
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.02.16

Let’s do an example. Say we want to solve an inhomogeneous heat equation on
R. So, we are solving

ut − uxx = G(x, t), u(x, 0) = v(x).

Let’s try the Fourier transform method:

∂tû(ξ, t) + ξ2û(ξ, t) = Ĝ(ξ, t).

This is a first order ODE. If you are a CHEMIST, then you did the special extra
part of the course and actually learned how to solve this ODE in t. Pretty cool.
To see how this works, treat ξ like a constant, and write

f ′(t) + ξ2f(t) = Ĝ(ξ, t).

The method says to first compute

e
∫
ξ2dt = eξ

2t.

Next compute ∫
eξ

2tĜ(ξ, t)dt.

Then, the solution is∫
eξ

2tĜ(ξ, t)dt+ C(ξ)

eξ2t
= e−ξ

2t

∫
eξ

2sĜ(ξ, s)ds+ C(ξ)e−ξ
2t.

Now, if we choose a primitive (anti-derivative) of eξ
2sĜ(ξ, s) which is zero when

t = 0, then we can simply set C(ξ) = v̂(ξ). So, to do this, we use the function

F (ξ, t) :=

∫ t

0

eξ
2sĜ(ξ, s)ds.

By the Fundamental Theorem of Calculus, the t derivative of F is the integrand
evaluated at t. There is too much t. Let me be more precise

∂tF (ξ, t)|t=t0 = eξ
2t0Ĝ(ξ, t0).

1



2 JULIE ROWLETT

That’s what the FTC says. So, our solution as of now looks like

û(ξ, t) = e−ξ
2t

∫ t

0

eξ
2sĜ(ξ, s)ds+ v̂(ξ)e−ξ

2t.

We need to figure out from whence this Fourier transform came (equivalently, invert
the Fourier transform). This is a linear process, so we can deal with each piece
separately and then add them. Well, the second part we did last time. We saw
that the Fourier transform of

1

2
√
πt

∫
R
e−

(x−y)2

4t v(y)dy

is

v̂(ξ)e−ξ
2t.

Similarly, let’s look at the first part. It is

e−ξ
2t

∫ t

0

eξ
2sĜ(ξ, s)ds =

∫ t

0

e−ξ
2(t−s)Ĝ(ξ, s)ds.

By the same calculations, the Fourier transform of

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4t G(y, s)dy = e−ξ
2(t−s)Ĝ(ξ, s).

Yet again playing switch-a-roo with limits1,

F

(∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4t G(y, s)dyds

)
(ξ) =

∫ t

0

e−ξ
2(t−s)Ĝ(ξ, s)ds.

Therefore, our full solution is∫ t

0

1

2
√
π(t− s)

∫
R
e−

(x−y)2

4t G(y, s)dyds+
1

2
√
πt

∫
R
e−

(x−y)2

4t v(y)dy.

1.1. Fourier sine and cosine transform. Let’s start with a motivating example.
We want to solve the heat equation on a half line. Imagine we have a giant rod
which is say insulated at the one end and goes out to infinity at the other. It has
some initial temperature distribution given by a function f(x). So, we are solving

ut − uxx = 0, ux(0, t) = 0, u(x, 0) = f(x), x ∈ [0,∞).

Let’s start with the initial data. It is only defined on a half line. So, to use Fourier
transform techniques let us consider extending it evenly or oddly. Denote these by
fe and fo respectively. When we compute the Fourier transform:

f̂e(ξ) =

∫
R
fe(x)e−ixξdx =

∫
R
fe(x)(cos(xξ)− i sin(xξ))dx = 2

∫ ∞
0

f(x) cos(xξ)dx.

On the other hand

f̂o(ξ) =

∫
R
fo(x)e−ixξdx =

∫
R
fo(x)(cos(xξ)−i sin(xξ))dx = −2i

∫ ∞
0

f(x) sin(xξ)dx.

In this way we arrive at

1Trust me!



FOURIER ANALYSIS & METHODS 3

Definition 1. Let f be in L1 or L2 on (0,∞). The Fourier cosine transform,

Fc(f)(ξ) :=

∫ ∞
0

f(x) cos(ξx)dx.

The Fourier sine transform,

Fs(f)(ξ) :=

∫ ∞
0

f(x) sin(ξx)dx.

Look at

f̂e(ξ) = 2

∫ ∞
0

f(x) cos(xξ)dx = 2Fc(f)(ξ).

Therefore,
1

2
f̂e(ξ) = Fc(f)(ξ) =⇒ f̂e(ξ) = 2Fc(f)(ξ).

Since cosine is even,

f̂e(ξ) = f̂e(−ξ).
The inversion formula (FIT) says that

fe(x) =
1

2π

∫
R
eixξ f̂e(ξ)dξ =

1

π

∫
R
eixξFc(f)(ξ)dξ.

Since Fc(f) is an even function, using the evenness and oddness of cosine and sine,
we see that

fe(x) =
2

π

∫ ∞
0

Fc(f)(ξ) cos(xξ)dξ.

This is the Fourier cosine inversion formula!
Let us repeat this calculation for the odd extension. We compute

f̂o(ξ) =

∫
R
fo(x)e−ixξdx =

∫
R
fo(x)(cos(xξ)−i sin(xξ))dx = −2i

∫ ∞
0

f(x) sin(xξ)dx.

Therefore,

f̂o(ξ) = −2iFs(f)(ξ) =⇒ i

2
f̂o(ξ) = Fs(f)(ξ).

Note that we also see from the oddness of sine that Fs(f)(ξ) is odd. The standard
FIT says that

fo(x) =
1

2π

∫
R
eixξ f̂o(ξ)dξ = − i

π

∫
R
eixξFs(f)(ξ)dξ.

By the evenness of cosine and oddness of sine, this is

−2i

π

∫ ∞
0

i sin(xξ)Fs(f)(ξ)dξ.

So, we see that

fo(x) =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ.

This is the Fourier sine inversion formula!
Let’s return now to our motivating example. Imagine we have solved the prob-

lem, so we have a solution u(x, t) defined on [0,∞)x× [0,∞)t. If we extend evenly,
we would get

ue(x, t) =
2

π

∫ ∞
0

Fc(u)(ξ) cos(xξ)dξ.



4 JULIE ROWLETT

If we extend oddly, we would get

uo(x, t) =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ.

Of course, since these are extensions we are getting our original u function if
x ∈ [0,∞). To see which one we want to use we LOOK AT THE BOUNDARY
CONDITION. We need the derivative with respect to x to vanish at x = 0. So,
throwing convergence concerns to the wind, we differentiate under the integral2

∂xue(x, t) = − 2

π

∫ ∞
0

Fc(u)(ξ)ξ sin(xξ)dξ =⇒ ∂xue(0, t) = 0.

On the other hand

∂xuo(x, t) =
2

π

∫ ∞
0

ξ cos(xξ)Fs(u)(ξ)dξ =⇒ ∂xuo(0, t) =
2

π

∫ ∞
0

ξFs(u)(ξ)dξ =???

The even extension automatically gives us the desired boundary condition whereas
the odd extension leads to something complicated looking, which we have no reason
to know is zero. So, let’s stick with the even extension and see if it’s going to work...

So, let’s proceed like this: take our initial data and extend it evenly to R. Solve
the heat equation using the Fourier transform on R like we did in the previous
lecture. We shall get that the solution is

1

2
√
πt

∫
R
fe(y)e−

(x−y)2

4t dy.

Now, let us use the fact that we extended evenly to write this as

1

2
√
πt

∫ ∞
0

f(y)

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
dy.

Check that this is an even function:

e−
(x−y)2

4t + e−
(x+y)2

4t = e−
(−x−y)2

4t + e−
(−x+y)2

4t .

AWESOME! So, this means that our solution to the heat equation in this way is
EVEN. Therefore, it is the same on the left and right sides. So, we can simply let

u(x, t) = ue(x, t) =
1

2
√
πt

∫ ∞
0

f(y)

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
dy.

1.2. Discrete and fast Fourier transform. We have seen that computing the
Fourier transform is not the easiest thing in the world. The example with the
Gaussian involving all those tricks: completing the square, complex analysis and
contour integral is a nice and easy case. However, in the real world you may come
across functions and not know how to compute the Fourier transform by hand, nor
be able to find it in BETA. It could be lurking in one of our giant handbooks of
calculations (Abramowitz & Stegun, Gradshteyn & Rhizik, to name a few). Or it
could simply never have been computed analytically. In this case you may compute
something called the discrete Fourier transform.

2I know, I am sounding like a certain orange political “leader” when I say trust me, this is
really rigorously justifiable. But trust me, it is!



FOURIER ANALYSIS & METHODS 5

We start with a function, f(t), and think of analyzing f(t) as time analysis,

whereas analyzing f̂(ξ) as frequency analysis. We shall consider a finite dimensional
Hilbert space:

CN =

{
(sn)N−1n=0 , sn ∈ C, 〈(sn), (tn)〉 :=

N−1∑
n=0

sntn

}
.

Now let

ek(n) :=
e2πikn/N√

N
.

Proposition 2. Let

ek := (ek(n))N−1n=0 .

Then

{ek}N−1k=0

are an ONB of CN .

Proof: We simply compute. It is so cute and discrete!

〈ek, ej〉 =
1

N

N−1∑
n=0

e2πikn/Ne−2πijn/N =
1

N

N−1∑
n=0

e2πi(k−j)n/N .

If j = k the terms are all 1, and so the total is N which divided by N gives 1.
Otherwise, we may without loss of generality assume that k > j (swap names if not
the case). Then we are staring at a geometric series! We know how to sum it

N−1∑
n=0

e2πi(k−j)n/N =
1− e2πi(k−j)N/N

1− e2πi(k−j)/N
= 0.

Here it is super important that k−j is a number between 1 and N−1. We know this
because 0 ≤ j < k ≤ N − 1. Hence when we subtract j from k, we get something
between 1 and N − 1. So we are not dividing by zero!

Now we shall fix T small and N large and look at f(t) just on the interval
[0, (N − 1)T ]. Let

f(n) := f(tn) := f(nT ), tn = nT.

Basically, we’re going to identify f with an element of CN , namely

(f(n))N−1n=0 .

Definition 3. The discrete Fourier transform is for

wk :=
2πk

NT

defined to be

Fk = F (wk) := 〈(f(n)), ek〉 =

N−1∑
n=0

f(tn)e−2πikn/N√
N

.

This can also be written as
N−1∑
n=0

f(tn)e−iwktn

√
N

.



6 JULIE ROWLETT

Proposition 4. We have the inversion formula

f(tn) =

N−1∑
k=0

F (wk)en(k) = 〈(Fk), en〉.

Proof: We simply compute this stuff. By definition

〈(Fk), en〉 =

N−1∑
k=0

F (wk)en(k),

because taking two conjugates gives us back the original guy. Now, we insert the
definition of F (wk) which gives us another sum, so we use a different index there.
Hence we have

N−1∑
k=0

N−1∑
m=0

f(tm)e−iwktm

√
N

e2πikn/N√
N

=
1

N

∑∑
f(tm)e−2πikm/Ne2πikn/N

=
1

N

∑∑
f(tm)e2πik(n−m)/N =

1

N

N−1∑
m=0

f(tm)

N−1∑
k=0

e2πik(n−m)/N

=

N−1∑
m=0

f(tm)

N−1∑
k=0

e−2πikm/N√
N

e−2πikn/N√
N

=

N−1∑
m=0

f(tm)〈em, en〉.

By the proposition we just proved before,

〈em, en〉 = δn,m =

{
0 n 6= m

1 n = m.

So, the only term which survives is when m = n, and so we get

f(tn).

Now, we can see this as a sort of matrix multiplication. To compute the full
frequency Fourier transform vector, we should compute

F (w0)
F (w1)
. . .

F (wN−1)

 .
This is given by the product of the matrix[

ē0 ē1 . . . ēN−1
]

whose columns are

ēn =



e0

e−2πin/N

e−2πi(2)n/N

. . . e−2πikn/N

. . .
e−2πin(N−1)/N





FOURIER ANALYSIS & METHODS 7

together with the vector 
f(t0)
f(t1)
. . .

f(tN−1)


That is 

F (w0)
F (w1)
. . .

F (wN−1)

 =
[
ē0 ē1 . . . ēN−1

] 
f(t0)
f(t1)
. . .

f(tN−1)


This is a LOT of calculations. We can speed it up by being clever. Many

calculations are repeated in fact. Assume that N = 2X for some giant power X.
The idea is to split up into even and odd terms. We do this:

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
−2πik(2j)/N +

N
2 −1∑
j=0

f(t2j+1)e−2πik(2j+1)/N

 .
We introduce the slightly cumbersome notation:

ekN (n) = e−2πikn/N .

Then,
ekN (2j) = e−2πik(2j)/N = e−2πikj/(N/2) = ekN/2(j).

Now we only need an N
2 ×

N
2 matrix! You see, writing this way,

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
k
N/2(j) + ekN (1)

N
2 −1∑
j=0

f(t2j+1)ekN/2(j)

 .
We can repeat this many times because N is a power of 2. We just keep chopping
in half. If we do this as many times as possible, we will need to do on the order of

N

2
log2(N)

computations. This is in comparison to the original method which had an N ×N
matrix and was thus on the order of N2 computations. For example, if N = 210,
then comparing N2 = 220 to N

2 log2N = 29 ∗ 10, we see that

210 ∗ 5

220
=

x

100
=⇒ 100 ∗ 210 ∗ 5 = 220x =⇒ 22 ∗ 53 ∗ 2102−20 = x,

so
532−8 = x ≈ 0.488.

This means the amount of work we are doing by using the FFT is less than 0.5%
of the work done using the standard DFT. In other words, we save over 99.5% by
doing the FFT. That’s why it’s called FAST.


	1. 2018.02.16
	1.1. Fourier sine and cosine transform
	1.2. Discrete and fast Fourier transform


