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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.02.26

We continue into the world of Bessel functions with our motivating example
of solving the heat (and wave) equations on a circular sector with the Dirichlet
boundary condition.

1.1. Bessel functions for Dirichlet BC. We shall not prove this theorem, but
we may wish to use it at times.

Theorem 1. The set of functions

Θm(θ)Jmπ/α

(
zm,kr

ρ

)
, k ≥ 0, m ≥ 1

are an orthogonal basis for L2 on the sector of radius ρ and opening angle α. Above,
zm,k is the kth positive zero of Jmπ/α.

Using the theorem, we may now solve the IVP for both the heat equation as well
as the wave equation on a sector when we have the Dirichlet boundary condition.
We shall have earned ourselves a weekend once we do this. First we consider the
IVP for the heat equation on the sector:

ut + ∆u = 0, inside the sector,

u(r, θ, 0) = v(r, θ) inside the sector

u = 0 on the boundary of the sector, and the same is true for v.

The functions

Sm,k(θ, r) := Θm(θ)Jmπ/α

(
zm,kr

ρ

)
satisfy

∆Sm,k = λm,k =

(
zm,k
ρ

)2

Sm,k,

because that’s how we found them in the first place! Moreover, they are zero on
the boundary of the sector because we constructed them to be so. The partner
function

Tm,k(t)
1
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satisfies

T ′m,k(t)

Tm,k(t)
+

∆Sm,k
Sm,k

= 0 =⇒ T ′m,k(t) = −λm,kTm,k(t).

So, up to constant factors

Tm,k(t) = e−λm,kt.

As before, the constant factors are going to be the Fourier coefficients of our initial
data. The solution is therefore∑

m,k

e−λm,ktv̂m,kSm,k(r, θ).

Since we did not normalize the functions Sm,k the coefficients are

v̂m,k =

∫ ρ
0

∫ α
0
v(r, θ)Sm,k(r, θ)rdrdθ∫ ρ

0

∫ α
0
|Sm,k(r, θ)|2rdrdθ

.

Here we are using that amazing theorem above to know that we can expand v in
terms of the functions Sm,k. In other word, the theorem guarantees that these
functions actually comprise a fully complete basis for the Hilbert space L2 on the
sector.

Finally we similarly solve the IVP for the wave equation on the sector with the
additional initial condition that

ut(r, θ, 0) = 0.

The partner function now satisfies

T ′′m,k(t)

Tm,k(t)
+

∆Sm,k
Sm,k

= 0 =⇒ T ′′m,k(t) = −λm,kTm,k(t).

Therefore,

Tm,k(t) = am,k cos(
√
λm,kt) + bm,k sin(

√
λm,kt).

To determine the coefficients, we use the ICs. The easiest one is demanding the
time derivative to be zero, so we’re going to need all of the sine terms gone. To
help see this, just compute

T ′m,k(0) =
√
λm,kbm,k.

We need this to be zero, but the λ part is not zero. So we need bm,k = 0 for all m
and k. So, our solution is

u(r, θ, t) =
∑
m,k

am,k cos(
√
λm,kt)Sm,k(r, θ),

with (from the IC)

am,k = v̂m,k =

∫ ρ
0

∫ α
0
v(r, θ)Sm,k(r, θ)rdrdθ∫ ρ

0

∫ α
0
|Sm,k(r, θ)|2rdrdθ

.
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1.2. Bessel functions for Neumann boundary condition. This theorem is
another type of “adult spectral theorem.”

Theorem 2. Assume that ν ≥ 0 and ρ > 0. Assume that c ≥ −ν. Let

{zk}k≥1

be the positive zeros of cJν(x) + xJ ′ν(x), and let

ψk(x) = Jν(zkx/ρ).

If c > −ν then {ψk}k≥1 is an orthogonal basis for L2
w on the interval (0, b) for the

weight function w(x) = x. If c > −ν, then {ψk}k≥0 is an orthogonal basis for L2
w

on the interval (0, b) for the weight function w(x) = x, with ψ0(x) = xν .

Let us see how to apply this theorem when we are solving the heat (and wave)
equations with the Neumann boundary condition. We follow the same procedure
as for the heat equation. Let us name the sector

Σ.

ut + ∆u = 0, inside Σ,

u(r, θ, 0) = v(r, θ) inside Σ

the outward pointing normal derivative of u = 0 on the boundary of Σ.

We do the same procedure as before. We arrive at the equation for the Θ part:

Θ′′ = µΘ, Θ′(0) = Θ′(α) = 0.

You can do the exercise to show that the only solutions are for µ < 0, and to satisfy
the boundary conditions, up to constant multiples

Θm(θ) = sin(mπ/α), µm = −m
2π2

α2
, m > 0.

Then, we again arrive at the Bessel equation of order mπ/α for the function R. So,
we get that

Rm(r) = Jνm(
√
λr), νm = mπ/α.

The boundary condition for Rm is that

R′m(ρ) = 0.

So, this means we need √
λJ ′νm(

√
λρ) = 0.

In other words,
√
λ needs to be a solution of the equation

xJ ′νm(ρx) = 0.

If zk is a solution to
xJ ′νm(x) = 0,

then
zkJ

′
νm(zk) = 0 =⇒ zk

ρ
J ′νm(zkρ/ρ) = 0.

So, to satisfy the boundary condition, we need
√
λ =

zk
ρ

=⇒
√
λJ ′νm(

√
λρ) = 0.

Really, zk also depends on m, so that is why we write zm,k to mean the kth positive
solution of the equation

xJ ′νm(x) = 0.
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Our function

Rm,k(r) = Jνm(zm,kr/ρ).

This also shows that

λm,k =
z2
m,k

ρ2
.

Now, we recall the equation for the partner function, T ,

T ′m,k(t) = −λm,kTm,k(t).

So, up to constant factors,

Tm,k(t) = e−λm,kt.

To apply the theorem, we note that

νm = mπ/α > 0∀m ∈ N.

Therefore taking c = 0 in the theorem, c ≥ −νm for all m. The theorem then tells
us that the set

{Rm,k(r)}k≥1 = {Jνm(zm,kr/ρ)}k≥1

is an orthogonal basis for L2(0, ρ) with respect to integrating against rdr. We also
know that the Θm(θ) functions are an orthogonal basis for L2(0, α) with respect to
integrating against dθ. Consequently, the entire collection

Sm,k(r, θ) = Θm(θ)Rm,k(r)

is an orthogonal basis for L2(Σ). This is because integrating on L2(Σ) in polar
coordinates is integrating∫

Σ

v(r, θ)rdrdθ =

∫ ρ

0

∫ α

0

v(r, θ)rdrdθ.

So, the theorem says that we can expand the initial data in a Fourier series with
respect to the orthogonal basis functions Sm,k. We therefore write the solution

u(r, θ, t) =
∑
m,k

v̂m,kTm,k(t)Sm,k(r, θ),

where

v̂m,k =

∫
Σ
v(r, θ)Sm,k(r)rdrdθ

||Sm,k||2

=

∫ r
0

∫ θ
0

sin(mπθ/α)Jmπ/α(zm,kr/ρ)v(r, θ)rdrdθ∫ r
0

∫ θ
0

sin(mπθ/α)2Jmπ/α(zm,kr/ρ)2rdrdθ
.

1.3. Heat and waves in a disk. Here is yet another adult spectral theorem.

Theorem 3. Let zn,k be the positive zeros of J|n|(x). Then

{J|n|(zn,kr/ρ)einθ}n≥0,k≥1

is an orthogonal basis for the disk of radius ρ. Moreover, let wn,k be the non-negative
solutions to

xJ ′|n|(x) = 0.

Then,

{J|n|(wn,kr/ρ)einθ}n,k≥0

is an orthogonal basis for the disk of radius ρ.
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Folland claims to give a proof, but it is bogus. The reason it’s bogus is because it
implicitly relies on Theorem 5.3 which is not proven (he refers to Watson). So rather
than a bogus proof, the term adult spectral theorem reminded me of Adult Swim, a
late night thing on comedy central, and that reminded me of Space Ghost, and this
is one of the funniest episodes https://www.youtube.com/watch?v=tB1ZjriDPd0
It also happens to feature an awesome nordic musician.

So, back to business. Let us use in this example the wave equation on the disk of
radius ρ. Assume we are solving the homogeneous PDE with some initial condition.
The first case corresponds to the Dirichlet boundary condition, whereas the second
case corresponds to the Neumann boundary condition. We are solving

utt(r, θ, t) + ∆u = 0, ut(r, θ, 0) = 0, u(r, θ, 0) = v(r, θ).

1.3.1. DBC. First consider the Dirichlet boundary condition:

u(ρ, θ, t) = 0.

This is because the disk only has boundary at the circular edge (no straight edges
like sectors have). However, because we’re on a disk, the function must be 2π
periodic in the θ variable:

u(ρ, θ + 2π, t) = u(ρ, θ, t).

When we separate variables, we end up with the equation for Θ:

Θ′′ = µΘ, Θ(θ) = Θ(θ + 2π).

You may repeat the calculations which show that the only solutions are for µ < 0
with µ ∈ Z and

Θn(θ) = einθ.

Next we proceed to the R part of the solution. The equation for R turns into the
Bessel equation exactly as before, so we have

Rn(
√
λr) = J|n|(

√
λr).

For the DBC we need

J|n|(
√
λρ) = 0 =⇒

√
λ = zn,k/ρ.

Hence we have the function

Rn,k(r) = J|n|(zn,kr/ρ).

The partner functions in time are

Tn,k(t) = an,k cos(zn,kt/ρ) + bn,k sin(zn,kt/ρ).

The theorem says that the functions

Sn,k(r, θ) = Θn(θ)Rn,k(r) = einθJ|n|(zn,kr/ρ)

are an orthogonal basis for the disk. So, we should be able to find coefficients an,k
and bn,k to solve the problem. Since we want ut to vanish at t = 0, we take bn,k = 0
for all n and k. Then, we have

u(r, θ, t) =
∑
n∈Z

an,k cos(zn,kt/ρ)Sn,k(r, θ).

To satisfy the IC, we take

an,k = v̂n,k =

∫ ρ
0

∫ 2π

0
v(r, θ)Sn,k(r, θ)rdrdθ

||Sn,k||2
.

https://www.youtube.com/watch?v=tB1ZjriDPd0
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By the magical theorem, the functions Sn,k are an orthogonal basis, so indeed we
can expand the initial data, v in terms of this basis.

1.3.2. NBC. For the Neumann boundary condition, everything proceeds in the
same way up to the point where we specify

√
λ. In this case we need

√
λJ ′|n|(

√
λρ) = 0.

If wn,k is a solution to the equation

xJ ′|n|(x) = 0,

then
wn,k
ρ

J ′|n|(wn,k) = 0,

so √
λ = wn,k/ρ =⇒

√
λJ ′|n|(

√
λρ) = 0.

Hence our function

Rn,k(r) = J|n|(wn,kr/ρ).

The partner functions in time are

Tn,k(t) = an,k cos(wn,kt/ρ) + bn,k sin(wn,kt/ρ).

We still have the IC which demands the time derivative vanishes at t = 0 hence all
the sine terms are gone. To satisfy the other IC, we take

an,k = v̂n,k =

∫ ρ
0

∫ 2π

0
v(r, θ)Sn,k(r, θ)rdrdθ

||Sn,k||2
.

By the magical theorem, the functions Sn,k are an orthogonal basis, so indeed we
can expand the initial data, v in terms of this basis.

Having solved these problems on a disk, we can use separation of variables to-
gether with our current set of tools to solve the wave and heat equations on cylinders
in three dimensions!!!

1.4. Fun facts about Bessel functions. To wrap up this Bessel function busi-
ness, we prove some fun facts about them. This is just the tip of the iceberg when
it comes to facts about Bessel functions.

Theorem 4 (Recurrence Formulas). For all x and ν

(x−νJν(x))′ = −x−νJν+1(x)

(xνJν(x))′ = xνJν−1(x)

xJ ′ν(x)− νJν(x) = −xJν+1(x)

xJ ′ν(x) + νJν(x) = xJν−1(x)

xJν−1(x) + xJν+1(x) = 2νJν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)
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Proof: Can you guess what we do? That’s right - use the definition!!!! First,

x−νJν(x) =
∑
n≥0

(−1)n x2n
22n+ν

n!Γ(n+ ν + 1)
.

Take the derivative of the sum termwise. This is totally legitimate because this
series converges locally uniformly in C. So, we compute∑

n≥1

(−1)n2nx
2n−1

22n+ν

n!Γ(n+ ν + 1)
=
∑
m≥0

(−1)m+12(m+ 1) x2m+1

22m+2+ν

(m+ 1)!Γ(m+ 2 + ν)
.

Above we re-indexed the sum by defining n = m+ 1. Next we do some simplifying
around

= −
∑
m≥0

(−1)m x2m+1

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−ν

∑
m≥0

(−1)mx2m+1+ν

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−νJν+1(x).

Next we compute similarly the derivative of xνJν is∑
n≥0

(−1)n(2n+ 2ν)x
2n+2ν−1

22n+ν

n!Γ(n+ ν + 1)
.

We factor out a 2 to get ∑
n≥0

(−1)n(n+ ν)x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν + 1)
.

Note that

Γ(n+ ν + 1) = (n+ ν)Γ(n+ ν) =⇒ (n+ ν)

Γ(n+ ν + 1)
=

1

Γ(n+ ν)
.

So, above we have ∑
n≥0

(−1)n x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν)
= xνJν−1(x).

To do the third one it is basically expanding out the first one:

(x−νJν(x))′ = −νx−ν−1Jν + x−νJ ′ν = −x−νJν+1.

Multiply through by xν+1 to get

−νJν + xJ ′ν = −xJν+1.

We do similarly in the second formula:

νxν−1Jν + xνJ ′ν = xνJν−1.

Multiply by x−ν+1 to get

νJν + xJ ′ν = xJν−1.

Next, to get the fifth formula, subtract the third formula from the fourth. Finally,
to get the sixth formula, add the third formula to the fourth.

We shall prove two lovely facts about the Bessel functions. The following fact is
a theory item!
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1.5. The generating function for the Bessel functions. This is a lovely, follow
your nose and use the definitions type of proof.

Theorem 5. For all x and for all z 6= 0, the Bessel functions, Jn satisfy

∞∑
n=−∞

Jn(x)zn = e
x
2 (z− 1

z ).

Proof. We begin by writing out the familiar Taylor series expansion for the expo-
nential functions

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.

These converge beautifully, absolutely and uniformly for z in compact subsets of
C \ {0}. So, since we presume that z 6= 0, we can multiply these series and fool
around with them to try to make the Bessel functions pop out... Thus, we write

bessel1bessel1 (1.1) exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

.

Here is where the one and only clever idea enters into this proof, but it’s rather
straightforward to come up with it. We would like a sum with n = −∞ to ∞.
So we look around into the above expression on the right, hunting for something
which ranges from −∞ to ∞. The only part which does this is j − k, because each
of j and k range over 0 to ∞. Thus, we keep k as it is, and we let n = j − k.
Then j + k = n + 2k, and j = n + k. However, now, we have j! = (n + k)!, but
this is problematic if n + k < 0. There were no negative factorials in our original
expression! So, to remedy this, we use the equivalent definition via the Gamma
function,

j! = Γ(j + 1), k! = Γ(k + 1).

Moreover, we observe that in (
bessel1bessel1
1.1), j! and k! are for j and k non-negative. We also

observe that
1

Γ(m)
= 0, m ∈ Z, m ≤ 0.

Hence, we can write

exz/2e−x/(2z) =

∞∑
n=−∞

∞∑
k=0

(−1)k
(x

2

)n+2k zn

Γ(n+ k + 1)k!
.

This is because for all the terms with n + k + 1 ≤ 0, which would correspond to
(n+k)! with n+k < 0, those terms ought not to be there, but indeed, the 1

Γ(n+k+1)

causes those terms to vanish!
Now, by definition,

Jn(x) =

∞∑
k=0

(−1)k
(
x
2

)n+2k

k!Γ(k + n+ 1)
.
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Hence, we have indeed see that

exz/2e−x/(2z) =

∞∑
n=−∞

Jn(x)zn.

�

As an application of the theorem, we will determine an integral representation
of the Bessel functions of integer order. We shall do this in the next lecture...
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