
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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Let us recall that

Lf(z) =

∫ ∞
0

e−ztf(t)dt =

∫ ∞
0

e−<(z)te−i=(z)tf(t)dt.

For this to be well defined we assume that f satisfies:

lap0lap0 (1.1) f(t) = 0 ∀t < 0,

and that there exists a,C > 0 such that

lapalapa (1.2) |f(t)| ≤ Ceat ∀t ≥ 0.

We begin with one more property of the Laplace transform.

Proposition 1. If t−1f(t) satisfies (
lap0lap0
1.1) and (

lapalapa
1.2), then

L(t−1f(t))(z) =

∫ ∞
z

Lf(w)dw.

The integral is any contour in the w-plane which starts at z along which =w stays
bounded and <w →∞.

Proof: Note that by (
lapalapa
1.2), if t−1f(t) satisfies this, then at the point t = 0

apparently the function f vanishes, so that the function t−1f(t) is well defined. So,
don’t panic about this point!!! We next define the holomorphic function

F (z) =

∫ ∞
z

f̃(w)dw.

Since f̃(w) → 0 when <(w) → ∞ and =(w) stays bounded, the fundamental
theorem of calculus says that

F ′(z) = −f̃(z).

On the other hand,

d

dz

∫ ∞
0

t−1f(t)e−ztdt =

∫ ∞
0

−f(t)e−ztdt = −f̃(z).
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Hence,

F (z) =

∫ ∞
0

t−1f(t)e−ztdt+ c,

for some constant c. Since

lim
<z→∞

F (z) = 0 = lim
<(z)→∞

∫ ∞
0

t−1f(t)e−ztdt =⇒ c = 0.

1.1. Inverting the Laplace transform. We know that the Laplace transform is
closely related to the Fourier transform. Let’s write it down

f̃(z) =

∫ ∞
0

f(t)e−ztdt =

∫ ∞
0

f(t)e−<(z)t−i=(z)tdt.

For this reason, let’s define

g(t) = e−<(z)tf(t),

so we also have

f(t) = e<(z)tg(t).

Then

Lf(z) = ĝ(=(z)) =

∫
R
f(t)e−<(z)e−i=(z)tdt,

because f(t) = 0 for all t < 0. Let’s apply the FIT to the function, g:

g(t) =
1

2π

∫
R
ĝ(ξ)eiξtdξ =

1

2π

∫
R
Lf(<(z) + iξ)eiξtdξ.

To make this look less imposing, let us write y = ξ. So, we have

g(t) =
1

2π

∫ ∞
−∞

f̃(<(z) + iy)eiytdy.

Since f(t) = e<(z)tg(t), we have

f(t) = e<(z)t 1

2π

∫ ∞
−∞

f̃(<(z) + iy)eiytdy =
1

2π

∫ ∞
−∞

f̃(<(z) + iy)e<(z)t+iytdy.

We would like to understand this as a complex integral. If we parametrize the
vertical path for w ∈ C with <(w) = <(z) by w = <(z) + iy, then dw = idy. We
do not have an i. Hence, what we are computing is

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw,

where Γz is the upward vertical path along the line <(w) = <(z). This is the LIT:
Laplace inversion formula:

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw.

By definition of the Laplace transform, this should hold for z ∈ C with <(z) > a
where a comes from (

lapalapa
1.2). If we naively look at this equation, we see that the left

side is independent of z. So, the right side ought to be as well.
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b− iR

b+ iR c+ iR

c− iR
Figure 1. The contour over which we integral. Call the contour ΓR. As one can
see, we assume that c > b.box

Theorem 2 (LIT). Let F (z) be analytic in <(z) > a. For b > a, R > 0, and
t ∈ R, let

fR,b(t) =
1

2πi

∫ b+iR

b−iR
F (z)eztdz.

Assume that for some α > 1/2 and C > 0 we have

|F (z)| ≤ C(1 + |z|)−α, ∀z ∈ C with <(z) > a,

and assume that for some b > a, fR,b(t) converges pointwise as R → ∞ to some
f(t) which satisfies (

lap0lap0
1.1) and (

lapalapa
1.2). Then

lim
R→∞

fR,b(t) = f(t) ∀b > a,

and

F (z) = Lf(z).

Proof: Let us draw and define a contour, with our amazing tikz skillz yo.
By assumption the function F is analytic inside the box, and ezt is an entire

function. Therefore ∫
ΓR

F (z)eztdz = 0.
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So, we wish to show that the limit as R → ∞ of the top and bottom integrals is
zero. To obtain this, we either wave our hands like Folland or actually estimate:∫ c±iR

b±iR
|F (z)||ezt|dz ≤ |c− b|ect max

b≤x≤c

C

(1 + |x± iR|)α
.

Above we used the fact that between b ± iR and c ± iR, |ezt| ≤ ect together with
the estimate assumed on F . Next, we note that

|x± iR| =
√
x2 +R2 ≥ R.

Therefore we estimate from above by

|c− b|ect C

(1 +R)α
→ 0 as R→∞.

Therefore, if for some b > a,

lim
R→∞

fR,b(t) = f(t),

this means that

lim
R→∞

∫ b+iR

b−iR
F (z)eztdz −

∫ c+iR

c−iR
F (z)eztdz = 0.

To see this, observe that ∫
ΓR

F (z)eztdz = 0 ∀R.

Moreover, the top and bottom integrals go to zero as R → ∞. Hence the sum of
the left and right integrals also tends to zero as R→∞. So,

lim
R→∞

∫ b+iR

b−iR
F (z)eztdz = lim

R→∞

∫ c+iR

c−iR
F (z)eztdz =⇒ lim

R→∞
fR,b(t) = f(t) = lim

R→∞
fR,c(t).

Now, let us parametrize the complex integral. We use γ(s) = b+ is so γ̇(s) = ids.
Hence∫ b+iR

b−iR
F (z)eztdz =

∫ R

−R
F (b+ is)e(b+is)tids = iebt

∫ R

−R
F (b+ is)eistds.

Moreover, we have assumed that

lim
R→∞

fR,b(t) = lim
R→∞

iebt

2πi

∫ R

−R
F (b+ is)eistds = f(t)

so

lim
R→∞

∫ R

−R
F (b+ is)eistds = 2πe−btf(t).

Let us define here

gR,b(s) =

{
F (b+ is) |s| ≤ R
0 |s| > R

.

Then ∫ R

−R
F (b+ is)eistds =

∫
R
gR,b(s)e

istds = ĝR,b(−t).

Moreover,

lim
R→∞

̂gR,b(−t) = 2πe−btf(t).
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Similarly

lim
R→∞

ĝR,b(t) = 2πebtf(−t).

On the other hand,

lim
R→∞

gR,b(s) = F (b+ is).

By the FIT,

F (b+ it) =
1

2π

∫
R

2πebsf(−s)eitsds.

It is more natural to do a change of variables, letting σ = −s, so dσ = −ds, and
we get

F (b+ it) =

∫ σ=−∞

σ=∞
e−bσf(σ)e−itσ(−dσ) =

∫ ∞
−∞

e−σ(b+it)f(σ)dσ

=

∫ ∞
0

e−σ(b+it)f(σ)dσ = Lf(b+ it).

Here we use the fact that f satisfies (
lap0lap0
1.1).

1.2. Computing an inverse Laplace transform. For the case in which our
telegraph equation is the heat equation, we have α = γ = 0, and β = 1, so

q =
√
z.

So, our Laplace-transformed solution looks like

f̃(z)e−
√
zx.

We are therefore looking for g(x, t) so that

g̃(x, z) = e−
√
zx.

Now, we know from solving the heat equation on R that we used

e−x
2/(4t)(4πt)−1/2.

So, maybe because the Laplace and Fourier transforms are closely related, we can
use this. The idea is to compute its Laplace transform. This probably won’t give
us the function we want, but maybe the process will show us how to modify the
function above in order to get g(x, t) whose Laplace transform is g̃(x, z) = e−

√
zx.

We proceed like this because the inverse Laplace transform looks pretty scary to
compute. So, let us call

? =

∫ ∞
0

e−tze−x
2/(4t)(4πt)−1/2dt.

We are computing the Laplace transform of Θ(t)h(x, t) where

h(x, t) = e−x
2/(4t)(4πt)−1/2.

Now, we see that

? =

∫ ∞
0

(4πt)−1/2 exp

(
−(
√
tz)2 −

(
x

2
√
t

)2
)
dt.
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We do the completing the square trick in the exponent:

? =

∫ ∞
0

(4πt)−1/2 exp

(
−
(√

tz − x

2
√
t

)2

− x
√
z

)
dt

= e−x
√
z

∫ ∞
0

1

2
√
πt

exp

(
−
(√

tz − x

2
√
t

)2
)
.

To compute this we need to use a very very clever trick. First, let us clean up our
integral just a little bit to remove that pesky

√
t which is getting divided. We let

s =
√
t. Then

ds =
dt

2
√
t

So,

? =
e−x
√
z

√
π

∫ ∞
0

e−(s
√
z−x/(2s))2ds.

Trick 1 (Cauchy-Schlömilch transform).∫ ∞
0

af((as− b/s)2)ds =

∫ ∞
0

f(y2)dy.

Proof: The proof is so clever. I don’t know if Cauchy and Schlömilch actually
had anything to do with this formula... As a funny aside, Oscar Schlömilch was
elected a foreign member of the Royal Swedish Academy of Sciences in 1862. He
was a German mathematician who lived 13 April 1823 to 7 February 1901. On
the other hand, Cauchy was a French mathematician and physicist who lived 21
August 1789 to 23 May 1857. So, they briefly had some overlap. Did they ever
meet? Why is this named after them? It is a big mystery...

We do a substitution in the integral. Let t = b
as . Then

dt = − b

as2
ds =⇒ −as

2

b
dt = ds.

We see that

t2 =
b2

a2s2
=⇒ a2s2

b2
= t−2 =⇒ as2

b
=

b

at2
.

Next, when s→ 0 and s > 0 we see that t→∞. On the other hand, when s→∞,
t→ 0. We also see that

as =
t

b
, − b

s
= −ta.

So, let us call

♥ =

∫ ∞
0

af((as− b/s)2)ds =

∫ 0

∞
af((t/b− ta)2)

(
− b

at2

)
dt

=

∫ ∞
0

f((t/b− at)2)
b

t2
dt.

Note that

(t/b− at)2 = (−(at− t/b))2 = (at− t/b)2.

Hence we have computed

♥ =

∫ ∞
0

f((at− t/b)2)
b

t2
dt.
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Therefore

2♥ =

∫ ∞
0

af((as− b/s)2)ds+

∫ ∞
0

f((at− t/b)2)
b

t2
dt

= a

∫ ∞
0

f((as− b/s)2)ds+ b

∫ ∞
0

f((as− b/s)2)
ds

s2
.

As a consequence,

♥ =
1

2

∫ ∞
0

f((as− b/s)2)

(
a+

b

s2

)
ds.

Now we let

y = as− b

s
=⇒ dy = a+

b

s2
.

We note that when s → 0, y → −∞, and on the flip side, when s → ∞, y → ∞.
Therefore

♥ =
1

2

∫ ∞
−∞

f(y2)dy =

∫ ∞
0

f(y2)dy,

since f(y2) is an even function.

We will use this transform with

a =
√
z, b =

x

2
, f(s) = e−s

2

.

Then, it says that∫ ∞
0

√
z exp(−(as− b/s)2)ds =

∫ ∞
0

√
z exp

(
−
(
s
√
z − x

2s

)2
)
ds

=

∫ ∞
0

e−y
2

dy =

√
π

2
.

Now we were computing

? =
e−x
√
z

√
π

∫ ∞
0

e−(s
√
z−x/(2s))2ds =

e−x
√
z

√
πz

∫ ∞
0

√
ze−(s

√
z−x/(2s))2ds

=
e−x
√
z

2
√
z
.

So, we have computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

We are off by the denominator. However, let us consider∫ ∞
z

e−x
√
w

2
√
w
dw = −e

−x
√
w

x

∣∣∣∣∣
∞

w=z

=
e−x
√
z

x
.

The property we proved today says

L(t−1f(t))(z) =

∫ ∞
z

f̃(w)dw.

So,

L(t−1Θ(t)h(x, t))(z) =

∫ ∞
z

e−x
√
w

2
√
w
dw =

e−x
√
z

x
.
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because we computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

We can simply multiply both sides by x to get

L(t−1xΘ(t)h(x, t))(z) = e−x
√
z

as desired. Therefore going back to our problem, the solution

u(x, t) = (f(s) ∗ (s−1xΘ(s)h(x, s))(t) =

∫
R
f(t− s)g(x, s)ds

=

∫ t

0

f(t− s)s−1xe−s
2/(4s)(4πs)−1/2ds.

This is because f is zero for negative times. Here, the function g was the function
whose Laplace transform gives us e−x

√
z. We can re-write things a little prettier:

u(x, t) =

∫ t

0

f(t− s)e
−x2/(4s)x

s
√

4πs
ds.

Remark 1. One of the things I love about this class is that you begin to approach
actual research mathematics. I think that must be exciting for you, because calculus
(envariabelanalys) is like 300 years old. Cauchy’s complex analysis is also a few
hundred years old. That’s not very close to actual current year 2018 math! Here is
an example of how the Cauchy-Schlömilch transform is super awesome (and look,
this paper is only 8 years old which is super young by research terms):

https://arxiv.org/abs/1004.2445

https://arxiv.org/abs/1004.2445
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