v(x).

Since cos(0) = 1, we see that we need

−f(x) + v(x) =
∑
n≥1

αnXn(x).

1This is a really fun song by the rap duo, Rizzle Kicks.
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This means that we need

αn = 〈−f + v,Xn〉 =

∫ π

−π
(−f(x) + v(x))Xn(x)dx.

It suffices to just leave αn like this. As we observed before, our full solution is now

U(x, t) = u(x, t) + f(x) = −5x2

2
+
∑
n≥1

αn cos(
√
|λn|x)Xn(x),

with Xn defined as above.

1.0.3. IVP for homogeneous PDE with non-self-adjoint BCs. Let’s say we have the
problem

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 20.

These are not self adjoint BCs. Yikes! However, we can use a similar “steady
state” trick to deal with this. If the BC u(0, t) = 20 were instead u(0, t) = 0, then
the BCs would be self adjoint BCs. So we want to make it so. Since the PDE is
homogeneous, the

Idea: Deal with non-self adjoint BCs which are independent of
time by finding a steady state solution.

So, we want a function f(x) which satisfies the equation

−f ′′(x) = 0,

and which gives us the bad BC

f(0) = 20.

We have a nice homogeneous BC on the other side, so we don’t want to mess that
up, so we want

f ′(4) = 0.

Then, the function

f(x) = −5x2

2
+ ax+ b.

We use the BCs to compute

f(0) = 20 =⇒ b = 20.

f ′(4) = 0 =⇒ −5 ∗ 16

2
+ 4a+ 20 = 0 =⇒ 40 = 20 + 4a =⇒ 20 = 4a =⇒ a = 5.

Thus,

f(x) = −5x2

2
+ 5x+ 20.

Similar to before, if we add it to the solution of

ut − uxx = 0, 0 < x < 4, t > 0,
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u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

it’s going to screw up the IC. So, instead we look for the solution of

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x)− f(x),

ux(4, t) = 0,

u(0, t) = 0.

We can now deal with this in the standard way. We use SV to write u = XT (just
a means to an end).2 Next, we get the equation

T ′

T
=
X ′′

X
= λ.

We solve the SLP

X ′′ = λX, X(0) = 0 = X ′(4).

The reason we know this is an SLP satisfying the hypotheses of the theorem is
because we verify that the BC is self-adjoint. I leave this as an exercise for you
to do. We look for solutions for the three cases of λ. I leave it as an exercise for
you to show that λ ≥ 0 has no non-zero solutions. We only get λ < 0. Then, the
solution is of the form

an cos(
√
|λn|x) + bn sin(

√
|λn|x).

The BC at 0 tells us that

an = 0.

The BC at 4 tells us that

cos(
√
|λn|4) = 0 =⇒

√
|λn|4 =

2n+ 1

2
π =⇒

√
|λn| =

2n+ 1

8
π.

We then also get

λn = − (2n+ 1)2π2

64
.

The coefficient

bn =

(∫ 4

0

sin2(
√
|λn|x)dx

)− 1
2

.

Hence,

Xn(x) = bn sin(
√
|λn|x).

I do believe if you compute it, you shall get bn = 1√
2
. You may check this if you

are so inclined. The partner function

T ′n
Tn

= λn =⇒ Tn(t) = αne
λnt = αne

−(2n+1)2π2t/64.

2La fin justifie les moyens by M.C. Solar is recommended listening.



FOURIER ANALYSIS & METHODS 7

We put it all together writing

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

To make the IC, we need

u(x, 0) =
∑
n≥1

Tn(0)Xn(x) = v(x)− f(x).

Since
Tn(0) = αn,

we need ∑
n≥1

αnXn(x) = v(x)− f(x).

So we want the coefficients to be the Fourier coefficients of v − f , thus

αn = 〈v − f,Xn〉 =

∫ 4

0

(v(x)− f(x))Xn(x)dx.

Our full solution is

U(x, t) = u(x, t) + f(x) = −5x2

2
+ 5x+ 20 +

∑
n≥1

Tn(t)Xn(x).

1.0.4. IVP for inhomogeneous PDE with time dependent inhomogeneity. Solve:

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

Non! Sacre bleu! Tabernac!3 There’s a lovely way to deal with this type of
inhomogeneity. We first solve the homogeneous problem. It is quite similar to
what we have just done. We get the same

λn = − (2n+ 1)2π2

64
, bn =

(∫ 4

0

sin2(
√
|λn|x)dx

)− 1
2

.

Xn(x) = bn sin(
√
|λn|x).

Tn(t) = αne
λnt.

αn = 〈v,Xn〉 =

∫ 4

0

v(x)Xn(x)dx = v̂n.

Let us now call

w(x, t) =
∑
n≥1

Tn(t)Xn(x) =
∑
n≥1

v̂ne
λntXn(x).

So, this solves everything except the creepy tx part. We shall deal with that part
by looking for a solution to

ut − uxx = tx, 0 < x < 4, t > 0,

3This is how they curse in French Canada.
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u(x, 0) = 0,

ux(4, t) = 0,

u(0, t) = 0.

Idea: look for a solution of the form∑
n≥1

cn(t)Xn(x).

So, we keep our Xn from the homogeneous problem’s SLP, and we look for different
cn. We want the function to satisfy

ut − uxx = tx,

so we put the series in the left side∑
n≥1

c′n(t)Xn(x)− cn(t)X ′′n(x) = tx.

We use the fact the X ′′n = λnXn, so we want to solve∑
n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx.

Here is where we do something clever:

Idea: write out tx as a Fourier series in terms of Xn.

The t just goes along for the ride, and

tx = t
∑
n≥1

x̂nXn(x),

where

x̂n = 〈x,Xn〉 =

∫ 4

0

xXn(x)dx.

Consequently we want∑
n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx =
∑
n≥1

tXn(x)x̂n.

We equate the coefficients

(c′n(t)− λncn(t)) = tx̂n.

This is an ODE for cn(t). We also want the IC, cn(0) = 0. The solution to the
homogeneous ODE f ′ − λnf = 0 are functions of the form

αne
λnt.

A particular solution to the inhomogeneous ODE is the

− x̂n
λn
t− x̂n

λ2
n

.

In order to get the condition that cn(0) = 0 we take the solution to the homo-
geneous ODE, choose αn correctly, and add it to the particular solution to the
inhomogeneous ODE. This gives us

cn(t) = − x̂n
λn
t− x̂n

λ2
n

+
x̂n
λ2
n

eλnt.
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(If you forget how to solve the ODE, you can just say in your solution that you
need cn(t) to solve the ODE with the correct IC). Therefore the solution we seek is

u(x, t) =
∑
n≥1

cn(t)Xn(x),

and the full solution is

U(x, t) = w(x, t) + u(x, t).

1.1. Variations on the theme. This is from an old exam, so the notation may be
different (like using λ2

n and stuff). It is good to get used to different notations, so I
leave it this way for your edification. We probably are not doing these examples in
lecture, but it may be good for you to practice with them, so I’m including them
in the notes.

1.1.1. Inhomogeneous PDE and BC. Solve:

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = 20,

ux(4, t) = 0,

u(0, t) = 20.

There are a few ways to deal with this. The straightforward way is to:

(1) Deal with the BC by finding a steady state solution for the BC (the u(0, t) =
20 part). That is find a function f(x) to solve the homogeneous PDE,
−f ′′(x) = 0 with the BCs f ′(4) = 0, f(0) = 20.

(2) Next, solve the homogeneous PDE with the IC u(x, 0) = 20. Oh wait,
that’s impossible. So don’t do that.

(3) Try again: next, solve the inhomogeneous PDE but with the nice BCs
u(0, t) = 0 = ux(4, t). To do this use SLP to find the Xn and λn. Then
look for a series solution of the form∑

n≥1

cn(t)Xn(x),

where cn(t) is going to satisfy an ODE. This comes from plugging the series
into the PDE and expanding the function tx on the right in a Fourier series
with respect to {Xn}.

(4) Combine this with your f(x) to get the full solutions.

Exercise: DO THIS. As described above. Do not read the solution below.
Only after you have done this, you may read the solution below and verify that you
get the same answer.

The boundary conditions and initial condition are inhomogeneous. So, we first
solve the homogeneous PDE with these inhomogeneous conditions. It’s pretty sim-
ple, because the constant function 20 does the job.

Next, we solve the inhomogeneous PDE but with homogeneous BC and IC,
specifically, we now solve

ut − uxx = tx, 0 < x < 4, t > 0,
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u(x, 0) = 0,

ux(4, t) = 0,

u(0, t) = 0.

If we add the solution to the constant, 20, then the sum will do the job. First,
we think about the homogeneous PDE, which would give us

T ′

T
− X ′′

X
= 0 =⇒ X ′′

X
=
T ′

T
= constant.

We have the nice boundary conditions for X,

X(0) = X ′(4) = 0 =⇒ Xn(x) = sin((n+ 1/2)πx/4),

X ′′n(x) = −λ2
nXn(x), λn =

(n+ 1/2)π

4
.

up to constant factor. By the SLP theory, these guys form an orthogonal basis for
L2(0, 4), so we can expand the function tx in terms of this basis,

tx = t
∑
n≥0

x̂nXn(x),

where

x̂n =
1

2

∫ 4

0

x sin((n+ 1/2)πx/4)dx =
8(−1)n

(n+ 1/2)2
.

Now, we set up the PDE for

u(x, t) =
∑
n≥1

cn(t)Xn(x).

We apply the heat operator, and we want to solve∑
n≥1

c′n(t)Xn(x)− cn(t)X ′′n(x) = tx =
∑
n≥1

tx̂nXn(x).

We use the equation satisfied by Xn to change this around to∑
n≥1

(
c′n(t) + λ2

ncn(t)
)
Xn(x) =

∑
n≥1

tx̂nXn(x).

We equate coefficients,
c′n(t) + λ2

ncn(t) = tx̂n.

This is an ODE. We also have the IC, that we want cn(0) = 0. A particular solution
to the ODE is a linear function of t, that is

at+ b.

Let’s substitute a function of that type into the ODE above,

a+ λ2
n(at+ b) = tx̂n.

Then equating coefficients, we need that

a = an =
x̂n
λ2
n

, a+ λ2
nb = 0 =⇒ b =

−a
λ2
n

=
−x̂n
λ4
n

.

The particular solution is then

x̂n
λ2
n

(
t− λ−2

n

)
.
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We would like cn(0) = 0. However, this is not necessarily the case above. How to
remedy this dilemma? We include a solution to the homogeneous ode,

f ′ + λ2
nf = 0.

This is solved by constant multiples of e−λ
2
nt. So, the solution we seek is then

cn(t) =
x̂n
λ2
n

(
t− λ−2

n

)
+ bne

−λ2
nt.

Setting cn(0) = 0, we see that the constant we seek is

bn =
x̂n
λ4
n

.

Thus

cn(t) =
x̂n
λ2
n

(
t− 1

λ2
n

+
1

λ2
ne
λ2
nt

)
.

Our total solution is then
20 +

∑
n≥1

cn(t)Xn(x).

1.1.2. Variations 2. Solve:

utt − uxx = tx, 0 < x < 4, t ≥ 0,

u(0, t) = 20,

ux(4, t) = 0,

u(x, 0) = 20,

ut(x, 0) = 0.

Almost déjà vu right? Mais pas precisement... We have here an inhomogeneous
wave equation. However, the inhomogeneity is time dependent. So, a steady state
solution ain’t gonna solve that problem. Next, we look at our boundary and initial
conditions. The constant function, 20, satisfies that vertical list of conditions. So,
we look for a function v to satisfy the inhomogeneous wave equation *but* with
homogeneous BC and IC, thus we want v to satisfy

vtt − vxx = tx,

and v(0, t) = vx(4, t) = v(x, 0) = vt(x, 0) = 0. Our solution will be u = 20 + v.
To solve the inhomogeneous heat equation, we will use the Fourier series method
(Fourier series because on a bounded interval). The inhomogeneous part of the
heat equation can be expressed using an L2 OB {φn} for [0, 4] which satisfies the
boundary condition and the SLP,

φ′′n(x) + λnφn(x) = 0, φn(0) = φ′n(4) = 0.

I leave it to you to check that the only λn for which there is such a φn 6≡ 0 are
positive λn. The corresponding φn is thus a linear combination of sine and cosine,
and to satisfy the BC at x = 0, we see that the cosine is out. So, we need a sine.
In order to get the BC at x = 4, we need (up to multiplication by a factor which is
constant with respect to x)

φn = sin((2n+ 1)πx/8), λn =
(2n+ 1)2π2

64
.
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Next, we shall allow the constant factor multiplying φn, to depend on time, and we
write

v(t, x) =
∑
n∈N

cn(t)φn(x).

We can also express the xt side of the wave equation using the L2 OB,

tx = t
∑
n≥0

x̂nφn(x),

where

x̂n =
1

2

∫ 4

0

x sin((2n+ 1/)πx/8)dx =
8(−1)n

(n+ 1/2)2
.

Next, we apply the wave operator to the expression for v in order to determine
the unknown coefficient functions, cn,

vtt + vxx =
∑
n≥0

c′′n(t)φn(x)− cn(t)φ′′n(x) =
∑
n≥0

(c′′n(t) + λncn(t))φn(x).

We want this to equal

tx =
∑
n≥0

tx̂nφn(x).

To obtain the equality, we equate the individual terms in each series, writing

(c′′n(t) + cn(t)λn)φn(x) = tx̂nφn(x).

Hence, we want cn to satisfy the ODE:

c′′n(t) + λncn(t) = tx̂n.

The homogeneous ODE

f ′′ + λf = 0, λ > 0, =⇒ f(x) = a cos(
√
λx) + b sin(

√
λx).

A particular solution to the inhomogeneous ODE is a function of the form

c(t) = at+ b.

Substituting such a function into the ODE, we see that we need

cn(t) =
tx̂n
λn

.

Now we gotta look at the ICs. You see, the φn’s take care of the BC’s because we
built them that way. However, they don’t depend on time, so they can’t help us
with the ICs. We need the cn(t) to do that. Now, if we just take the particular
solution to the ODE, we see that it vanishes at t = 0. However, we also want the
derivative to vanish at t = 0, and it don’t do that. So, we combine the particular
solution with a solution to the homogeneous ODE. Hence, we want

cn(t) =
tx̂n
λn

+ an cos(
√
λnx) + bn sin(

√
λnx).

To make sure cn(0) = 0 we need an = 0. To make sure c′n(0) = 0, we need

x̂n
λn

+
√
λnbn = 0 =⇒ bn = − x̂n

λ
3/2
n

.

Hence, our full solution is

u(x, t) = 20 +
∑
n∈N

(
tx̂n
λn
− x̂n

λ
3/2
n

sin(
√
λnx)

)
φn(x),
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with

λn =
(2n+ 1)2π2

64
, x̂n =

8(−1)n

(n+ 1/2)2
, φn(x) = sin((2n+ 1)πx/8).
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