FOURIER ANALYSIS & METHODS

JULIE ROWLETT

ABSTRACT. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...
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Theorem 1. The Legendre polynomials are orthogonal in £2(—1,1), and
2
2n+1°

Proof: We first prove the orthogonality. Assume that n > m. Then, since they
have this constant stuff out front, we compute

[1Pall* =

1 dm dm
(2? = 1)"— (2% — 1)"dx.

2"n12mmi(P,, Py,) = / T

1 dz™
Let us integrate by parts once:

dnfl m 1

2 n 2 m ! dn71 2 n dm+1 2 m
:W(I -1) dxim(x -1) _1/1dx”—1(x1) W(UC -1
Consider the boundary term:
dn71 2 n nl n n
T (z2—1)" = e (x —1)™"(xz+1)™.

This vanishes at * = +1, because the polynomial vanishes to order n whereas we
only differentiate n — 1 times. So, we have shown that
1 dn—l (:L,Q B " dm+1

2" 2" m!(P,, Py = —/ 2 —1)™.

1 dxnfl ) dxm+1(

We repeat this n — 1 more times. We note that for all j < n,
47
dai
For this reason, all of the boundary terms from integrating by parts vanish. So, we
just get

<1>n/1<2 )L 2y <1>"/1<2 L4 e qymg
- ‘= 1)——— (2" — x=(— ‘= 1)——(a* — x
1 dan-i-n 1 dxn dxm

(x? —1)" vanishes at x = +1.

Remember that n > m. We computed that dd;l (J:2 —1)™ is a polynomial of degree
m. So, if we differentiate it more than m times we get zero. So, we'’re integrating

zero! Hence it is zero.
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For the second part, we use the formula we computed for

1 - n—k [T\ 2k—n (e ;
Pal@) = 5o 3 (1 )at o T k).
k>n/2 j=0

Differentiating n times gives us just the term with the highest power of x, so we
have

dar 2n)!

dan” " Q“n'
Consequently,

2nn! 21np)

(P, P,) = (—-1)" ! (2n)!/_ (2% — 1)"dx = (—1)"231(12(2!))!2/0 (% —1)"dx

= (-1 "an e /0 <k>x2kdx

= g 2 g ()]
:(71)71237(123. " (>
1

n
22”71'22 <>2k+1

This looks super complicated. Apparently by some miracle of life

' ovn . L(n+1I'(1/2)
/0(1—x)dx— Tnt3/2)

Since

<Pn7Pn> _ (_1)n2§7<3’z'))'2/0 (332 _ 1)nd£L' — 227(12(:2'))'2/0 (1 — l’z)ndiﬂ,

we get
° I(n+1)I(1/2)2(2n)!
22n(n!)20(n + 3/2)

We use the properties of the I' function together with the fact that I'(1/2) =

to obtain
V72(2n)!
22npl(n+1/2)0(n+1/2)°

Let us consider

2(n+1/2)T'(n+1/2) = 2n+ 1)I'(n + 1/2).
Next consider

2(n—=1/2)T'(n—1/2) = (2n — H)I'(n — 1/2).
Proceeding this way, the denominator becomes

2"n!(2n+1)(2n —1)...1y/7.
However, now looking at the first part
2"n! =2n(2n —2)(2n—4)...2.

N
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So together we get
(2n + 1)/
Hence putting this in the denominator of the expression we had above, we have

yr22n)! 2
2n+ )7 2041

\20
Corollary 2. The Legendre polynomials are an orthogonal basis for L2 on the

interval [—1,1].

Theorem 3. The even degree Legendre polynomials { Pay, }nen are an orthogonal
basis for £2(0,1). The odd degree Legendre polynomials { Pay11}nen are an orthog-
onal basis for £2(0,1).

Proof: Let f be defined on [0,1]. We can extend f to [—1,1] either evenly or

oddly. First, assume we have extended f evenly. Then, since f € £2 on [0, 1],

1 1
/ | fe(z)2dx = 2/ |f(z)2dz < oc.
1 0

Therefore f. is in £2 on the interval [—1,1]. We have proven that the Legendre
polynomials are an orthogonal basis. So, we can expand f. in a Legendre polynomial

series, as
> fe(n) Py,

n>0

where

By definition,
1
foPa) = [ fla)Pa(o)da,
—1

Since f. is even, the product f.(x)P,(z) is an odd function whenever n is odd.
Hence all of the odd coefficients vanish. Moreover,

1
<f€?P2n> :2/ f(l‘>P2n($)>d.’I}
0
We also have

1
[P ? = 2 / Py () 2dz.
0

s (fo f<x>P2n<x>dx> .

1
neN fo |P2n($)|2d$
We can also extend f oddly. This odd extension satisfies

1 0 1 1
° 2dx = ° 2d ° 2da = ° 2d .
[1|f<x>| v [1|f<x>| x+/0 o) P 2/0 o) Pz < o0

Consequently




4 JULIE ROWLETT

So, the odd extension is also in £2 on the interval [—1,1]. We can expand f, in a
Legendre polynomial series, as
> fon)P,

n>0

where

By definition,
1
(s Pa) = / £ (@) P(2)da.
~1

Since f, is odd, the product f,(x)P,(z) is an odd function whenever n is even.
Hence all of the even coefficients vanish. Moreover,

(for Ponsr) = 2 / £(2) Pa 1 () e,

because the product of two odd functions is an even function. We also have

0 1 1
1Peviall = [ 1Pora@Pde+ [ |Prnsa(a)Pde =2 [ |Pania ()P,
—1 0 0

Consequently
s <f01 f<x>P2n+1<x>dx> Pu

1
neN fo | Pan1 (2)[*dw

1.1. Legendre polynomials origins story. We consider spherical coordinates
in R3. These coordinates are useful for solving PDEs inside spheres or pieces of
spheres. The spherical coordinates are (r, 6, ¢). The first coordinate, r tells us the
distance of the point in R3 to the origin. The second coordinate, 6, tells us the
angle of the point in the z — y plane. The third coordinate, ¢, tells the angle of
the point in the z direction. So, if ¢ = 0, the point is along the positive z-axis. If
¢ = 3, the point has z-coordinate equal to zero. If ¢ = 7, the point is along the
negative z-axis. The standard coordinate are therefore

r=rcosfsing, y=rsinfsing, z=rcosdqo.

To see how this work, draw some right triangles from different perspectives (will
do in lecture!). By the chain rule, the Laplace operator

sin ¢p02 + cos ¢O 2
Ae—0?— 72— o2 20, 000 T c0500s) %
! r 72 sin ¢ r2sin® ¢

Consider solving the Dirichlet problem inside a sphere. We would like Au = 0.
Since the natural coordinates on a sphere are the spherical coordinates, we write u
as a product of three functions depending on the three spherical coordinates,

R(r)©(0)2(¢).

Then, the PDE becomes

R’ 2R ®"sing+ &' cos¢ e
A @ == i =
(ROD) =0 = — + 7 5in 6B 25?60

0.
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Let us use ¢ for the variable, ¢, and continue to use ® for the function. We multiply
by 72 sin? ¢:

R"r? sin? rsin? 2R’ sin p(®” sin o + @’ cos e
v PR o @ v, 9 o
R R ) (C)
Since it is the most simple, we move © to the other side:

R'r?sin® ¢ rsin® 2R’ sin (P sinp + ' cos ¢ e”
R + R + ) e
Therefore both sides are constant. We deal with © first. Conquer the weakest
opponents first, so that they are not trying to attack from behind whilst one deals
with the more significant threats. The equation for © is by far the simplest. For
geometric reasons, © must be a 27 periodic function. Therefore

Q" )
7@ _ ,rnZ7 me Z, @m(o) — ezme.

We therefore can use this in the equation for the right side:
R'r?sin® o rsin® p2R'  sin@(®” sinp + ' cos ¢ 5
=+ + =m”.
R R P
We divide by sin? ¢ and move all the ¢ dependent terms to the right side, obtaining
R'r? +2rR"  m? sin ®" + cos @’
sin ® '

R ©osin® o
Similarly, as both sides depend on different variables, both sides must be constant.

So, we shall call the constant A\. We shall deal with the ¢ business first, doing a
clever transformation. Let

5 = cos .
Then we note that cos : [0, 7] — [—1, 1] bijectively. We also have ¢ = arccos s. Let
S(s) = S(cosp) = P(p).
Then by the chain rule,
' (p) = —sinpS'(s), ®"(p) = —cospS'(s) +sin? S (s).
By definition of s, and the fact that sin® + cos? = 1,
" (p) = —s5'(s) + (1 — 5%)9"(s).
We therefore see that
L —sS" 4+ (1 —5%)S" @ cosp —singpcosps’ o sY
o ) T Psing sin oS S
The equation for the ¢ variable side is then
N m? 3 <SS'+(152)S” _SS’) _
1—s2 S S

We multiply by S and obtain
Sm?
1—s2

— (~255" + (1 - s%)8") = AS.

Observe that
—258" 4 (1 — 838" = [(1 - s*)8"]".
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So, the equation is
Sm?

(L.1) T

~[1-s1)8] A5 =0.
If m = 0, this equation is
(1.2) ~ (1= -A5=0 < [(1-5°)5] +AS=0.

Since m € Z, we would like to find solutions to this equation. The easiest case is the
case when m = 0. It turns out that the Legendre polynomials solve this equation.

Theorem 4. The Legendre polynomials solve
[(1—2*) P} (2)] + n(n+1)Pu(x) = 0.
In particular, they are eigenfunctions for the SLP [(1 — x2)'u/]" + M = 0 with

eigenvalues A = n(n + 1).

We postpone the proof until the next lecture, so that we can keep focused on
solving the Dirichlet problem on the sphere. For m = 0, the functions P, (s) solves
the equation H , with A,, = n(n+1). For the general case, I leave it as an exercise
to verify that

dml
P (s):= (1 —s)IM/2——Pp (s)
" dslml
solves @ . Recalling that s = cos ¢, we have therefore found functions
em(a) = eim()’

and
dml
P () =(1- 52)|m|/2ﬁPn(s) first compute the derivative, then set s = cos p.
S m
Finally, we use the value of A = n(n + 1) to solve for the function R:
R'"r? +2rR’
— =\ = 1).
+ n(n +1)
This becomes
R'r* +2rR' — X\, R =0.
This is an Euler equation. We look for solutions of the form R(r) = r®. Putting
such a function into the ODE,
ala —1D)r* +2ar®* = X\,r® =0 <= a*+a—\, = 0.
We solve the quadratic equation for

=l EVI+4N, 1i\/1+4n(n+1)
‘= 2 T2 2
We do not want R(r) — oo when r — 0, so we choose the solution with the plus.

We fiddle a little with this square root part:

\M;M—\/i+n(n+1)—\/n2+n+i—\/m_”+1/2~

Consequently

V1+4n(n+1)

2

=n.

NN
+

We have therefore found
R, (r)=r"
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Up to constant factors, we have thus found the functions

U, (7,0, 0) = 7€ PI* (cos @),

which solve

Aty =0
in the sphere. It just so happens that we can smash them all together and solve
the Dirichlet problem in a sphere.

Theorem 5. The solution to the Dirichlet problem in the unit sphere in R3, that
18

Au=0, u(1,0,0) = f(0,¢)
18 — )
u(r,0,0) = Y famr"e™ P (cos ),

n>0,meZ
with
T T . . 1 27 —im m
f/\ _ fo 02 F(8,0)e™ " P (cos p)df sin dyp _ f71 fo f(8,arccos(s))e~ "¢ P (s)dfds
o 2n|| P |2 2n|| P2

The functions
Ym,n(ev ¢) = eim(fpgt((p)
are called spherical harmonics. One can show that
(n+m)!2
(n—m)!(2n+1)’

1P 11? = n > |mj,

and that
1P =0, n<|m|.
We have deserved some comic relief. This shall be provided by the French song,
Foux du Fa Fa, an exerpt from the series, Flight of the Conchords https://www.
youtube . com/watch?v=EuXdhow3uqQ. Parlez-vous le francais?


https://www.youtube.com/watch?v=EuXdhow3uqQ
https://www.youtube.com/watch?v=EuXdhow3uqQ
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