
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.02.14

♥♥♥♥♥ HAPPY VALENTINE’S DAY! ♥♥♥♥♥
Don’t be depressed if you don’t have a “Valentine” today. We’ve at least got

math! Let’s return to where we left off last time...

Theorem 1 (Fourier inversion theorem). Assume that f ∈ L1(R) and is piecewise
continuous on R. Assume that at its points of discontinuity

f(x) =
1

2
(f(x−) + f(x+)) .

Then

f(x) = lim
ε→0

1

2π

∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ.

Moreover, if f̂ ∈ L1(R), then f is continuous and

f(x) =
1

2π

∫
R
eiξxf̂(ξ)dξ.

Finally, if f ∈ L2(R), then the equality

f(x) =
1

2π

∫
R
eiξxf̂(ξ)dξ

holds for almost every x ∈ R.

Proof: (Continued) We computed∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ =

√
2π

ε

∫
e−

(x−y)2

2ε2 f(y)dy =
√

2π

∫
e−

(x−y)2

2ε2

ε
f(y)dy.

Ignoring the constant in front, we recognize∫
e−

(x−y)2

2ε2

ε
f(y)dy = gε ? f(x), g(x) = e−

x2

2 =⇒ gε(x) =
1

ε
e−

x2

2ε2 .

Now, we see that, letting t = x/
√

2 so
√

2dt = dx∫
R
g(x)dx =

∫
R
e−x

2/2dx =

∫
R
e−t

2√
2dt =

√
2π.

1
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Moreover, g is an even function, so∫ 0

−∞
g(x)dx =

√
2π

2
=

∫ ∞
0

g(x)dx.

Hence, the big bad convolution theorem says that

lim
ε→0

gε ? f(x) =

√
2π

2
(f(x−) + f(x+)) .

Therefore when we bring back the constant factor of
√

2π, we get

lim
ε→0

∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ = lim
ε→0

√
2πgε ? f(x) =

2π

2
(f(x−) + f(x+)) .

So, dividing by 2π, we get

lim
ε→0

1

2π

∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ =
1

2
(f(x−) + f(x+)) = f(x).

So that’s how we get the first part, because at points of continuity, f(x) is the
average of its left and right limits, and at points of discontinuity, we assumed it
was defined to equal this average. For the second statement, we look at

lim
ε→0

1

2π

∫
R
eixξe−ε

2ξ2/2f̂(ξ)dξ.

Well, since the integrand is in L1 we can use the dominated convergence theorem
(if we know what the heck that is) to bring the limit into the integral. When we
do that we get

1

2π

∫
R
eixξ f̂(ξ)dξ.

We already saw that this limit converges to f(x). However, now to get the continuity

we use this integral formula for f and the fact that f̂ is in L1 to use the DCT again
(if we know what the heck that is) to say

lim
δ→0

f(x+δ) = lim
δ→0

1

2π

∫
R
eiξ(x+δ)f̂(ξ)dξ =

1

2π

∫
R

lim
δ→0

eiξ(x+δ)f̂(ξ)dξ =
1

2π

∫
R
eiξxf̂(ξ)dξ

= f(x).

Don’t be cross with me for taking the limit into the integral. It is JUSTIFIED
by the DCT (dominated convergence theorem). Just rest assured that if you take
Integration Theory, you will see that indeed, the above switch-a-roo of limits is
rigorously valid.

The last statement for f ∈ L2(R) could be shown using an approximation argu-
ment. If it is too theoretical, just ignore this part. Smooth, compactly supported
(this means they are zero outside of a compact set) functions are dense in L2. So,
we take a sequence of them φn with φn → f in L2 norm. Smooth, compactly sup-
ported functions are Schwarz class, so their Fourier transforms are Schwarz class
(hence in L1. Schwarz class means the function and all its derivatives decay faster
than x−n as |x| → ∞ for any n ∈ N. This is called rapidly decaying). Hence, for
each of the φn, its Fourier transform is in L1 so we got

φn(x) =
1

2π

∫
R
eiξxφ̂n(x)dx.

We have
||φn − f || → 0, n→∞
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because we assumed φn → f in L2 norm. By Plancharel’s theorem, we also have

||φ̂n − f̂ || → 0, n→∞
and therefore also∫

R
|eixξφ̂n(ξ)− eixξ f̂(ξ)|2dξ =

∫
R
|φ̂n(ξ)− f̂(ξ)|2dξ = ||φ̂n − f̂ ||2 → 0, n→∞.

This shows that

|| 1

2π

∫
R
eixξφ̂n(ξ)dξ − 1

2π

∫
R
eixξ f̂(ξ)dξ|| → 0, n→∞.

So, since φn is given by this integral formula we have

φn →
1

2π

∫
R
eixξ f̂(ξ)dξ, n→∞

as elements of L2, and also
φn → f, n→∞

as elements of L2. By the uniqueness of limits in L2,

f(x) =
1

2π

∫
R
eixξ f̂(ξ)dξ, as elements of L2.

This means (by definition of L2 that f(x) is equal to that integral on the right for
almost every x. That’s good enough.

1.1. Applications. Let’s see how to solve the IVP for the heat equation. This is
pretty fun.

1.1.1. IVP for the homogeneous heat equation. We wish to find u to satisfy{
ut(x, t)− uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = v(x) ∈ L2(R)

We hit the PDE with the Fourier transform IN THE x VARIABLE:

ût(ξ, t)− ûxx(ξ, t) = 0.

Now, we use the theorem which gave us the properties of the Fourier transform. It

says that if we take the Fourier transform of a derivative, f̂ ′(ξ) = iξf̂(ξ). Using
this twice,

ûxx(ξ, t) = −ξ2û(ξ, t).

Now, those of you who are picky about switching limits may not like this, but it is
in fact rigorously valid:

∂tû(ξ, t) + ξ2û(ξ, t) = 0.

Hence
∂tû(ξ, t) = −ξ2û(ξ, t).

Well this is a first order homogeneous ODE for u in the t variable. We can solve
it!!! We do that and get

û(ξ, t) = e−ξ
2tc(ξ).

The constant can depend on ξ but not on t. To figure out what the constant should
be, we use the IC:

û(ξ, 0) = v̂(ξ) =⇒ c(ξ) = v̂(ξ).
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Thus, we have found

û(ξ, t) = e−ξ
2tv̂(ξ).

Now, we use another property of the Fourier transform which says

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

So, if we can find a function whose Fourier transform is e−ξ
2t, then we can express

u as a convolution of that function and v. So, we are looking to find

g(x, t) such that ĝ(x, t) = e−ξ
2t.

We can use the inversion formula:

g(x, t) =
1

2π

∫
R
eixξe−ξ

2tdξ.

Now, we can compute this integral much like we did before. We complete the square
in the exponent:

−ξ2t+ ixξ = −
(
ξ
√
t+

ix

2
√
t

)2

− x2

4t
.

Therefore we are computing∫
R

exp

(
−
(
ξ
√
t+

ix

2
√
t

)2

− x2

4t

)
dξ.

By the same contour integral trick, we can just toss out that imaginary stuff. So,
we compute (using a change of variables to y = ξ

√
t so t−1/2dy = dξ)∫

R
e−ξ

2tdξ =
1√
t

∫
R
e−y

2

dy =

√
π√
t
.

Hence, ∫
R

exp

(
−
(
ξ
√
t+

ix

2
√
t

)2

− x2

4t

)
dξ =

√
π√
t
e−

x2

4t .

Recalling the factor of 1/(2π) we have

g(x, t) =
1

2π

√
π√
t
e−

x2

4t =
1

2
√
πt
e−

x2

4t .

Hence the solution is

u(x, t) = g ∗ v(x) =

∫
R

1

2
√
πt
e−(x−y)

2/(4t)v(y)dy.

1.1.2. Computing tricky integrals. There are two things to keep in mind:

f̂(0) =

∫
R
f(x)dx.

So, if you have the integral of a function, check and see what that function’s Fourier
transform is. If the Fourier transform is simple to compute, awesome, you can
evaluate it at 0 and get the value of the integral. For example,∫

R

1

x2 + 9
dx.



FOURIER ANALYSIS & METHODS 5

We see this is # 10 in Folland’s TABLE 2. It is inevitably in BETA somewhere
also... On the right side, we get the Fourier transform (with a = 3) is given by

π

3
e−3|ξ|.

So, this integral is the Fourier transform with ξ = 0, hence the value of the integral
is

π

3
.

That was pretty easy right? For something more complicated, you could have say∫
R
f(x)g(x)dx,

with some icky functions f and g (see extra övning # 9). Now, you can use that
the Fourier transform of a product is

(2π)−1(f̂ ∗ ĝ)(ξ).

Hence, what you have above is∫
R
f(x)g(x)dx =

∫
R
e−i(0)xf(x)g(x)dx = (2π)−1(f̂ ∗ ĝ)(0).

So, if the Fourier transforms of these functions are somewhat better than the func-
tions f and g, then the stuff on the right could be nicely computable and give you
the integral on the left. Try # 9 to see how this works. (If you get stuck, Team
Fourier is here to help! Just ask us!)

As another example, there is extra exercise number 10. It says you know the
Fourier transform of f(t) is 1

|w|3+1 . We’re supposed to compute∫
R
|f ? f ′|2dt.

Yikes! Looks scary eh? Well, let’s stay calm and carry on. We recognize an L2

norm looking thing. By the Plancharel theorem,∫
R
|f ? f ′|2dt =

1

2π

∫
R
|f̂ ? f ′|2dt.

Now we use the theorem on the properties of the Fourier transform which says

f̂ ? f ′(ξ) = f̂(ξ)f̂ ′(ξ).

Now we use that same theorem to say that

f̂ ′(ξ) = iξf̂(ξ).

So, the stuff on the right is

1

2π

∫
R
|f̂(ξ)iξf̂(ξ)|2dξ.

We are given what the Fourier transform is, so we put it in there:

1

2π

∫
R

ξ2

(|ξ|3 + 1)4
dξ.

Now this isn’t so terrible. It’s an even function so this is

1

π

∫
R

ξ2

(ξ3 + 1)4
dξ.
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It just so happens that the derivative of

1

(ξ3 + 1)3
is
−9ξ2

(ξ3 + 1)4
,

so
1

π

∫
R

ξ2

(ξ3 + 1)4
dξ =

−1

9π

1

ξ3 + 1

∣∣∣∣∞
0

=
1

9π
.

So, now you know how to use these techniques to do two practical things: (1) solve
the IVP for the homogeneous heat equation and (2) compute scary integrals. If you
have an inhomogeneous IVP for the heat equation, here are two ways to deal with
that:

(1) If the inhomogeneity is time independent, look for a steady state solution to
solve the inhomogeneous equation. Then, solve the homogeneous equation,
but change your initial data. If f is your steady state solution and v was
your initial data (before f came along), solve the IVP for the homogeneous
heat equation with IC v − f rather than just v.

(2) If the inhomogeneity is time dependent, you can try to solve using the
original method we did, that is by Fourier transforming the whole PDE.

1.2. The Sampling Theorem.

Theorem 2. Let f ∈ L2(R). We take the definition of the Fourier transform of f
to be ∫

R
e−ixξf(x)dx,

and we then assume that there is L > 0 so that f̂(ξ) = 0 ∀ξ ∈ R with |ξ| > L.
Then:

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

Proof: This theorem is all about the interaction between Fourier series and
Fourier coefficients and how to work with both simultaneously. Since the Fourier

transform f̂ has compact support, the following equality holds as elements of
L2([−L,L]),

f̂(x) =

∞∑
−∞

cne
inπx/L, cn =

1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

We use the Fourier inversion theorem (FIT) to write

f(t) =
1

2π

∫
R
eixtf̂(x)dx =

1

2π

∫ L

−L
eixtf̂(x)dx.

On the left we have used the fact that f̂ is supported in the interval [−L,L], thus
the integrand is zero outside of this interval, so we can throw that part of the
integral away.

We next substitute the Fourier expansion of f̂ into this integral,

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

cne
inπx/Ldx.
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Let us take a closer look at the coefficients

cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx =

1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.

In the second equality we have used the fact that f̂(x) = 0 for |x| > L, so by
including that part we don’t change the integral. In the third equality we have
used the FIT!!! So, we now substitute this into our formula above for

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx

This is approaching the form we wish to have in the theorem, but the argument of
the function f has a pesky negative sign. That can be remedied by switching the
order of summation, which does not change the sum, so

f(t) =
1

2L

∫ L

−L
eixt

∞∑
−∞

f
(nπ
L

)
e−inπx/Ldx.

We may also interchange the summation with the integral1

f(t) =
1

2L

∞∑
−∞

f
(nπ
L

)∫ L

−L
ex(it−inπ/L)dx.

We then compute∫ L

−L
ex(it−inπ/L)dx =

eL(it−inπ/L)

i(t− nπ/L)
− e−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt− nπ).

Substituting,

f(t) =

∞∑
−∞

f
(nπ
L

) sin(Lt− nπ)

Lt− nπ
.

Of course my dyslexia has ended up with things being backwards, but it is not a
problem because sine is odd so

sin(Lt− nπ) = − sin(nπ − Lt),
so

sin(Lt− nπ)

Lt− nπ
=
− sin(nπ − Lt)

Lt− nπ
=

sin(nπ − Lt
nπ − Lt

.

1None of this makes sense pointwise; we are working over L2. The key property which allows

interchange of limits, integrals, sums, derivatives, etc is absolute convergence. This is the case

here because elements of L2 have
∫
|f |2 < ∞. That is precisely the type of absolute convergence

required.
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