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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...
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Let’s look at another example. Consider a circular shaped rod. We can then use
the coordinate x ∈ [0, 2π] with 0 and 2π identified, for the position on the rod. We
use the variable t ≥ 0 for time. The function u(x, t) is the temperature on the rod
at position x at time t. The heat equation (with no sources or sinks) tells us that:

ut = kuxx,

for some constant k > 0. By the same little time-units-trick, we can assume that
k = 1. So, we use the “mathematician’s heat equation,”

ut = uxx.

Let’s see what happens when we try Technique 0, Separation of Variables. We write

u(x, t) = f(x)g(t).

Plug it into the heat equation:

g′(t)f(x) = f ′′(x)g(t).

We want to separate variables, so we want all the t-dependent bits on the left say,
and all the x-dependent bits on the right. This can be achieved by dividing both
sides by f(x)g(t),

g′(t)

g(t)
=
f ′′(x)

f(x)
.

We now know that both sides must be constant (why?). So, which side do we
choose first? Well, the g side has only one derivative, whereas the f side has a
double derivative. One derivative (i.e. first order differential equation) is easier
than double derivative (i.e. second order differential equation). So, we want to
solve

g′(t)

g(t)
= λ.

Equivalently, we can think about the left side as

(log(g(t)))
′

= λ.
1
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Integrating both sides, we get

log g(t) = λt+ c.

Exponentiating both sides, we get

g(t) = eceλt.

Now, I’ve got a question for you physicists and chemists. You down-to-earth types.
If there are no sources or sinks, what happens to heat over time? It disperses out
into the universe right? So, can you tell me what is the only physically viable option
for the constant, λ? That’s right, we must have λ ≤ 0. Then, the equation for f is

f ′′(x)

f(x)
= λ ≤ 0 =⇒ f ′′(x) = λf(x).

In case λ = 0, f(x) = ax+ b is a linear function. Now, let’s remember where x is.
It’s on a circle. So, we need f(x) = f(x + 2π). That is only possible for a linear
function if it’s a constant function. Okay fine. We also consider λ < 0. Then our
old multivariable calculus theorem tells us that a basis of solutions is

{sin(
√
|λ|x), cos(

√
|λ|x)}.

In order to make sure that f(x) = f(x + 2π), we need
√
|λ| ∈ N. Hence, we have

found the solutions

gn(t) = e−n
2t, fn(x) = an cos(nx) + bn sin(nx), un(x, t) = fn(x)gn(t), n ∈ N.

Since our equation

∂tun − ∂xxun = 0

is satisfied for all n, the same is true for the sum,

∂t
∑
n≥0

un(x, t)− ∂xx
∑
n≥0

un(x, t) = 0.

At this point, we’re not sure about:

Question 1. Given the initial temperatures on the rod, v(x), at time t = 0, can
we choose the constants an and bn so that for

u(x, t) :=
∑
n≥0

un(x, t),

we have

u(x, 0) = v(x)?

Basically, we’ve found all the un’s we could using the separation of variables
technique. We are hoping that we can build the full solution out of these guys.
Fourier made the bold guess that yep, we can build the full solution out of these
guys. It took a long time to rigorously prove him right (like 100 years, because this
whole theory about Hilbert spaces, measure theory, and functional analysis needed
to get developed by Hilbert & his contemporaries).
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1.1. Introduction to Fourier Series of periodic functions. For starters, we’re
going to consider periodic functions. Physically, this corresponds to heat and waves
happening on anything which is circular (or even elliptical, wonky/warped circular)
shaped. However, we’ll see later that this whole assumption of a function being
periodic can be lifted! It works for non-periodic functions defined on intervals just
as well. So, don’t be concerned that we’re limiting ourselves by this periodicity
assumption. We’re just trying not to get overwhelmed, learning to walk before we
try to run.

Definition 2. A function f : R → R is periodic with period p iff for all x ∈ R,
f(x+ p) = f(x).

For example, sin(x) is periodic with period 2π. Our heat equation examples,
fn(x) = an cos(nx)+bn sin(nx) are periodic with period 2π/n. A small observation:
I did not say the minimal period is p. For example, sin(x) also satisfies sin(x+4π) =
sin(x) for all x ∈ R. So, sin(x) is also 4π periodic. In general, if a function is periodic
with period p, then it’s also periodic with period 2p, 3p, . . .np for any n ∈ N with
n ≥ 1.

Exercise 1. Prove this (hint: induction!).

We shall prove a super useful little lemma about periodic functions and their
integrals.

Lemma 3 (Integration of periodic functions lemma). If f is periodic with period
p then for any a ∈ R ∫ a+p

a

f(x)dx

is the same.

Proof: If we think about it, we want to show that the function

g(a) :=

∫ a+p

a

f(x)dx

is a constant function. This looks awfully similar to the fundamental theorem of
calculus. In any decent proof, we need to use the hypotheses of the lemma. So,
we’re going to need to use the assumption that f is periodic with period p, which
tells us that

f(a+ p)− f(a) = 0.

Now, since we want to consider a as a variable, we don’t want it at both the top and
the bottom of the integral defining g. Instead, we can use linearity of integration
to write

g(a) =

∫ a+p

0

f(x)dx−
∫ a

0

f(x)dx.

Then, using the fundamental theorem on each of the two terms on the right,

g′(a) = f(a+ p)− f(a) = 0.

Above, we use the fact that f is periodic with period p. Hence, g′(a) ≡ 0 for all
a ∈ R. This tells us that g is a constant function, so its value is the same for all
a ∈ R.
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So you survived a bit of theory, now let’s return to our physical motivation! We
wanted to find coefficients so that the u(x, t) we found to solve the heat equation
would match up with the initial data, v(x). If it does, then (using some advanced
PDE theory beyond the scope of this humble course), u(x, t) is indeed THE solution
to the heat equation with initial data v(x). Hence, u(x, t) actually tells us the
temperature on the rod at position x at time t. Cool. So, setting t = 0 in the
definition of u(x, t) we want

vxvx (1.1) v(x) =
∑
n≥0

an cos(nx) + bn sin(nx).

It is totally equivalent to work with complex exponentials, because

cos(nx) =
einx + e−inx

2
, sin(nx) =

einx − e−inx

2i
.

Exercise 2. Show that we can write v(x) as a series above in (
vxvx
1.1) if and only if

we can write
v(x) =

∑
n∈Z

cne
inx.

Moreover, show that

c0 =
a0
2
, cn =

1

2
(an − ibn), n ≥ 1, cn =

1

2
(an + ibn), n ≤ −1.

Finally, use this to show that

a0 = 2c0, an = cn + c−n, n ≥ 0, bn = i(cn − c−n), n ≥ 0.

Okay, so we want to write v(x) as a linear combination of the functions einx. We
write vectors as linear combinations of basis vectors in linear algebra all the time. In
fact, a function like v(x) is basically just an infinite dimensional vector. So, you’ve
graduated to “linear algebra for adults,” in which your vectors are now infinite
dimensional. 1 To continue with the linear algebra concept, we need a notion of
scalar (or inner, same thing) product and hence also a notion of orthogonality. It
turns out that the notion we need is

Definition 4. For two functions, f and g, which are real or complex valued func-
tions defined on [a, b] ⊂ R, we define their scalar product to be

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

We say that f and g are orthogonal if 〈f, g〉 = 0. We define the L2([a, b]) norm of
a function to be

||f ||L2([a,b]) =
√
〈f, f〉.

OBS! Learn this definition right now!!!! It is really important. Every detail:

〈f, g〉 =

∫ b

a

f(x)g(x)dx, ||f ||2 = 〈f, f〉.

Now, if you wonder why it is defined this way, that is because defining things this
way has the very pleasant consequence that it works. Meaning, when we define

1Grigori Rozenblioum, who taught this class for many years, and is in general an awesome
mathematician, used to say “If you can pass this course, then you’ve earned the right to buy

Vodka at Systembolaget, regardless of your actual age.”
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things this way, we are able to use the separation of variables technique to solve
the PDEs which we want to solve.

Proposition 5. On the interval [−π, π], the functions

fn(x) =
einx√

2π

are an orthonormal set with respect to the scalar product above.

Proof: First, we show that these guys are orthogonal. To do that, we just take
m 6= n and compute ∫ π

−π
einxeimxdx.

Of course, the 2π factors don’t matter. They’re not going to make the inner product
vanish! We recall of course that

eimx = e−imx.

So, we compute, ∫ π

−π
eix(n−m)dx.

Now, I claim that the function eix(n−m) is 2π-periodic. We compute

ei(x+2π)(n−m) = eix(n−m)e2πi(n−m).

If n > m, then n −m ≥ 1, and so e2πi(n−m) = 1, because 2π(n −m) is a positive
integer multiple of 2π. So, it’s still the same point on the unit circle in C as the
point 1 = 1 + 0i. On the other hand, if n < m, then

e2πi(n−m) = e2πi(m−n) = 1 = 1.

That’s just using the same reasoning to say that e2πi(m−n) = 1, and the complex
conjugate of something real is itself. So, indeed it’s periodic with period 2π. Then,
when we compute the integral, we get

eix(n−m)

n−m

∣∣∣∣π
x=−π

.

Note that π = −π + 2π. So,

eiπ(n−m) = e−iπ(n−m) =⇒ eix(n−m)

n−m

∣∣∣∣π
x=−π

= 0.

We’ve proven now that these guys are orthogonal. Next we prove that the L2([−π, π])
norm of these functions is equal to one. So, we compute∫ π

−π

einx√
2π

einx√
2π
dx =

2π

2π
= 1.

So, they’re an orthonormal set. We want them to actually be an orthonormal
basis, so that we can write for any v(x),

v(x) =
∑
n∈Z

cnϕn(x), ϕn(x) =
einx√

2π
.
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In analogue to linear algebra, we should expect the coefficients to be the scalar
product of our function v(x) with the basis functions (vectors), ϕn(x). It is a little

tedious to carry around the
√

2π factors, so for this reason, we can also use {einx},
which is still an orthogonal set, it’s just not orthonormal.

Definition 6. Assume f is periodic on [−π, π] with period 2π. Define

cn :=
1

2π
〈f, einx〉 =

1

2π

∫ π

−π
f(x)e−inxdx.

These are the Fourier coefficients of f . The Fourier series of f is∑
n∈Z

cne
inx.

So, the real question is, when does the Fourier series actually converge to equal
f(x)? To get you warmed up to computing Fourier coefficients, try the following

Exercise 3. If f is as in the definition and is also even, prove that bn = 0 for all
n. If f is as in the definition and is also odd, prove that an = 0 for all n. (Hint:
If you forgot what an and bn are, look at the previous exercise!).

1.1.1. Examples. Consider the function f(x) = |x|. It satisfies f(−π) = f(π). We
can just make it 2π-periodic by extending it to R to satisfy f(x + 2π) = f(x) for
all x. The graph then looks like a zig-zag or sawtooth. We compute the Fourier
coefficients:

cn =
1

2π

∫ π

−π
|x|e−inxdx, c0 =

1

2π

∫ π

−π
|x|dx =

2π2

2(2π)
=
π

2
.

So, we compute ∫ 0

−π
−xe−inxdx,

∫ π

0

xe−inxdx.

We do substitution in the first integral to change it to∫ π

0

xeinxdx =
xeinx

in

∣∣∣∣π
0

−
∫ π

0

einx

in
dx

=
πeinπ

in
− einπ

(in)2
+

1

(in)2
.

Similarly we also use integration by parts to compute∫ π

0

xe−inxdx =
xe−inx

−in

∣∣∣∣π
0

−
∫ π

0

e−inx

(−in)
dx

=
πe−inπ

−in
− e−inπ

(−in)2
+

1

(−in)2
.

Adding them up and use the 2π periodicity, we get

2einπ

n2
− 2

n2
=

2(−1)n − 2

n2
.

Hence cn = 0 if n is even, whereas cn = − 4
n2 if n is odd. The Fourier series is

therefore
π

2
+

∑
n∈Z, odd

einx
(
− 4

n2

)
.
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Exercise 4. Use these calculations to compute the Fourier cosine series, that is
the series ∑

n≥0

an cos(nx).

Next, consider the function f(x) = x initially on the interval ] − π, π[. We can
extend it in a similar way to be 2π periodic, but it will then be discontinuous with
jump discontinuities at odd-integer multiples of π.

Exercise 5. Compute in the same way the Fourier coefficients of this function,
that is, compute

cn =
1

2π

∫ π

−π
xe−inxdx n ∈ Z.

Use that calculation to show that an = 0 for all n, and then compute the Fourier
sine series, ∑

n≥1

bn sin(nx).

Look at these two examples. Do the series converge? Do they converge abso-
lutely? Compare and contrast them!
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