
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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We shall now enter Chapter 8, and learn about another useful transform, known
as the Laplace transform.

Definition 1. Assume that

lap0lap0 (1.1) f(t) = 0 ∀t < 0,

and that there exists a,C > 0 such that

lapalapa (1.2) |f(t)| ≤ Ceat ∀t ≥ 0.

Then for we define for z ∈ C with <(z) > a the Laplace transform of f at the point
z to be

Lf(z) = f̂(−iz) =

∫ ∞
0

f(t)e−ztdt.

Let us verify that this is well defined. To do so, we estimate

|Lf(z)| ≤
∫ ∞
0

|f(t)e−zt|dt ≤
∫ ∞
0

Ceat|e−zt|dt =

∫ ∞
0

eate−<(z)tdt

=
et(a−<(z))

a−<(z)

∣∣∣∣∞
0

=
1

<(z)− a
.

Above we have used the fact that∣∣ecomplex number
∣∣ = ereal part.

Due to this beautiful convergence, Lf(z) is holomorphic in the half plane <(z) > a.
This is because we may differentiate under the integral sign (play limit switcharoo)
due to the absolute convergence of the integral (it’s that DCT again). Now, the
assumption that f(t) = 0 for all negative t is not actually necessary, we could just
make it so. For this purpose we define the heavyside function, commonly denoted
by

Θ(t) :=

{
1 t ≥ 0

0 t < 0
.

If we have some f defined on R which satisfies (
lapalapa
1.2) but is not (

lap0lap0
1.1), we can apply

the Laplace transform to Θf . Another thing which can happen is that we have a
1
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function which is only defined on [0,∞). In that case, we can just extend it to be
identically zero on (−∞, 0).

Let’s familiarize ourselves with the Laplace transform by demonstrating some of
its fundamental properties.

Proposition 2 (Properties of L). Assume f and g satisfy (
lapalapa
1.2) and (

lap0lap0
1.1), then

(1) Lf(x+ iy)→ 0 as |y| → ∞ for all x > a.
(2) Lf(x+ iy)→ 0 as x→∞ for all y.
(3) L(Θ(t− a)f(t− a))(z) = e−azLf(z).
(4) L(ectf(t))(z) = Lf(z − c).
(5) L(f(at)) = a−1Lf(a−1z).
(6) *** If f is continuous and piecewise C1 on [0,∞), and f ′ satisfies (

lapalapa
1.2)

and (
lap0lap0
1.1), then

L(f ′)(z) = zLf(z)− f(0).

(7) L(
∫ t

0
f(s)ds)(z) = z−1Lf(z).

(8) L(tf(t))(z) = −(Lf)′(z).
(9) L(f ∗ g)(z) = Lf(z)Lg(z).

Proof: There’s a bunch of stars next to #6 because it’s the reason the Laplace
transform is useful for solving PDEs and ODEs. It’s quite similar to how the
Fourier transform takes in derivatives and spits out multiplication. Intuitively, this
fact about L should jive with the similar fact about F because well, the Laplace
transform is just the Fourier transform taken at a complex point.

The first statement

Lf(z) =

∫ ∞
0

e−(x+iy)tf(t)dt =

∫ ∞
0

e−xtf(t)e−iytdt = ĝ(y),

for the function
g(t) = e−xtf(t).

The Riemann-Lebesgue lemma says that ĝ(y) → 0 when |y| → ∞. The second
statement is more satisfying because we just compute and estimate directly. We
did this estimate above already, where we got

|Lf(z)| ≤ 1

<(z)− a
→∞ when <(z) = x→∞.

The third one is also a direct computation:

L(Θ(t− a)f(t− a))(z) =

∫ ∞
0

Θ(t− a)f(t− a)e−ztdt =

∫ ∞
−a

Θ(s)f(s)e−z(s+a)ds.

Above we did the substitution s = t − a so ds = dt. Since f and the Heavyside
function are zero for negative s, and the Heavyside function is 1 for positive s, this
is

e−za
∫ ∞
0

f(s)e−zsds = e−zaLf(z).

Similarly, we directly compute

L(ectf)(z) =

∫ ∞
0

ecte−ztf(t)dt =

∫ ∞
0

e−(z−c)tf(t)dt = Lf(z − c).

Again no surprise, we compute

L(f(at))(z) =

∫ ∞
0

e−ztf(at)dt =

∫ ∞
0

e−zs/af(s)
ds

a
= a−1Lf(z/a).
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Here we used the substitution s = at so a−1ds = dt. Now we are finally getting to
the important one:

L(f ′)(z) =

∫ ∞
0

e−ztf ′(t)dt = e−ztf(t)
∣∣∞
0

+

∫ ∞
0

ze−ztf(t)dt.

We have used integration by parts above. By (
lapalapa
1.2) and since <(z) > a, the limit as

t→∞ is zero, and so we get

L(f ′)(z) = −f(0) + zLf(z).

Awesome. Next we define

F (t) =

∫ t

0

f(s)ds.

Then, we use the preceding fact:

L(F ′)(z) = zLF (z)− F (0) = zLF (z).

Since F ′ = f we get

z−1L(f)(z) = L(

∫ t

0

f(s)ds)(z).

Next, we compute:

L(tf(t))(z) =

∫ ∞
0

te−ztf(t)dt =

∫ ∞
0

d

dz

(
−e−zt

)
f(t)dt

=
d

dz

(
−
∫ ∞
0

e−ztf(t)dt

)
= −(Lf)′(z).

Yes, we have used the absolute convergence of the integral to swap limits. It’s legit
yo. Finally,

L(f ∗ g)(z) = F(f ∗ g)(−iz) = f̂(−iz)ĝ(−iz) = Lf(z)Lg(z).

We may also use the notation

f̃(z) = Lf(z).

1.1. Applications to solving PDEs and ODEs. We see that

L(f ′)(z) = zLf(z)− f(0).

Let’s do it again:

L(f ′′)(z) = zL(f ′)(z)−f ′(0) = z (zLf(z)− f(0))−f ′(0) = z2Lf(z)−zf(0)−f ′(0).

In general:

Proposition 3. Assume that everything is defined, then

L(f (k))(z) = zkLf(z)−
k∑

j=1

f (k−j)(0)zj−1.
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Proof: Well clearly we should do a proof by induction! Check the base case
first:

L(f ′)(z) = zLf(z)− f(0).

Here k = 1 and the sum has only one term with j = k = 1. It works. Now we
assume the above formula holds and we show it for k + 1. We compute

L(f (k+1))(z) = L((f (k))′)(z) = zL(f (k))(z)− f (k)(0).

By induction this is

z

zkLf(z)−
k∑

j=1

f (k−j)(0)zj−1

− f (k)(0).

This is

zk+1Lf(z)−
k∑

j=1

f (k−j)(0)zj − f (k)(0).

Let us change our sum: let j + 1 = l. Then our sum is

k+1∑
l=2

fk−(l−1)(0)zl−1 =

k+1∑
l=2

f (k+1−l)(0)zl−1.

Observe that

f (k)(0) = fk+1−1(0)z1−1.

Hence

−
k∑

j=1

f (k−j)(0)zj − f (k)(0) = −
k+1∑
l=1

f (k+1−l)(0)zl−1.

So, we have computed

L(f (k+1))(z) = zk+1Lf(z)−
k+1∑
l=1

f (k+1−l)(0)zl−1.

That is the formula for k + 1, which is what we needed to obtain.

For this reason one can use L to solve linear constant coefficient ODEs which
can be non-homogeneous! Let us see how this works...

1.2. Solving ODEs. A linear, constant coefficient ODE of order n looks like:
n∑

k=0

cku
(k)(t) = f(t).

In order for the solution to be unique, there must be specified initial conditions on
u, that is

u(0), u′(0), . . . u(n−1)(0).

We are not requiring f(t) to be the zero function, so the ODE could be inhomoge-
neous. Notoriously difficult to solve right? NOT ANYMORE! We hit both sides of
the ODE with L:

n∑
k=0

ckL(u(k))(z) = f̃(z).
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Let’s write out the left side using our proposition. First we have

c0ũ(z).

Then we have

c1 (zũ(z)− u(0)) .

In general we have

ck

zkũ(z)−
k∑

j=1

u(k−j)(0)zj−1

 .

So, if we collect all the terms with ũ(z), we get

(c0 + c1z + c2z
2 + . . .+ cnz

n)ũ(z) = P (z)ũ(z),

P (z) =
n∑

k=0

ckz
k.

Now let’s collect all the rest:

−
n∑

k=1

ck

k∑
j=1

u(k−j)(0)zj−1 = Q(z).

This is just a polynomial also. So our ODE has been LAPLACE-TRANSFORMED
into

P (z)ũ(z) +Q(z) = f̃(z).

We can solve this for ũ(z):

ũ(z) =
f̃(z)−Q(z)

P (z)
.

Hence to get our solution u(t) we just need to invert the Laplace transform of the
right side, that is our solution will be

u(t) = L−1

(
f̃(z)−Q(z)

P (z)

)
.

1.3. Solving PDEs. We look at a general equation known as the telegraph equa-
tion,

uxx = αutt + βut + γu.

This is homogeneous, and generalizes both the heat equation (α = γ = 0, and
β = 1) as well as the wave equation (β = γ = 0, and α = 1). Apparently it
corresponds to an electromagnetic signal on a cable. I’ll just trust Folland when he
says that. Let’s consider this problem on a half line, with the conditions

u(0, t) = f(t), u(x, 0) = ut(x, 0) = 0.

YIKES! Our boundary condition at x = 0 is a function of t. We haven’t see that
before! We hit the whole PDE with the Laplace transform in the t variable. This
gives

ũxx(x, z) = αL(utt)(x, z) + βL(ut)(x, z) + γũ(x, z).

Next, we use the lovely conditions that u(x, 0) = ut(x, 0) = 0, together with our
proposition, so we have

ũxx(x, z) = αz2ũ(x, z) + βzũ(x, z) + γũ(x, z).
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This is simply
ũxx(x, z) =

(
αz2 + βz + γ

)
ũ(x, z).

It’s a second order, linear, constant coefficient, homogeneous ODE for the x vari-
able. Let

q =
√
αz2 + βz + γ.

Our solution to the ODE is of the form

ũ(x, z) = a(z)eqx + b(z)e−qx.

We have that lovely BC at x = 0: u(0, t) = f(t). Hence,

ũ(0, z) = f̃(z) =⇒ a(z) + b(z) = f̃(z).

Note that here we are extending f to (−∞, 0) to be identically equal to zero so that
we may Laplace transform it. Also, we presume that f satisfies (

lapalapa
1.2). Assume that

<(q) > 0. (If this weren’t the case, just swap q and −q). To be able to invert the
Laplace transform and get the solution to our PDE, we will not want ũ(x, z)→∞
when x→∞. Hence, we throw out the eqx solution and just use

ũ(x, z) = b(z)e−qx.

Therefore, b(z) = f̃(z). So, our Laplace-transformed solution is

ũ(x, z) = f̃(z)e−qx.

By the properties of the Laplace transform, if we can find g(x, t) such that

g̃(x, z) = e−qx,

then the solution to this PDE will be

solnsoln (1.3) u(x, t) = f ∗ g(x, t) =

∫
R
f(t− s)g(x, s)ds =

∫ t

0

f(t− s)g(x, s)ds.

This is because f is zero for negative times.
As a particular example of this, let’s consider the heat equation. Then, we have

α = γ = 0, and β = 1, so
q =
√
z.

So, our Laplace-transformed solution looks like

f̃(z)e−
√
zx.

Since the Laplace transform turns convolutions into multiplication, we would like
to find g(x, t) so that

g̃(x, z) = e−
√
zx.

Then, the solution will be given as in (
solnsoln
1.3).

To find this, we need to invert the Laplace transform. How do we do this? STAY
TUNED! If the suspense is too much, I think this is super cute and may provide
some comic relief...

https://www.youtube.com/watch?v=gt6CLLn539o

https://www.youtube.com/watch?v=gt6CLLn539o
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