
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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We begin with a theorem.

Theorem 1 (Plancharel). There is a well defined unique extension of the Fourier

transform to L2(R). For any f ∈ L2(R), f̂ ∈ L2(R). Moreover,

〈f̂ , ĝ〉 = 2π〈f, g〉,
and thus

||f̂ ||2L2 = 2π||f ||2,
for all f and g in L2(R).

Proof: Start with the left side and use the FIT on f , to write

〈f, g〉 =
1

2π

∫
R

∫
R
eixξ f̂(ξ)g(x)dξdx.

Move the complex conjugate to engulf the eixξ,

=
1

2π

∫
R

∫
R
f̂(ξ)g(x)e−ixξdξdx.

Swap the order of integration and integrate x first:∫
R
f̂(ξ)g(x)e−ixξdx = f̂(ξ)ĝ(ξ).

Put it back in:

〈f, g〉 =
1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ =

1

2π
〈f̂ , ĝ〉.

We may from time to time use the following cute fact as well.

Lemma 2 (Riemann & Lebesgue). Assume f ∈ L1(R). Then,

lim
ξ→±∞

f̂(ξ) = 0.

We shall indeed need to actually prove the next one, because it’s going to be
quite important for the initial value problem for the heat equation.
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1.1. The big bad convolution approximation theorem. This theory item is
Theorem 7.3, regarding approximation of a function by convoluting it with a so-
called “approximate identity.” This theorem and its proof are both rather long.
The proof relies very heavily on knowing the definition of limits and how to work
with those definitions, so if you’re not comfortable with ε and δ style arguments, it
would be advisable to brush up on these.

Theorem 3. Let g ∈ L1(R) such that∫
R
g(x)dx = 1.

Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist
for all points of R. Assume that either f is bounded on R or that g vanishes outside
of a bounded interval. Let, for ε > 0,

gε(x) =
g(x/ε)

ε
.

Then

lim
ε→0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

Proof. We would like to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy = αf(x+) + βf(x−)

which is equivalent to showing that

lim
ε→0

∫
R
f(x− y)gε(y)dy − αf(x+)− βf(x−) = 0.

We now insert the definitions of α and β, so we want to show that

lim
ε→0

∫
R
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy −

∫ ∞
0

f(x−)g(y)dy = 0.

We can prove this if we show that

lim
ε→0

∫
−∞

f(x− y)gε(y)dy −
∫ 0

−∞
f(x+)g(y)dy = 0

and also

lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞

0

f(x−)g(y)dy = 0.

In the textbook, Folland proves that the second of these holds. So, for the sake of
diversity, we prove that the first of these holds. The argument is the same for both,
so proving one of them is sufficient.

Hence, we would like to show that by choosing ε sufficiently small, we can make∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy
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as small as we like. To make this precise, let us assume that “as small as we like”
is quantified by a very small δ > 0. This is part of the whole points of limits. This
quantity, ∫ 0

−∞
f(x− y)gε(y)dy −

∫ 0

−∞
f(x+)g(y)dy

can be made arbitrarily small by choosing ε sufficiently small, but it may never
actually vanish as long as ε > 0. You’ll just need to sit for a while and think about
that, to make sure you’re really comfortable with the concept of limits...

Proceeding with the proof, we smash the two integrals together, writing∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy.

Well, this is a bit inconvenient, because in the first part we have gε, but in the
second part it’s just g. So, we make a small observation,∫ 0

−∞
g(y)dy =

∫ 0

−∞
g(z/ε)

dz

ε
=

∫ 0

−∞
gε(z)dz

Above, we have made the substitution z = εy, so y = z/ε, and dz/ε = dy. The
limits of integration don’t change. By this calculation,∫ 0

−∞
f(x+)g(y)dy =

∫ 0

−∞
f(x+)gε(y)dy.

(Above the integration variable was called z, but what’s in a name? The name of
the integration variable doesn’t matter!). Moreover, note that f(x+) is a constant,
so it’s just sitting there doing nothing. Hence, we have computed that∫ 0

−∞
(f(x− y)gε(y)− f(x+)g(y)) dy =

∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

Remember that y ≤ 0 where we’re integration. Therefore, x− y ≥ x. Moreover, by
definition

lim
y↑0

f(x− y) = f(x+) =⇒ lim
y↑0

f(x− y)− f(x+) = 0.

By definition of limit (if you’re not comfortable with this definition by now, you
really need to get comfortable with it!) there exists y0 < 0 such that for all
y ∈ (y0, 0)

|f(x− y)− f(x+)| < δ̃.

We are using δ̃ for now, to indicate that δ̃ is going to be something in terms of
δ, engineered in such a way that at the end of our argument we get that for ε
sufficiently small, ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣ < δ.

So, to figure out this δ̃, we use our estimate on the part of the integral from y0

to 0, ∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g||.
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Above, we have used the same substitution trick to see that∫
R
|gε(y)|dy =

∫
R
|g(z)|dz = ||g||,

where ||g|| is the L1(R) norm of g. By assumption, g ∈ L1(R), so this L1 norm is
finite. Moreover, because we know that∫

R
g(y)dy = 1,

we know that

||g|| =
∫
R
|g(y)|dy ≥

∣∣∣∣∫
R
g(y)dy

∣∣∣∣ = 1.

Hence, I propose setting

δ̃ =
δ

2||g||
.

Note that we’re not dividing by zero, by the above observation that ||g|| ≥ 1. So,
this is a perfectly decent number. Then, we have the estimate (repeating the above
estimate)∣∣∣∣∫ 0

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
∫ 0

y0

|gε(y)|dy ≤ δ̃
∫
R
|gε(y)|dy = δ̃||g|| = δ

2
.

To complete the proof, we just need to estimate the other part of the integral,
from −∞ to y0. It is important to remember that

y0 < 0.

So, we wish to estimate ∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ .
Here we need to consider the two possible cases given in the statement of the
theorem separately. First, let us assume that f is bounded, which means that there
exists M > 0 such that |f(x)| ≤M holds for all x ∈ R. Hence

|f(x− y)− f(x+)| ≤ |f(x− y)|+ |f(x+)| ≤ 2M.

So, we have the estimate∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy.

We shall do a substitution now, letting z = y/ε. Then, as we have computed before,∫ y0

−∞
|gε(y)|dy =

∫ y0/ε

−∞
|g(z)|dz.

Here the limits of integration do change, because y0 < 0. Specifically y0 6= 0, which
is why the top limit changes. Now, let’s think about what happens as ε→ 0. We’re
integrating between −∞ and y0/ε. We know that y0 < 0. So, when we divide it
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by a really small, but still positive number, like ε, then y0/ε → −∞ as ε → 0.
Moreover, we know that ∫ 0

−∞
|g(y)|dy <∞.

What this really means is that

lim
R→−∞

∫ 0

R

|g(y)|dy =

∫ 0

−∞
|g(y)|dy <∞.

Hence,

lim
R→−∞

∫ 0

−∞
|g(y)|dy −

∫ 0

R

|g(y)|dy = 0.

Of course, we know what happens when we subtract the integral, which shows that

lim
R→−∞

∫ R

−∞
|g(y)|dy = 0.

Since
lim
ε→0

y0/ε = −∞,

this shows that

lim
ε→0

∫ y0/ε

−∞
|g(y)|dy = 0.

Hence, by definition of limit (see, here it comes again), there exists ε0 > 0 such
that for all ε ∈ (0, ε0), ∫ y0/ε

−∞
|g(y)|dy < δ

4(M + 1)
.

Then, combining this with our estimates, above, which we repeat here,∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ ≤ ∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy ≤ 2M

∫ y0

−∞
|gε(y)|dy

< 2M
δ

4(M + 1)
<
δ

2
.

Therefore, we have the estimate that for all ε ∈ (0, ε0),∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

<
δ

2
+
δ

2
= δ.

Finally, we consider the other case in the theorem, which is that g vanishes
outside a bounded interval. We retain the first part of our estimate, that is∫ 0

y0

|f(x− y)− f(x+)||gε(y)|dy < δ

2
.

Next, we again observe that

lim
ε↓0

y0

ε
= −∞.

By assumption, we know that there exists some R > 0 such that

g(x) = 0∀x ∈ R with |x| > R.
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Hence, we may choose ε sufficient small so that

y0

ε
< −R.

Specifically, let

ε0 =
1

−Ry0
> 0.

Then for all ε ∈ (0, ε0) we compute that

y0

ε
< −R.

Hence for all y ∈ (−∞, y0/ε) we have g(y) = 0. Thus, we compute as before using
the substitution z = y/ε,∫ y0

−∞
|f(x− y)− f(x+)||gε(y)|dy =

∫ y0/ε

−∞
|f(x− εz)− f(x+)||g(z)|dz = 0,

because g(z) = 0∀z ∈ (−∞, y0/ε). Thus, we have the total estimate that for all
ε ∈ (0, ε0), ∣∣∣∣∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣
≤
∫ 0

−∞
|gε(y)||f(x−y)−f(x+)|dy ≤

∫ y0

−∞
|f(x−y)−f(x+)||gε(y)|dy+

∫ 0

y0

|f(x−y)−f(x+)||gε(y)|dy

< 0 +
δ

2
≤ δ.

�

As a consequence we can obtain the Fourier inversion theorem.

Theorem 4 (Fourier inversion theorem). Assume that f ∈ L1(R) and is piecewise
continuous on R. Assume that at its points of discontinuity

f(x) =
1

2
(f(x−) + f(x+)) .

Then

f(x) = lim
ε→0

1

2π

∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ.

Moreover, if f̂ ∈ L1(R), then f is continuous and

f(x) =
1

2π

∫
R
eiξxf̂(ξ)dξ.

Finally, if f ∈ L2(R), then the equality

f(x) =
1

2π

∫
R
eiξxf̂(ξ)dξ

holds for almost every x ∈ R.

Proof: The first part of the theorem is an application of the big bad convolution
theorem. Let’s just write out the integral on the right∫

R
eixξe−ε

2ξ2/2f̂(ξ)dξ.
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−R

−R+ ia

R

R+ ia

Figure 1. The contour over which we integral. Call the contour Γ.box

Using the definition of the Fourier transform, this is∫
R

∫
R
eixξe−iyξe−ε

2ξ2/2f(y)dydξ =

∫
R

∫
R
eiξ(x−y)e−ε

2ξ2/2f(y)dydξ.

If we (to the chagrin of the theoretical mathematicians, but again, trust me, it’s
rigorously justifiable!) change the order of integration and do the ξ integral first,

we are computing the Fourier transform of e−ε
2ξ2/2 evaluated at the point y − x.

I will do this calculation once for fun. The idea is to complete the square in the
exponent:

−ε2ξ2/2 + iξ(x− y) = −
(
εξ√

2
− i(x− y)

ε
√

2

)2

+

(
i(x− y)

ε
√

2

)2

.

Therefore ∫
e−ε

2ξ2/2+iξ(x−y)dξ =

∫
e
−
(
εξ√
2
− i(x−y)

ε
√

2

)2
+
(
i(x−y)
ε
√

2

)2

dξ

= e−
(x−y)2

2ε2

∫
e
−
(
εξ√
2
− i(x−y)

ε
√

2

)2

dξ.

Using a teensy bit of complex analysis, we can throw away the imaginary part in
the exponent (to see this, draw a box, look at the two sides, show they go to zero,
function is holomorphic inside the box, hence integral on the Loooooong top and
bottom sides of the box are same, sides of box tend to zero, voilá). Oh wait, I can
actually draw a picture of this (finally, in some joint work I recently learned to use
tikz). So, I claim that

RboxRbox (1.1) lim
R→∞

∫ R

−R
e
−
(
εξ√
2
− i(x−y)

ε
√

2

)2

dξ = lim
R→∞

∫ R

−R
e
−
(
εξ√
2

)2

dξ.

We integrate over the box in Figure
boxbox
1. For the sake of simplicity, assume y > x.

Let

a =
(y − x)

ε2
.

We integrate the function

f(z) = e−
ε2

2 z
2

.

At the bottom of the box, z = ξ ∈ R, and

f(z) = f(ξ) = e−
ε2ξ2

2 .

At the top of the box z = ξ + ia, where

a =
(y − x)

ε2
=⇒ f(z) = f(ξ + ia) = exp

(
−ε

2

2

(
ξ + i

(y − x)

ε2

)2
)

= exp

(
−
(
εξ√

2
− i (x− y)√

2ε

)2
)
.
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Since the function f(z) is super nice and holomorphic,∫
Γ

f(z)dz = 0.

Moreover, the left and right integrals have |<(z)| = R. So, there,

f(±R+ i=z) = exp

(
−ε

2

2
(±R+ i=z)2

)
≤ exp

(
−ε

2R2

2

)
,

since =z ≥ 0. Hence, the integral on the two sides are bounded above by

|a| exp

(
−ε

2R2

2

)
→ 0 as R→∞.

So, as we let R→∞, the integral over the contour remains zero, the integrals over
the sides of the box tend to zero, and we indeed see that (

RboxRbox
1.1) is true.

Thus, we just need to compute ∫
e−ξ

2ε2/2dξ.

We use a substitution, t = ξε/
√

2 so dt = εdξ/
√

2, and∫
e−ξ

2ε2/2dξ =

√
2

ε

∫
e−t

2

dt =

√
2π

ε
.

Thus

F(e−ε
2ξ2/2)(y − x) =

∫
e−ε

2ξ2/2+iξ(x−y)dξ = e−
(x−y)2

2ε2

√
2π

ε
.

So, in summary, we have computed:∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ =

√
2π

ε

∫
e−

(x−y)2

2ε2 f(y)dy =
√

2π

∫
e−

(x−y)2

2ε2

ε
f(y)dy.

To be continued. . .
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