
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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1.1. Integral representation of the Bessel functions. Let z = eiθ for θ ∈ R.
Then the theorem on the generating function for the Bessel functions says∑

n∈Z
Jn(x)zn = e

xz
2 −

x
2z .

So, we use the fact that
1

eiθ
= e−iθ,

together with this formula to see that∑
n∈Z

Jn(x)einθ = e
x
2 (e

iθ−e−iθ).

By Euler’s formula,∑
n∈Z

Jn(x)einθ = eix sin θ = cos(x sin θ) + i sin(x sin θ).

Therefore, the left side is the Fourier expansion of the function on the right. OMG!!!
Hence, the Bessel functions are actually Fourier coefficients of this function! So,

Jn(x) =
1

2π

∫ π

−π
eix sin θe−inθdθ =

1

2π

∫ π

−π
cos(x sin θ − nθ) + i sin(x sin θ − nθ)dθ.

Note that

sin(x sin(−θ)− n(−θ)) = sin(−x sin θ − n(−θ)) = − sin(x sin θ − nθ).

So the sine part is odd and integrates to zero. We therefore have

Jn(x) =
1

2π

∫ π

−π
cos(x sin θ − nθ)dθ.

This formula can be super useful. For example, we see that the Bessel functions
have yet another property similar to their straight-laced Swedish ancestors, the sine
and cosine. They satisfy |Jn(θ)| ≤ 1∀x.
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1.2. Solving PDEs and special functions. We have seen how the process of
solving PDEs like the heat and wave equation often leads to a set of functions
which comprise an orthogonal basis for L2 or a weighted L2 space. These basis
functions generally come from separation of variables. When we solve the “space”
part of the PDE, we very often end up solving a type of SLP. The easiest examples
are:

f ′′ = λf, f(a) = 0 = f(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f(b), for f defined on the interval, [a, b].

A more challenging example comes from solving the heat and wave equations on a
circular sector. There, when we did separation of variables, we got the nice type of
SLP above for the angular variable (θ), and we got a more complicated SLP for the
radial variable. Just in case you don’t remember exactly how this worked, we wrote
the Laplace operator in polar coordinates. The µm number comes from solving the
SLP for the Θ(θ) function, and the equation for the function R(r) which depends
on the radial variable, r was

r2R′′ + rR′ + (λr2 + µm)R = 0.

We made a small clever change of variables. Let

x =
√
λr, f(x) := R(r), r =

x√
λ
.

Then by the chain rule

R′(r) =
√
λf ′(x), R′′(r) = λf ′′(x).

So, the equation is(
x2

λ

)
λf ′′(x) +

x√
λ

√
λf ′(x) + (x2 + µm)f(x) = 0.

This simplifies, recalling that µm = −m2π2/α2,

besseleqbesseleq (1.1) x2f ′′(x) + xf ′(x) + (x2 −m2π2/α2)f(x) = 0.

This is the definition of Bessel’s equation of order mπ
α . So, depending on the bound-

ary condition, the function Rm,k(r) is Jmπ/α(
√
λm,kr), where the λm,k ensures the

boundary condition.
In other geometric settings, this same process will lead to other special functions.

In the last part of this course, based on chapter 6 in Folland, we will look at the
French polynomials,

(1) Legendre polynomials
(2) Hermite polynomials
(3) Laguerre polynomials

1.3. Origin of the French polynomials.

1.3.1. Legendre polynomials. These French polynomials arise from using spherical
coordinates to solve the wave and heat equations on a three-dimensional sphere.

1.3.2. Hermite polynomials. These French polynomials arise from using parabolic
coordinates to solve the wave and heat equations in a parabolic shaped region.
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1.3.3. Laguerre polynomials. These French polynomials arise from the quantum
mechanics of the hydrogem atom.

1.4. Orthogonal polynomials general theory. For the purpose of this course, it
is most important that you learn how to use the orthogonal polynomials. Depending
on how much time we have, we may go into the details of the origins of the French
polynomials, but these details are rather complicated, and we will not be examined.
So, we prioritize that which shall be examined. The following proposition will be
useful.

Proposition 1. Assume that {pn}n∈N is a sequence of polynomials such that pn is
of degree n for each n. Assume that p0 6= 0. Then for each k ∈ N, any polynomial
of degree k is a linear combination of {pj}kj=0.

Proof: The proof is by induction of course! If q0 is a polynomial of degree 0,
then we may simply write

q0 =
q0
p0
p0.

This is okay because p0 is degree zero, so it is a constant, and p0 6= 0, so the
coefficient q0/p0 is also a constant. Assume that we have verified the proposition
for all 0, 1, . . . k. We wish to show that it holds for k+ 1. So, let q be a polynomial
of degree k + 1. This means that

q(x) = axk+1 + l.o.t. l.o.t. means lower order terms

has
a 6= 0.

Moreover, since pk+1 is of degree k + 1 (not of a lower degree), it is of the form

pk+1 = bxk+1 + l.o.t., b 6= 0.

So, let us consider

q(x)− a

b
pk+1(x) = p(x) which is degree k.

By induction, p is a linear combination of p0, . . . , pk. Therefore

q(x) =
a

b
pk+1 +

k∑
j=0

cjpj ,

for some constants {cj}kj=0.

Proposition 2. Let {pk}∞k=0 be a set of polynomials such that each pk is of degree
k, and p0 6= 0. Moreover, assume that they are L2 orthogonal on a finite bounded
interval [a, b]. Then these polynomials comprise an orthogonal basis of L2 on the
interval [a, b].

Proof: Assume that some f ∈ L2 on the interval is orthogonal to all of these
polynomials. Therefore by the preceding proposition, f is orthogonal to all poly-
nomials. To see this, note that if p is a polynomial of degree n, then there exist
numbers c0, . . . , cn such that

p =

n∑
j=0

cjpj =⇒ 〈f, p〉 =

n∑
j=0

cj〈f, pj〉 = 0.
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We shall use the fact that continuous functions are dense in L2. Therefore given
ε > 0, there exists a continuous function, g, such that

||f − g|| < ε

2(||f ||+ 1)
.

Next, we use the Stone-Weierstrass Theorem which says that all continuous func-
tions on bounded intervals can be approximated by polynomials. Therefore, there
exists a polynomial p such that

||g − p|| < ε

2(||f ||+ 1)
.

Finally, we compute

||f ||2 = 〈f, f〉 = 〈f − g + g − p+ p, f〉 = 〈f − g, f〉+ 〈g − p, f〉+ 〈p, f〉

= 〈f − g, f〉+ 〈g − p, f〉.
By the Cauchy-Schwarz inequality,

||f ||2 ≤ ||f − g||||f ||+ ||g − p||||f || < ||f ||ε
2(||f ||+ 1)

+
||f ||ε

2(||f ||+ 1)
< ε.

Since ε > 0 is arbitrary, this shows that ||f || = 0. Hence by the three equiva-
lent conditions to be an orthogonal basis, we have that the polynomials are an
orthogonal basis of L2 on the interval.

1.5. Best approximations. We recall a slight variation of the best approximation
theorem:

Theorem 3. Let {φn}n∈N be an orthonormal set set in a Hilbert space, H. If
f ∈ H,

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and = holds ⇐⇒ cn = 〈f, φn〉 holds ∀n ∈ N. More generally, let {φn}Nn=0 be an
orthogonal, non-zero set in a Hilbert space H. Then,

||f −
N∑
n=0

〈f, φn〉
||φn||2

φn|| ≤ ||f −
N∑
n=0

cnφn||, ∀{cn}Nn=0 ∈ CN+1.

Equality holds if and only if

cn =
〈f, φn〉
||φn||2

, n = 0, . . . , N.

How to prove it? The only difference is the last part, but we can use the proof
of the first part. Define ψn = 0 for n > N . Next define

ψn =
φn
||φn||

, n = 0, . . . , N.

Repeat the argument in the proof of the best approximation theorem using {ψn}n∈N
instead of φn.

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn +
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2
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= ||f−
∑
n∈N

f̂nψn||2+||
∑
n∈N

f̂nψn−
∑
n∈N

cnψn||2+2<〈f−
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn−
∑
n∈N

cnψn〉.

The scalar product

〈f−
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn−
∑
n∈N

cnψn〉 = 〈f,
∑
n∈N

(f̂n−cn)Ψn〉−
∑
n∈N

f̂n〈ψn,
∑
m∈N

(f̂m−cm)Ψn〉.

By the orthogonality and definition of Ψn, and the definition of f̂n,

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n
∑
m∈N

(f̂m − cm)〈ψn, ψm〉

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n(f̂n − cn) = 0.

Therefore

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn||2 + ||
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f −
N∑
n=0

f̂nψn||2 +

N∑
n=0

|f̂n − cn|2 ≤ ||f −
N∑
n=0

f̂nψn||2,

with equality if and only if cn = f̂n for all n. Since

N∑
n=0

f̂nψn =

N∑
n=0

〈f, φn〉
||φn||2

φn,

this completes the proof.

1.5.1. Applications: best approximation problems. This shows us that if we have a
finite orthogonal set of non-zero vectors in a Hilbert space, then for any element of
that Hilbert space, the best approximation of f in terms of those vectors is given
by

N∑
n=0

〈f, φn〉
||φn||2

φn.

Here is the setup of questions which can be solved using this theory. Either:

(1) You are given functions defined on an interval which are L2 orthogonal
on that interval (possibly with respect to a weight function which is also
specified). Either you recognize that they orthogonal because you’ve seen
them before (like sines, cosines, from problems you have solved previously)
or you compute that they are L2 orthogonal on the interval. Then, you
are asked to find the numbers c0, c1, . . . cN so that the L2 norm, or the

weighted L2 norm of f −
∑N
k=0 ckφk is minimized, where the function f is

also specified.
(2) You are asked to find the polyonomial of at most degree N such that the L2

norm (or weighted L2 norm) of f −p where p is a polynomial is minimized.



6 JULIE ROWLETT

In the first case, you compute

ck =
〈f, φk〉
||φk||2

.

In the second case you need to build up a set of orthogonal or orthonormal polyno-
mials. Then, you let φk be defined to be the polynomial of degree k you have built.
Proceed the same as in the first case, and your answer shall be

N∑
k=0

ckφk.

If you don’t like the thought of building up a set of orthogonal polynomials, if
you are lucky, then it may be possible to suitably modify some of the French
polynomials to be orthogonal on the interval under investigation, with respect to the
(possibly weighted) L2 norm. So, we shall proceed to study the French polynomials.
Depending on how much time we have, we may also be able to get into their “origin
stories.”

1.6. The Legendre polynomials. The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
.

OMG like why on earth are they defined in such a bizarre way, right? What
did you expect, they are French polynomials! Of course they are not defined in
some simple way, mais non, they must be all fancy and shrouded in mystery and
intrigue. Actually though, the reason comes from the PDE in which they arise as
solving one part of the separation of variables for the heat and wave equations in
three dimensions using spherical coordinates. First, let us do a small calculation
involving these polynomials:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differ-
entiating a term x2k once we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get
that

(x2k)′ = 2kx2k−1.

Which is correct. If we assume the formula is true for n, then differentiating n+ 1
times using the formula for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n.
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