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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.02.23

We are on the home stretch! So far, the geometric settings we can handle are:

(1) finite intervals and rectangles, using Fourier series and SLP techniques;
(2) the entire real line, using Fourier transform;
(3) with nice boundary conditions, a half line using Fourier sine/cosine trans-

form;
(4) with a time-dependent boundary condition, a half line using Laplace trans-

form.

1.1. Magical Bessel functions. We shall now expand the techniques which worked
on finite intervals and rectangles to other geometries. The idea is that the geometry
is rectangular if we change coordinates. For example, let’s look at a circular sector
of radius ρ and opening angle α. In the eyes of polar coordinates, this is a rectangle,
[0, ρ]× [0, α]. That is, this set in R2 is in polar coordinates

{(r, θ) ∈ R2 : 0 ≤ r ≤ ρ, and 0 ≤ θ ≤ α}.

This is much the same as how we describe a rectangle using rectangular coordinates,
(x, y). To solve both the heat equation and the wave equation in a circular sector,
we can use the same SLP and Fourier series style techniques we used on rectangles.
The heat equation (homogeneous) demands:

∂tu+ ∆u = 0, ∆ = −∂xx − ∂yy.

The homogeneous wave equation demands:

utt + ∆u = 0.

It’s the same Laplace operator, ∆, in both places. If we have neat and tidy (self-
adjoint) boundary conditions, we can use separation of variables. Writing our
function as T (t)S(x, y), in both cases we need to solve an equation of the form

∆S = λS.

After we solve this, we can then determine T . So, we’re going to try to do this
but in the geometric setting of a circular sector. Finally, you get some interesting
geometry!!
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Figure 1. A circular sector of opening angle α and radius ρ.

Let’s assume that we have the Dirichlet boundary condition on the boundary
of the circular sector. So, we are looking for a function S which is zero on the
boundary. To formulate this in terms of the rectangular coordinates, we would
need to define the boundary of the circular sector using rectangular coordinates. If
we do this:

x2 + y2 = r2, with arctan(y/x) ∈ [0, α] is the curved part of the boundary,

and

x2 + y2 ≤ r2, with arctan(y/x) = 0 or α are the straight edges.

Defining the boundary this way is SUPER COMPLICATED. AUUUUGGGGGH!
Now, on the other hands, if we use polar coordinates, the boundary is super cute:

r = ρ, θ = 0, θ = α.

So, it makes a lot more sense to use these coordinates. To proceed, we need to
write the operator using polar coordinates also! I leave it as a fun exercise involving
the chain rule to prove that

∆ = −∂rr − r−1∂r − r−2∂θθ.

Let us try to solve ∆S = λS in the circular sector using separation of variables.
So, we have

R(r) and Θ(θ).

The first one only depends on the r coordinate, whereas the second one only depends
on the θ coordinate. Now, our PDE is:

−R′′(r)Θ(θ)− r−1R′(r)Θ(θ)− r−2Θ′′(θ)R(r) = λR(r)Θ(θ).

First, we multiply everything by r2, then we divide it all by ΘR to get

−r2R′′ − rR′

R
− Θ′′

Θ
= λ =⇒ −r2R′′ − rR′

R
− λr2 =

Θ′′

Θ
.

Since the two sides depend on different variables, they are both constant. It turns
out that the Θ side is much easier to deal with, so we look at solving it:

Θ′′

Θ
= µ, Θ(0) = Θ(α) = 0.

Do you remember how to solve this? We have done it many times by now. I leave
it as an exercise to show that there are no solutions (other than Θ = 0, which is
not allowed) for µ ≥ 0. Moreover, the (unnormalized) solutions for µ < 0 are

Θm(θ) = sin

(
mπθ

α

)
, µm = −m

2π2

α2
.
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As a consequence, we get the equation for R,

−r2R′′ − rR′

R
− λr2 = µm.

We multiply this equation by R, obtaining

−r2R′′ − rR′ − λr2R = µmR.

This is equivalent to
r2R′′ + rR′ + (λr2 + µm)R = 0.

We make a small clever change of variables. Let

x =
√
λr, f(x) := R(r), r =

x√
λ
.

Then by the chain rule

R′(r) =
√
λf ′(x), R′′(r) = λf ′′(x).

So, the equation becomes(
x2

λ

)
λf ′′(x) +

x√
λ

√
λf ′(x) + (x2 + µm)f(x) = 0.

This simplifies, recalling that µm = −m2π2/α2,

besseleqbesseleq (1.1) x2f ′′(x) + xf ′(x) + (x2 −m2π2/α2)f(x) = 0.

This is the definition of Bessel’s equation of order mπ
α .

1.2. Solving Bessel’s equation. In general, for notational convenience consider
the equation

x2f ′′ + xf ′ + (x2 − ν2)f = 0.

Assume that f has a series expansion (we will later see that this assumption luckily
works out - if it didn’t - we’d just have to keep trying other methods). Then we
write

f(x) =
∑
j≥0

ajx
j+b.

Stick it into the ODE:

x2
∑
j≥0

aj(j+ b)(j+ b− 1)xj+b−2 + x
∑
j≥0

aj(j+ b)xj+b−1 + (x2− ν2)
∑
j≥0

ajx
j+b = 0.

Pull the factors of x inside the sum:∑
j≥0

aj(j + b)(j + b− 1)xj+b +
∑
j≥0

aj(j + b)xj+b +
∑
j≥0

ajx
j+b+2 − ν2ajx

j+b = 0.

Begin with j = 0. To make the sum vanish, it will certainly suffice to make all the
individual terms in the sum vanish. So we would like to have

a0

(
b(b− 1) + b− ν2

)
xb = 0.

This will be true if
a0 = 0 or b2 − ν2 = 0 =⇒ b = ±ν.

Next look at j = 1. We need

a1

(
(1 + b)(1 + b− 1) + (1 + b)− ν2

)
xb+1 = 0.

Let’s simplify what’s in the parentheses, so we need

a1

(
(1 + b)2 − ν2

)
= 0.
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So, here are our options:

(1) Let b = ν, set a1 = 0, and be free to choose a0 OR
(2) Let (1 + b) = ν, set a0 = 0, and be free to choose a1.

If we think about it, the second option is rather like doing the first one for ν − 1
instead of ν. So, the two options are basically equivalent, but the first one is a bit
more simple, so that is what we choose to do. We set b = ν, a1 = 0, and we shall
choose a0 6= 0 later.

What happens with the higher terms? Once j ≥ 2 the term with ajx
j+b+2 gets

involved. Let’s group the terms in the series in a nice way:∑
j≥0

xj+baj
(
(j + b)(j + b− 1) + (j + b)− ν2

)
+ ajx

j+b+2 = 0.

This is ∑
j≥0

xj+baj
(
(j + b)2 − ν2

)
+ ajx

j+b+2 = 0.

We figured out how to make the terms with the powers xb and xb+1 vanish. For
the higher powers, the coefficient of

xj+b+2 is aj+2

(
(j + 2 + b)2 − ν2

)
+ aj .

Therefore, we need

aj+2

(
(j + 2 + b)2 − ν2

)
= −aj =⇒ aj+2 = − aj

(j + 2 + b)2 − ν2)
.

Recalling that we picked b = ν, this means

aj+2 = − aj
(j + 2 + ν)2 − ν2

,

so we are not dividing by zero which is a good thing. Equivalently, for j ≥ 2, we
have

aj = − aj−2

(j + ν)2 − ν2
= − aj−2

j2 + 2νj
= − aj−2

j(j + 2ν)
.

We therefore see that since we picked a1 = 0, all of the odd terms are zero.
On the other hand, for the even terms, we can figure out what these are using
induction. I claim that

a2k =
(−1)ka0

22kk!(1 + ν)(2 + ν) . . . (k + ν)
.

To begin we check the base case which has k = 1:

a2 = − a0

2(2 + 2ν)
= − a0

4(1 + ν)
=

(−1)1a0

22(1)1!(1 + ν)
.

So the formula is correct. We next assume that it holds for k and verify using what
we computed above that it works for k + 1. We have for j = 2k + 2,

a2k+2 = − a2k

(2k + 2)(2k + 2 + 2ν)
.

We insert the expression for a2k by the induction assumption that the formula holds
for k:

a2k+2 = − (−1)ka0

(2k + 2)(2k + 2 + 2ν)22kk!(1 + ν)(2 + ν) . . . (k + ν)
.
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We note that

(2k + 2)(2k + 2 + 2ν) = 4(k + 1)(k + 1 + ν) = 22(k + 1)(k + 1 + ν).

So

a2k+2 = − (−1)ka0

22(k+1)(k + 1)k!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)
.

Finally we note that

(k + 1)k! = (k + 1)!.

So,

a2k+2 = − (−1)ka0

22(k+1)(k + 1)!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)
.

This is the formula for k + 1, so it is indeed correct. Before we proceed, we recall
one of the many special functions,

Γ(s) :=

∫ ∞
0

ts−1e−tdt, s ∈ C, <(s) > 1.

Using integration by parts, we compute

Γ(s) =
ts

s
e−t
∣∣∣∣∞
0

+

∫ ∞
0

ts

s
e−tdt =

1

s
Γ(s+ 1).

Hence we see that

sΓ(s) = Γ(s+ 1).

Moreover, we compute directly that

Γ(1) = 1.

Therefore,

Γ(2) = 1, Γ(3) = 2Γ(2) = 2, Γ(n+ 1) = n!, n ∈ Z.

It is for this reason we define

0! := 1.

Moreover, viewing Γ as an extension of the factorial function to real numbers, we
can compute silly expressions like

π! = Γ(π + 1), e! = Γ(e+ 1), i! = Γ(i+ 1).

It gets better: we can extend Γ to be a meromorphic function on C \ −N. As long
as s ∈ C, s 6∈ −N, we have

Γ(s) =
1

s
Γ(s+ 1).

So, we start with Γ defined for <(s) > 1, but then we can extend to <(s) > 0 by
the above. Rinse and repeat. The only problem when we extend to <(s) > 0 is that
Γ(0) = 1

0Γ(1) = 1
0 uh yeah. There is a simple pole at s = 0. When we repeat the

extension procedure, the pole then appears again at s = −1. It continues along all
the negative integers. However, except for these points, Γ is holomorphic. On the
other hand, it is a bit non-trivial but possible to prove that 1

Γ is an entire function.
I leave that as an exercise for those complex analysis fans ♥

So, motivated by the form of the coefficients, the tradition is to choose

a0 =
1

2νΓ(ν + 1)
.
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Therefore coefficient

a2k =
(−1)k

22k+νk!(1 + ν)(2 + ν) . . . (k + ν)Γ(ν + 1)
=

(−1)k

22k+νk!Γ(k + ν + 1)
.

This is because
(ν + 1)Γ(ν + 1) = Γ(ν + 2).

Next
(ν + 2)Γ(ν + 2) = Γ(ν + 3).

We continue all the way to

(ν + k)Γ(ν + k) = Γ(ν + k + 1).

We have therefore arrived at the definition of the Bessel function of order ν,

Jν(x) :=
∑
k≥0

(−1)k
(
x
2

)2k+ν

k!Γ(k + ν + 1)
.

For the special case ν = n ∈ N, the Bessel function is defined for good reason via

J−n(x) = (−1)nJn(x).

The Weber Bessel function is defined for ν 6∈ N to be

Yν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
.

The second linearly independent solution to Bessel’s equation is then defined for
n ∈ N to be

Yn(x) := lim
ν→n

Yν(x),

and this is well defined. If you are curious about Bessel functions, there are books
by Olver, Watson, and Lebedev to name a few. What is most important about Yn
is that it blows up when x→ 0. That’s okay. Since Jn(x)→ 0 as x→ 0, for n ≥ 1,
this shows that Yn and Jn are certainly linearly independent! Hence they indeed
form a basis of solutions to the Bessel equation.

Let us now return to our original problem. We can solve (
besseleqbesseleq
1.1) with

f(x) = Jmπ/α(x) = Jmπ/α(
√
λr).

Hence we have found a partner function to Θm(θ), that is

Rm(r) = Jmπ/α(
√
λr).

You are probably wondering WHAT IS LAMBDA? This comes from the boundary
condition. We had the boundary condition that

Rm(0) = Rm(ρ) = 0.

So, for this reason we take the positive mπ/α rather than the negative, because
this guarantees that Rm(0) = 0, whereas taking −mπ/α, the Bessel function blows
up at 0. Moreover, we also have the condition

Rm(ρ) = 0.

Well, that means we need

Jmπ/α(ρ
√
λ) = 0.

Therefore √
λρ needs to be a zero of Jmπ/α.
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If you look at the formula for the Bessel function, it looks a lot similar to a sine or
cosine, because

sin(x) =
∑
k≥0

(−1)kx2k+1

(2k + 1)!
, cos(x) =

∑
k≥0

(−1)kx2k

(2k)!
.

We know that these functions oscillate up and down, and the sine has zeros at the
points nπ for n ∈ Z, whereas the cosine has zeros at the points (n+1/2)π for n ∈ Z.
So they go up and down and have these nice zero points dotting along the real line.
One can think of the Bessel functions as the redneck cousins of the sine and cosine.
Sine and cosine stayed in Sweden, but the Bessel functions took a boat to the USA
about a hundred years ago. Although they have grown apart over these years, they
still share many things in common with their Swedish sine and cosine relatives. For
example, they love knäckebröd (especially with peanut butter) and they insist on
everyone taking their shoes off inside the house! The Bessel functions share many
general properties similar to those of the sine and cosine. For example, they have
a discrete set of zeros which look similar to those of sine and cosine. Let

zk(ν) := the kth zero of the Bessel function of order ν.

Then for ν > 0, we have

z0(ν) = 0 < z1(ν) < z2(ν) < . . . ↑ ∞.
So, to satisfy the boundary condition, we need

λ = λk,m =
(zk(mπ/α))

2

ρ2
.

This ensures that

Rm(ρ) = Jmπ/α(
√
λk,mρ) = Jmπ/α(zk(mπ/α)) = 0,

because by definition, zk(mπ/α) is a zero of Jmπ/α.
Next time we will build up the full solution to the IVP for the heat equation

and see how we can similarly solve the wave equation. We will also prove fun facts
about Bessel functions!
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