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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.02.09

Let us briefly enter two space dimensions. We will do a rather interesting exam-
ple, solving

�u = 0 inside a rectangle, u(x, y, 0) = f(x, y), ut(x, y, 0) = 0,

u(x, y, t) = g(x, y) for (x, y) on the boundary of the rectangle.

Here we have horrible inhomogeneous boundary condition. So, to solve the problem,
we break it into two smaller problems which we tackle one at a time.

First, we see that the horrible inhomogeneous boundary condition is time in-
dependent. Hence, we can solve it by finding a steady state solution. So, we are
looking for a function

Φ(x, y)

to satisfy

�Φ = 0 inside the rectangle,

Φ = g on the boundary of the rectangle.

Since the physical problem doesn’t care where in space the rectangle is sitting, let us
put it so that its vertices are at (0, 0), (0, B), (A, 0), (A,B). The BCs are terrible,
so we deal with them one at a time. First, let’s make nice BCs left and right, so
we set

φ(0, y) = φ(A, y) = 0,

and we deal with horrible BCs up and down:

φ(x, 0) = g(x, 0), φ(x,B) = g(x,B).

Let’s try separation of variables:

−X ′′Y − Y ′′X = 0 =⇒ −Y
′′

Y
=
X ′′

X
= λ.

The BCs for X are X(0) = X(A) = 0. We have solved this problem. The solutions
are

Xn(x) = sin
(nπx
A

)√ 2

A
, λn = −n

2π2

A2
.
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This means that the partner function

Yn(y) = an cosh
(nπy
A

)
+ bn sinh

(nπy
A

)
.

We smash them all together, writing

φ(x, y) =
∑
n≥1

Xn(x)Yn(y).

This is okay because the PDE is homogeneous. Now, to get the horrible BCs, we
need

φ(x, 0) = g(x, 0) =
∑
n≥1

anXn(x).

Hence, the coefficients

an = 〈g(x, 0), Xn〉 =

∫ A

0

g(x, 0)Xn(x)dx.

For the other BC, we need

φ(x,B) = g(x,B) =
∑
n≥1

Xn(x)

(
an cosh

(
nπB

A

)
+ bn sinh

(
nπB

A

))
.

Therefore we need(
an cosh

(
nπB

A

)
+ bn sinh

(
nπB

A

))
= 〈g(x,B), Xn〉

=

∫ A

0

g(x,B)Xn(x)dx.

Solving for

bn =
〈g(x,B), Xn〉 − an cosh

(
nπB
A

)
sinh

(
nπB
A

) .

We can proceed analogously to deal with the other horrible BCs left and right, with
nice BCs up and down:

ψ(x, 0) = ψ(x,B) = 0, ψ(0, y) = g(0, y), ψ(A, y) = g(A, y).

By symmetry, the solution will be given by∑
n≥1

X̃n(y)Ỹn(x),

with

X̃n(y) = sin
(nπy
B

)√ 2

B
,

and

Ỹn(x) = ãn cosh
(nπx
B

)
+ b̃n sinh

(nπx
B

)
.

The coefficients come from the horrible boundary conditions,

ãn = 〈g(0, y), X̃n〉 =

∫ B

0

g(0, y)X̃n(y)dy.

The other one

b̃n =
〈g(A, y), X̃n〉 − ãn cosh

(
nπA
B

)
sinh

(
nπA
B

) .
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So, we have found

ψ(x, y) =
∑
n≥1

X̃n(y)Ỹn(x).

The full solution to this part of the problem is

Φ(x, y) = φ(x, y) + ψ(x, y).

Phew, we have dealt with the horrible (yet time independent) boundary condition
by finding our steady state solution. Now, we just need to solve the lovely IVP for
the wave equation with the Dirichlet boundary condition,

�u = 0, ut(x, y, 0) = 0, u(x, y, 0) = f(x, y)−Φ(x, y), u = 0 on the boundary.

We use separation of variables for t, x, and y. Write

u = TXY.

The PDE is

T ′XY −X ′′TY − Y ′′TX = 0 ⇐⇒ T ′

T
=
X ′′

X
+
Y ′′

Y
= λ.

Consider the stuff with X and Y ,

X ′′

X
+
Y ′′

Y
= λ =⇒ X ′′

X
= λ− Y ′′

Y
= µ.

You see, the same reasoning again says both sides are constant. So, we turn to our
old friendly equation

X ′′ = µX, X(0) = X(A) = 0.

We have solved this before. The solutions are

Xn(x) = sin
(nπx
A

)√ 2

A
, µn = −n

2π2

A2
.

This gives the equation for Y ,

Y ′′

Y
= λ− µn, Y (0) = Y (B) = 0.

Let us briefly call
ν = λ− µn.

Then, the ODE
Y ′′ = νY, Y (0) = Y (B) = 0

has solutions

Ym(y) = sin
(mπy

B

)√ 2

B
νm = −m

2π2

B2
.

Since

νm = λ− µn =⇒ λ = λn,m = νm + µn = −m
2π2

B2
− n2π2

A2
.

Recalling the equation for the partner function, T , we have

Tn,m(t) = an,m cos(
√
|λn,m|t) + bn,m sin(

√
|λn,m|t).

Hence we write
u(x, y, t) =

∑
n,m≥1

Tn,m(t)Xn(x)Ym(y).

The initial condition

ut(x, y, 0) = 0 =⇒ bn,m = 0∀n,m.
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The other condition is that

u(x, y, 0) = f(x, y)− Φ(x, y) =
∑
n,m≥1

an,mXn(x)Ym(y).

Hence we require

an,m = 〈f − Φ, XnYm〉 =

∫
[0,A]×[0,B]

(f(x, y)− Φ(x, y))Xn(x)Ym(y)dxdy.

The full solution is then
u(x, y, t)− Φ(x, y).

Remark 1. The eigenvalues of the two-dimensional SLP we solved above,

λn,m = −m
2π2

B2
− n2π2

A2

are interesting to compare to the analogous one-dimensional case. In the analogous
one dimension case, where we have

µn = −n
2π2

A2
,

you can see that these are all square integer multiples of

µ1 = − π
2

A2
.

This is the mathematical reason that vibrating strings sound lovely. On the other
hand, as long as the rectangle is not a square, that is A 6= B, it is no longer true
that the λn,m are all multiples of

λ1,1 = − π
2

B2
− π2

A2
.

For this reason, vibrating rectangles can sound rather awful. You can listen to
something along these lines (okay it’s for tori not rectangles, but mathematically
basically the same) here: http://www.toroidalsnark.net/som.html. Further
exploration of the mathematics of music could make for an interesting bachelor’s
or master’s thesis....

1.1. The Fourier Transform. With that musical interlude, it is now time to
COMPLETELY CHANGE GEARS. We are now going to deal with FUNCTIONS
AND PROBLEMS ON THE WHOLE REAL LINE. Why am I shouting? Well, it’s
because the techniques on finite intervals and those on R (or R2, Rn etc) are DIF-
FERENT. DO NOT MIX THEM UP. It’s like that South Park episode with the pig
and the elephant, “Pig and elephant just don’t splice” https://www.youtube.com/

watch?v=RztfjHdM-pg. The pig could be compared to a finite interval, whereas
the elephant is R. They just don’t splice. They need to be considered separately.

We begin with

Definition 1. The set

L1(R) = the set of equivalence classes, [f ] of functions which satisfy:

f is measurable, and

∫
R
|f(x)|dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere
on R. Above, dx means the Lebesgue integral. If f is also Riemann integrable, then
these two integrals are equal.

http://www.toroidalsnark.net/som.html
https://www.youtube.com/watch?v=RztfjHdM-pg
https://www.youtube.com/watch?v=RztfjHdM-pg
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Next we have

Definition 2. The set

L2(R) = the set of equivalence classes, [f ] of functions which satisfy:

f is measurable, and

∫
R
|f(x)|2dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere
on R.

The space H = L2(R) is a Hilbert space with the scalar product:

〈f, g〉 =

∫
R
f(x)g(x)dµ.

Hence, by definition, the norm on L2(R) is

||f ||L2(R) =

√∫
R
|f(x)|2dx.

A lot of things which are true for L2 on a finite interval are no longer true on L2(R).
For example, the functions

einx, sin(x), cos(x)

are all neither in L1(R) nor in L2(R). Furthermore, there is no relationship between
L1(R) and L2(R). There are functions which are in L1(R) but not in L2(R):

f(x) =


0 x ≤ 0
√
x 0 < x < 1

0 x ≥ 1

is in L1(R) but it is not in L2(R). Go ahead and compute the integrals! On the
other hand, the function

f(x) =

{
0 x ≤ 1
1
x x > 1

is in L2(R) but not in L1(R). The function

e−x

is in both L1(R) and in L2(R). So, all we can say is that

L1(R) 6⊂ L2(R), L2(R) 6⊂ L1(R), L1(R) ∩ L2(R) 6= ∅.

So, we’re in a whole new territory here. We will first define the Fourier transform
of a function, denoted by

f̂(ξ)

for functions in L1(R). We’ll see how to extend to L2(R) later....

Proposition 3. Assume that f ∈ L1(R). Then

f̂(ξ) :=

∫
R
f(x)e−ixξdx

is a well-defined complex number for any ξ ∈ R.
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Proof: Simply estimate∣∣∣∣∫
R
e−ixξf(x)dx

∣∣∣∣ ≤ ∫
R
|f(x)|dx <∞.

We’re going to be using something called the convolution.

Definition 4. The convolution of f and g is a function f ∗ g : R→ C defined by

f ∗ g(x) =

∫
R
f(x− y)g(y)dy,

whenever the integral on the right exist.

Proposition 5. Assume that f and g are both in L2(R). Then

(1) |f ∗ g(x)| ≤ ||f ||||g|| for all x ∈ R
(2) f ∗ (ag + bh) = af ∗ g + bf ∗ h for all a, b ∈ C
(3) f ∗ g = g ∗ f
(4) f ∗ (g ∗ h) = (f ∗ g) ∗ h

Proof: This is useful to do because it helps to familiarize oneself with the
convolution. We first estimate

|f ∗ g(x)| =
∣∣∣∣∫

R
f(x− y)g(y)dy

∣∣∣∣ ≤ ∫
R
|f(x− y)||g(y)|dy.

The point x ∈ R is fixed and arbitrary, so I define a function

φ(y) = f(x− y).

Then

|f ∗ g(x)| ≤
∫
R
|φ(y)||g(y)|dy ≤ ||φ||||g||.

We compute

||φ||2 =

∫
R
|f(x− y)|2dy = −

∫ −∞
∞

|f(t)|2dt =

∫ ∞
−∞
|f(t)|2dt = ||f ||2.

Above, we used the substitution t = x − y so dt = −dy, and the integral got
reversed. The − goes away when we re-reverse the integral. So, in the end we see
that

|f ∗ g(x)| ≤ ||f ||||g||
as desired. The second property follows simply by the linearity of the integral itself.
For the third property, we will use substitution again:

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

We want to get g(x− z) so we define

y = x− z =⇒ x− y = z, dz = −dy.

Hence,

f ∗ g(x) = −
∫ −∞
∞

f(z)g(x− z)dz =

∫ ∞
−∞

g(x− z)f(z)dz = g ∗ f(x).
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We do something rather similar in the fourth property:

f ∗ (g ∗ h)(x) =

∫
R
f(x− y)

∫
R
g(y − z)h(z)dzdy.

For the other term we have

(f ∗ g) ∗ h(x) =

∫
R

(f ∗ g)(x− y)h(y)dy =

∫
R

∫
R
f(x− y − z)g(z)h(y)dzdy.

So, we define

t = y − z =⇒ x− y = x− t− z, dt = dy.

Then

f ∗ (g ∗ h)(x) =

∫
R

∫
R
f(x− t− z)g(t)h(z)dzdt.

Finally, we call z = y and t = z (sorry if this gives you a headache!) because they
are just names, and then we get

f ∗ (g ∗ h)(x) =

∫
R

∫
R
f(x− y − z)g(y)h(z)dzdy.

If you’re worried about the order of integration, don’t be. Since everything is in
L2, these integrals converge absolutely, so those Italian magicians, Fubini & Tonelli
allow us to do the switch-a-roo with the integrals as much as we like.

There is a giant theorem about approximations using the convolution, but let’s
not get ahead of ourselves just yet. We shall save that for later after we’ve done
some more basic things with the Fourier transform.

Proposition 6 (Mollification). If f ∈ C1(R) ∩ L2(R), f ′ ∈ L2(R), and g ∈ L2(R),
then f ∗ g ∈ C1(R). Moreover (f ∗ g)′ = f ′ ∗ g.

Proof: Everything converges beautifully so just stick that differentiation right
under the integral defining

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

Hence

(f ∗ g)′(x) =

∫
R
f ′(x− y)g(y)dy = f ′ ∗ g(x).

If you are not satisfied with this explanation, a rigorous proof can be obtained using
the Dominated Convergence Theorem, but that is a theorem which we cannot prove
in the context of this humble course.

So, the idea is that if you convolve some rough g with a nice, smooth, f , then
f mollifies g. This means that g inherits the smoothness from f . We will see later
that the initial value problem for the heat equation on R,

ut − uxx = 0, u(x, 0) = f(x) ∈ L2(R)

is given by

u(x, t) =
1√
4πt

∫
R
e−

(x−y)2

4t f(y)dy.
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So, you see that for t > 0, even though the initial data was just in L2(R) (so
it could be nowhere differentiable, for example), the solution u(x, t) to the heat

equation is smooth for all t > 0. That’s because the Gaussian term, e−y
2/(4t) is

fantastic. It and all its derivatives are in L2(R). It is of course smooth. So, we can
do the proposition a zillion times and get as many derivatives of u as we like. This
is what I mean by the solution operator to the heat operator being a “smoothing
operator.” Similarly, when I told you about infinite speed of propagation, assume
that the initial data satisfies f ≥ 0, and there exists a constant ε and a set with
some positive length such that f ≥ ε > 0 on this set. Then, for all t > 0

u(x, t) > 0∀x ∈ R.
So, for example if my initial data satisfies

f(x) =

{
ε x ∈ (−0.0000001, 0.0000001)

0 otherwise

for some tiny ε > 0 like maybe ε = 10−11111, then the solution to the heat equation,
u(x, t) with this initial data is positive everywhere for t > 0. So, it’s like that little
teeny tiny bit of heat shoots out instantaneously over the whole real line! That’s
pretty neat. It’s also why if you are ever in a fire situation, you should just GET
OUT. Don’t look for your stuff or whatever, just get yourself (and if you got a baby
or somebody else who needs help or a pet - grab them too - just don’t worry about
the non-living stuff) OUT. Cause heat has infinite speed of propagation. Also, at
the particle level it corresponds to random motion. So, random and infinite speed
of propagation means just beat it!

Let us continue with the Fourier transform, which we will use to prove the
solution to the IVP for the homogeneous heat equation is indeed as above.

Theorem 7 (Properties of the Fourier transform). Assume that everything below
is well defined. Then, the Fourier transform,

F(f)(ξ) := f̂(ξ) :=

∫
R
f(x)e−ixξdx

satisfies

(1) F(f(x− a))(ξ) = e−iaf̂(ξ).

(2) F(f ′)(ξ) = iξf̂(ξ)
(3) F(xf(x))(ξ) = iF(f)′(ξ)

(4) F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

Proof: We just compute (we are being a bit naughty, not bothering with issues
of convergence, but all such issues are indeed rigorously verifiable, so not to worry).
First

F(f(x− a))(ξ) =

∫
R
f(x− a)e−ixξdx.

Change variables. Let t = x− a, then dt = dx, and x = t+ a so

F(f(x− a))(ξ) =

∫
R
f(t)e−i(t+a)ξdt = e−iaξ f̂(ξ).

The next one will come from integrating by parts:∫
R
f ′(x)e−ixξdx = f(x)e−ixξ

∣∣∞
−∞ −

∫
R
−iξf(x)e−ixξdx = iξf̂(ξ).
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The boundary terms vanish because of reasons (again it is L1 and L2 theory stuff).
Similarly we compute∫

R
xf(x)e−ixξdx = −1

i

∫
R
f(x)

d

dξ
e−ixξdx = i

d

dξ

∫
R
f(x)e−ixξdx = iF(f)′(ξ).

Finally,

F(f ∗ g)(ξ) =

∫
R
f ∗ g(x)e−ixξdx =

∫
R

∫
R
f(x− y)g(y)e−ixξdydx.

We do a little sneaky trick

=

∫
R

∫
R
f(x− y)g(y)e−ixξe−iyξeiyξdydx

=

∫
R

∫
R
f(x− y)e−i(x−y)ξg(y)e−iyξdydx.

Let z = x− y. Then dz = −dy so

=

∫
R

∫ −∞
∞

f(z)e−izξ(−dz)g(y)e−iyξdy =

∫
R

∫
R
f(z)e−izξdzg(y)e−iyξdy

= f̂(ξ)ĝ(ξ).
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