
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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Theorem 1. The Legendre polynomials are orthogonal in L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Proof: We first prove the orthogonality. Assume that n > m. Then, since they
have this constant stuff out front, we compute

2nn!2mm!〈Pn, Pm〉 =

∫ 1

−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)mdx.

Let us integrate by parts once:

=
dn−1

dxn−1
(x2 − 1)n

dm

dxm
(x2 − 1)m

∣∣∣∣1
−1
−
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

Consider the boundary term:

dn−1

dxn−1
(x2 − 1)n =

dn−1

dxn−1
(x− 1)n(x+ 1)n.

This vanishes at x = ±1, because the polynomial vanishes to order n whereas we
only differentiate n− 1 times. So, we have shown that

2nn!2mm!〈Pn, Pm〉 = −
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

We repeat this n− 1 more times. We note that for all j < n,

dj

dxj
(x2 − 1)n vanishes at x = ±1.

For this reason, all of the boundary terms from integrating by parts vanish. So, we
just get

(−1)n
∫ 1

−1
(x2 − 1)

dm+n

dxm+n
(x2 − 1)mdx = (−1)n

∫ 1

−1
(x2 − 1)

dn

dxn
dm

dxm
(x2 − 1)mdx

Remember that n > m. We computed that dm

dxm (x2−1)m is a polynomial of degree
m. So, if we differentiate it more than m times we get zero. So, we’re integrating
zero! Hence it is zero.
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For the second part, we use the formula we computed for

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

Differentiating n times gives us just the term with the highest power of x, so we
have

dn

dxn
Pn(x) =

1

2nn!
n!

n−1∏
j=0

(2n− j) =
(2n)!

2nn!
.

Consequently,

〈Pn, Pn〉 = (−1)n
1

2nn!

(2n)!

2nn!

∫ 1

−1
(x2 − 1)ndx = (−1)n

2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx

= (−1)n
2(2n)!

22n(n!)2

∫ 1

0

n∑
k=0

(−1)n−k
(
n

k

)
x2kdx

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
x2k+1

2k + 1

(
n

k

)∣∣∣∣∣
1

0

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
(
n

k

)
1

2k + 1

=
2(2n)!

22n(n!)2

n∑
k=0

(−1)k
(
n

k

)
1

2k + 1
.

This looks super complicated. Apparently by some miracle of life∫ 1

0

(1− x2)ndx =
Γ(n+ 1)Γ(1/2)

Γ(n+ 3/2)
.

Since

〈Pn, Pn〉 = (−1)n
2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx =
2(2n)!

22n(n!)2

∫ 1

0

(1− x2)ndx,

we get
Γ(n+ 1)Γ(1/2)2(2n)!

22n(n!)2Γ(n+ 3/2)
.

We use the properties of the Γ function together with the fact that Γ(1/2) =
√
π

to obtain √
π2(2n)!

22nn!(n+ 1/2)Γ(n+ 1/2)
.

Let us consider

2(n+ 1/2)Γ(n+ 1/2) = (2n+ 1)Γ(n+ 1/2).

Next consider
2(n− 1/2)Γ(n− 1/2) = (2n− 1)Γ(n− 1/2).

Proceeding this way, the denominator becomes

2nn!(2n+ 1)(2n− 1) . . . 1
√
π.

However, now looking at the first part

2nn! = 2n(2n− 2)(2n− 4) . . . 2.
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So together we get

(2n+ 1)!
√
π.

Hence putting this in the denominator of the expression we had above, we have
√
π2(2n)!

(2n+ 1)!
√
π

=
2

2n+ 1
.

Corollary 2. The Legendre polynomials are an orthogonal basis for L2 on the
interval [−1, 1].

Theorem 3. The even degree Legendre polynomials {P2n}n∈N are an orthogonal
basis for L2(0, 1). The odd degree Legendre polynomials {P2n+1}n∈N are an orthog-
onal basis for L2(0, 1).

Proof: Let f be defined on [0, 1]. We can extend f to [−1, 1] either evenly or
oddly. First, assume we have extended f evenly. Then, since f ∈ L2 on [0, 1],∫ 1

−1
|fe(x)|2dx = 2

∫ 1

0

|f(x)|2dx <∞.

Therefore fe is in L2 on the interval [−1, 1]. We have proven that the Legendre
polynomials are an orthogonal basis. So, we can expand fe in a Legendre polynomial
series, as ∑

n≥0

f̂e(n)Pn,

where

f̂e(n) =
〈fe, Pn〉
||Pn||2.

By definition,

〈fe, Pn〉 =

∫ 1

−1
fe(x)Pn(x)dx.

Since fe is even, the product fe(x)Pn(x) is an odd function whenever n is odd.
Hence all of the odd coefficients vanish. Moreover,

〈fe, P2n〉 = 2

∫ 1

0

f(x)P2n(x))dx.

We also have

||P2n||2 = 2

∫ 1

0

|P2n(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n(x)dx∫ 1

0
|P2n(x)|2dx

)
P2n.

We can also extend f oddly. This odd extension satisfies∫ 1

−1
|fo(x)|2dx =

∫ 0

−1
|fo(x)|2dx+

∫ 1

0

|fo(x)|2dx = 2

∫ 1

0

|fo(x)|2dx <∞.
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So, the odd extension is also in L2 on the interval [−1, 1]. We can expand fo in a
Legendre polynomial series, as ∑

n≥0

f̂o(n)Pn,

where

f̂o(n) =
〈fo, Pn〉
||Pn||2.

By definition,

〈fo, Pn〉 =

∫ 1

−1
fo(x)Pn(x)dx.

Since fo is odd, the product fo(x)Pn(x) is an odd function whenever n is even.
Hence all of the even coefficients vanish. Moreover,

〈fo, P2n+1〉 = 2

∫ 1

0

f(x)P2n+1(x))dx,

because the product of two odd functions is an even function. We also have

||P2n+1||2 =

∫ 0

−1
|P2n+1(x)|2dx+

∫ 1

0

|P2n+1(x)|2dx = 2

∫ 1

0

|P2n+1(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n+1(x)dx∫ 1

0
|P2n+1(x)|2dx

)
P2n+1.

1.1. Legendre polynomials origins story. We consider spherical coordinates
in R3. These coordinates are useful for solving PDEs inside spheres or pieces of
spheres. The spherical coordinates are (r, θ, φ). The first coordinate, r tells us the
distance of the point in R3 to the origin. The second coordinate, θ, tells us the
angle of the point in the x − y plane. The third coordinate, φ, tells the angle of
the point in the z direction. So, if φ = 0, the point is along the positive z-axis. If
φ = π

2 , the point has z-coordinate equal to zero. If φ = π, the point is along the
negative z-axis. The standard coordinate are therefore

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ.

To see how this work, draw some right triangles from different perspectives (will
do in lecture!). By the chain rule, the Laplace operator

∆ = −∂2x − ∂2y − ∂2z = −∂2r −
2

r
∂r −

sinφ∂2φ + cosφ∂φ)

r2 sinφ
− ∂2θ
r2 sin2 φ

.

Consider solving the Dirichlet problem inside a sphere. We would like ∆u = 0.
Since the natural coordinates on a sphere are the spherical coordinates, we write u
as a product of three functions depending on the three spherical coordinates,

R(r)Θ(θ)Φ(φ).

Then, the PDE becomes

∆(RΘΦ) = 0 =⇒ R′′

R
+

2R′

rR
+

Φ′′ sinφ+ Φ′ cosφ

r2 sinφΦ
+

Θ′′

r2 sin2 φΘ
= 0.
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Let us use ϕ for the variable, φ, and continue to use Φ for the function. We multiply
by r2 sin2 ϕ:

R′′r2 sin2 ϕ

R
+
r sin2 ϕ2R′

R
+

sinϕ(Φ′′ sinϕ+ Φ′ cosϕ

Φ
+

Θ′′

Θ
= 0.

Since it is the most simple, we move Θ to the other side:

R′′r2 sin2 ϕ

R
+
r sin2 ϕ2R′

R
+

sinϕ(Φ′′ sinϕ+ Φ′ cosϕ

Φ
= −Θ′′

Θ
.

Therefore both sides are constant. We deal with Θ first. Conquer the weakest
opponents first, so that they are not trying to attack from behind whilst one deals
with the more significant threats. The equation for Θ is by far the simplest. For
geometric reasons, Θ must be a 2π periodic function. Therefore

−Θ′′

Θ
= m2, m ∈ Z, Θm(θ) = eimθ.

We therefore can use this in the equation for the right side:

R′′r2 sin2 ϕ

R
+
r sin2 ϕ2R′

R
+

sinϕ(Φ′′ sinϕ+ Φ′ cosϕ

Φ
= m2.

We divide by sin2 ϕ and move all the ϕ dependent terms to the right side, obtaining

R′′r2 + 2rR′

R
=

m2

sin2 ϕ
−
(

sinϕΦ′′ + cosϕΦ′

sinϕΦ

)
.

Similarly, as both sides depend on different variables, both sides must be constant.
So, we shall call the constant λ. We shall deal with the ϕ business first, doing a
clever transformation. Let

s = cosϕ.

Then we note that cos : [0, π]→ [−1, 1] bijectively. We also have ϕ = arccos s. Let

S(s) := S(cosϕ) = Φ(ϕ).

Then by the chain rule,

Φ′(ϕ) = − sinϕS′(s), Φ′′(ϕ) = − cosϕS′(s) + sin2 ϕS′′(s).

By definition of s, and the fact that sin2 + cos2 = 1,

Φ′′(ϕ) = −sS′(s) + (1− s2)S′′(s).

We therefore see that

Φ′′

Φ
=
−sS′ + (1− s2)S′′

Φ
,

Φ′ cosϕ

Φ sinϕ
=
− sinϕ cosϕS′

sinϕS
= −sS

′

S
.

The equation for the ϕ variable side is then

λ =
m2

1− s2
−
(
−sS′ + (1− s2)S′′

S
− sS′

S

)
= λ.

We multiply by S and obtain

Sm2

1− s2
−
(
−2sS′ + (1− s2)S′′

)
= λS.

Observe that

−2sS′ + (1− s2)S′′ =
[
(1− s2)S′

]′
.
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So, the equation is

legmlegm (1.1)
Sm2

1− s2
−
[
(1− s2)S′

]′ − λS = 0.

If m = 0, this equation is

leg0leg0 (1.2) −
[
(1− s2)S′

]′ − λS = 0 ⇐⇒
[
(1− s2)S′

]′
+ λS = 0.

Since m ∈ Z, we would like to find solutions to this equation. The easiest case is the
case when m = 0. It turns out that the Legendre polynomials solve this equation.

Theorem 4. The Legendre polynomials solve[
(1− x2)P ′n(x)

]′
+ n(n+ 1)Pn(x) = 0.

In particular, they are eigenfunctions for the SLP [(1 − x2)′u′]′ + λu = 0 with
eigenvalues λ = n(n+ 1).

We postpone the proof until the next lecture, so that we can keep focused on
solving the Dirichlet problem on the sphere. For m = 0, the functions Pn(s) solves
the equation (

leg0leg0
1.2), with λn = n(n+1). For the general case, I leave it as an exercise

to verify that

Pmn (s) := (1− s2)|m|/2
d|m|

ds|m|
Pn(s)

solves (
leg0leg0
1.2). Recalling that s = cosϕ, we have therefore found functions

Θm(θ) = eimθ,

and

Pmn (ϕ) = (1− s2)|m|/2
d|m|

ds|m|
Pn(s) first compute the derivative, then set s = cosϕ.

Finally, we use the value of λ = n(n+ 1) to solve for the function R:

R′′r2 + 2rR′

R
= λn = n(n+ 1).

This becomes
R′′r2 + 2rR′ − λnR = 0.

This is an Euler equation. We look for solutions of the form R(r) = rα. Putting
such a function into the ODE,

α(α− 1)rα + 2αrα − λnrα = 0 ⇐⇒ α2 + α− λn = 0.

We solve the quadratic equation for

α =
−1±

√
1 + 4λn
2

= −1

2
±
√

1 + 4n(n+ 1)

2
.

We do not want R(r) → ∞ when r → 0, so we choose the solution with the plus.
We fiddle a little with this square root part:√

1 + 4n(n+ 1)

2
=

√
1

4
+ n(n+ 1) =

√
n2 + n+

1

4
=
√

(n+ 1/2)2 = n+ 1/2.

Consequently

−1

2
+

√
1 + 4n(n+ 1)

2
= n.

We have therefore found
Rn(r) = rn.
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Up to constant factors, we have thus found the functions

um,n(r, θ, ϕ) = rneimθPmn (cosϕ),

which solve
∆um,n = 0

in the sphere. It just so happens that we can smash them all together and solve
the Dirichlet problem in a sphere.

Theorem 5. The solution to the Dirichlet problem in the unit sphere in R3, that
is

∆u = 0, u(1, θ, ϕ) = f(θ, ϕ)

is
u(r, θ, ϕ) =

∑
n≥0,m∈Z

f̂n,mr
neimθPmn (cosϕ),

with

f̂n,m =

∫ π
0

∫ 2π

0
f(θ, ϕ)e−imθPmn (cosϕ)dθ sinϕdϕ

2π||Pmn ||2
=

∫ 1

−1
∫ 2π

0
f(θ, arccos(s))e−imθPmn (s)dθds

2π||Pmn ||2
.

The functions
Ym,n(θ, ϕ) = eimθPmn (ϕ)

are called spherical harmonics. One can show that

||Pmn ||2 =
(n+m)!2

(n−m)!(2n+ 1)
, n ≥ |m|,

and that
||Pmn ||2 = 0, n < |m|.

We have deserved some comic relief. This shall be provided by the French song,
Foux du Fa Fa, an exerpt from the series, Flight of the Conchords https://www.

youtube.com/watch?v=EuXdhow3uqQ. Parlez-vous le français?

https://www.youtube.com/watch?v=EuXdhow3uqQ
https://www.youtube.com/watch?v=EuXdhow3uqQ
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