
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.03.5

We begin by proving the theorem which was previously postponed. The proof
is a great exercise in using orthogonal polynomials.

Theorem 1. The Legendre polynomials solve[
(1− x2)P ′n(x)

]′
+ n(n+ 1)Pn(x) = 0.

In particular, they are eigenfunctions for the SLP [(1 − x2)′u′]′ + λu = 0 with
eigenvalues λ = n(n+ 1).

Proof: By the product rule,

[(1− x2)P ′n]′ = −2xP ′n + (1− x2)P ′′n .

We compute the leading coefficient coming from

−2xP ′n − x2P ′′n .
We recall that

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

The highest order term comes from k = n, and it is

1

2nn!
xn

n−1∏
j=0

(2n− j) =
1

2nn!
xn

(2n)!

n!
.

We therefore compute that

−2xP ′n − x2P ′′n = −2n(2n)!xn

2n(n!)2
− n(n− 1)(2n)!xn

2n(n!)2
=

(2n)!xn(−2n− n(n− 1))

2n(n!)2

= − (2n)!xnn(n+ 1)

2n(n!)2
.

If we look back at the highest order term in Pn itself, this was

(2n)!xn

2n(n!)2
.

1
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So we see that the highest order term in

[(1− x2)P ′n]′ is − n(n+ 1)
(2n)!xn

2n(n!)2
.

Consequently

[(1− x2)P ′n]′ + n(n− 1)Pn is a polynomial of degree n− 1 or lower.

We may therefore express this polynomial, call it q as a linear combination of the
Legendre polynomials of degree up to n− 1, that is

q =

n−1∑
j=0

cjPj .

Let us compute the coefficients:

cj =
〈q, Pj〉
||Pj ||2

.

We first compute using integration by parts and the vanishing of the boundary
terms:∫ 1

−1
[(1− x2)P ′n]′Pjdx = −

∫ 1

−1
(1− x2)P ′nP

′
jdx =

∫ 1

−1
[(1− x2)P ′j ]

′Pndx.

Observe that [(1 − x2)P ′j ]
′ is a polynomial of degree j < n. It can therefore be

written as a linear combination of P0, . . . , Pj . Each of these are orthogonal to Pn.
Hence this part vanishes. For the second part, we compute∫ 1

−1
n(n+ 1)Pn(x)Pj(x)dx = 0,

since j < n. So in fact all together, cj = 0 for all j = 0, . . . , n − 1. We therefore
have computed that

[(1− x2)P ′n]′ + n(n− 1)Pn = 0.

1.1. Hermite polynomials.

Definition 2. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proposition 3. The Hermite polynomials are polynomials with the degree of Hn

equal to n.

Proof: The proof is by induction. For n = 0, this is certainly true, as H0 = 1.
Next, let us assume that

dn

dxn
e−x

2

= pn(x)e−x
2

,

is true for a polynomial, pn which is of degree n. Then,

dn+1

dxn+1
e−x

2

=
d

dx

(
pn(x)e−x

2
)

= p′n(x)e−x
2

−2xpn(x)e−x
2

= (p′n(x)− 2xpn(x)) e−x
2

.

Let

pn+1 = p′n(x)− 2xpn(x).
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Then we see that since pn is of degree n, pn+1 is of degree n+ 1. Moreover

dn+1

dxn+1
e−x

2

= pn+1(x)e−x
2

.

So, in fact, the Hermite polynomials satisfy:

H0 = 1, Hn+1 = − (H ′n(x)− 2xHn(x)) .

Proposition 4. The Hermite polynomials are orthogonal on R with respect to the

weight function e−x
2

. Moreover, with respect to this weight function ||Hn||2 =
2nn!
√
π.

Proof: Assume n > m ≥ 0. We compute∫
R
Hn(x)Hm(x)e−x

2

dx =

∫
R

(−1)n
dn

dxn
e−x

2

Hm(x)dx.

We use integration by parts n times, noting that the rapid decay of e−x
2

kills all
boundary terms. We therefore get∫

R
e−x

2 dn

dxn
Hm(x)dx = 0.

This is because the polyhomial, Hm, is of degree m < n. Therefore differentiating
it n times results in zero. Finally, for n = m, we have by the same integration by
parts, ∫

R
H2
n(x)e−x

2

dx =

∫
R
e−x

2 dn

dxn
Hn(x)dx.

The nth derivative of Hn is just the nth derivative of the highest order term. By
our preceding calculation, the highest order term in Hn is

(2x)n.

Differentiating n times gives

2nn!.

Thus ∫
R
H2
n(x)e−x

2

dx = 2nn!

∫
R
e−x

2

dx = 2nn!
√
π.

We may wish to use the following lovely fact, but we shall not prove it.

Theorem 5. The Hermite polynomials are an orthogonal basis for L2 on R with

respect to the weight function e−x
2

.

What we shall prove, however, is a theory item concerning the Hermite polyno-
mials.
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1.1.1. The generating function for the Hermite polynomials. This is similar to the
analogous result for the Bessel functions, but with a bit of a twist.

Theorem 6. For any x ∈ R and z ∈ C, the Hermite polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2

.

Proof: The key idea with which to begin is to consider instead

e−(x−z)
2

= e−x
2+2xz−z2 .

We consider the Taylor series expansion of this guy, with respect to z, viewing x
as a parameter. By definition, the Taylor series expansion for

e−(x−z)
2

=
∑
n≥0

anz
n,

where

an =
1

n!

dn

dzn
e−(x−z)

2

, evaluated at z = 0.

To compute these coefficients, we use the chain rule, introducing a new variable
u = x− z. Then,

d

dz
e−(x−z)

2

= − d

du
e−u

2

,

and more generally, each time we differentiate, we get a −1 popping out, so

dn

dzn
e−(x−z)

2

= (−1)n
dn

dun
e−u

2

,

Hence, evaluating with z = 0, we have

an =
1

n!
(−1)n

dn

dun
e−u

2

, evaluated at u = x.

The reason it’s evaluated at u = x is because in our original expression we’re
expanding in a Taylor series around z = 0 and z = 0 ⇐⇒ u = x since u = x− z.
Now, of course, we have

dn

dun
e−u

2

, evaluated at u = x =
dn

dxn
e−x

2

.

Hence, we have the Taylor series expansion

e−(x−z)
2

= e−x
2+2xz−z2 =

∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

Now, we multiply both sides by ex
2

to obtain

e2xz−z
2

= ex
2 ∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

We can bring ex
2

inside because everything converges beautifully. Then, we have

e2xz−z
2

=
∑
n≥0

zn

n!
ex

2

(−1)n
dn

dxn
e−x

2

.
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Voilà! The definition of the Hermite polynomials is staring us straight in the face!
Hence, we have computed

e2xz−z
2

=
∑
n≥0

zn

n!
Hn(x).

The Hermite polynomials come from solving PDEs in parabolic shaped regions
of R2.

1.2. The Laguerre polynomials. The Laguerre polynomials come from under-
standing the quantum mechanics of the hydrogen atom. We shall not get into
this1

Definition 7. The Laguerre polynomials,

Lαn(x) =
x−αex

n!

dn

dxn
(xα+ne−x).

We summarize their properties in the following

Theorem 8 (Properties of Laguerre polynomials). The Laguerre polynomials are
an orthogonal basis for L2 on (0,∞) with the weight function xαe−x. Their norms
squared,

||Lαn||2 =
Γ(n+ α+ 1)

n!
.

They satisfy the Laguerre equation

[xα+1e−x(Lαn)′]′ + nxαe−xLαn = 0.

For x > 0 and |z| < 1,
∞∑
n=0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

Now for what we’ve all been waiting for: applications to best approximations!

1.3. Applications to best approximations. Here is a typical problem: find the
polynomial, P (x), of at most degree 5 which minimizes∫ b

a

|f(x)− P (x)|2dx.

Here you would be explicitly given the function f as well as the interval from a to b.
Since it works the same way, it seems wise to show the general principle. Then, you
can use this for your particular problems. We know that the Legendre polynomials
are an orthogonal basis for L2 on (−1, 1). Let’s first assume

a = −1, b = 1.

Then, we compute

cn =

∫ 1

−1 f(x)Pn(x)dx

||Pn||2
, n = 0, 1, 2, 3, 4, 5.

1Alex Jones does get into it: https://www.youtube.com/watch?v=i91XV07Vsc0. Check out the

Alex Jones Prison Planet https://www.youtube.com/watch?v=kn_dHspHd8M. Turns out that Alex
Jones’s crazy ranting makes for decent death metal vocals. The gay frogs and America first remix

are pretty decent too.

https://www.youtube.com/watch?v=i91XV07Vsc0
https://www.youtube.com/watch?v=kn_dHspHd8M
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The polynomial is, by the best approximation theorem(s),

P (x) =

5∑
n=0

cnPn(x).

So, suppose we don’t have a = −1 and b = 1, but instead we’ve got some other
interval. Let

m =
a+ b

2
.

This is the midpoint of the interval. Let

` =
b− a

2
.

Then the interval

(a, b) = (m− `,m+ `).

So, if we want to move this interval to (−1, 1), we take t ∈ (m− `,m+ `) and map
it to

t 7→ t−m
`

= x.

We see that m 7→ 0 and the endpoints

m− ` 7→ m− `−m
`

= −1, m+ ` 7→ m+ `−m
`

= 1.

It is a linear map, so everything in between maps to everything in between −1 and
1. So we have a bijection between (a, b) and (−1, 1). If we want to go from (−1, 1)
to (a, b) then we send

x ∈ (−1, 1) 7→ `x+m = t.

Since we know about the Legendre polynomials, Pn, on (−1, 1) since t 7→ t−m
` = x

sends (a, b) to (−1, 1),

Pn

(
t−m
`

)
are orthogonal on (a, b).

To see this, just compute∫ b

a

Pn

(
t−m
`

)
Pk

(
t−m
`

)
dt =

∫ 1

−1
Pn(x)Pk(x)dx = 0 if n 6= k.

We have simply used substitution in the integral with x = t−m
` . So, these modified

Legendre polynomials are orthogonal on (a, b). Moreover∫ b

a

P 2
n

(
t−m
`

)
dt =

∫ 1

−1
P 2
n(x)dx = ||Pn||2 =

2

2n+ 1
.

So, we simply expand the function f using this version of the Legendre polynomials.
Let

cn =

∫ b
a
f(t)Pn

(
t−m
`

)
dt

||Pn||2
.

The polynomial we seek is

P (t) =

5∑
n=0

cnPn

(
t−m
`

)
.
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1.3.1. Weighted L2 on R with weight e−x
2

. Find the polynomial of at most degree
4 which minimizes ∫

R
|f(x)− P (x)|2e−x

2

dx.

We know that the Hermite polynomials are an orthogonal basis for L2 on R with the

weight function e−x
2

. We see that same weight function in the integral. Therefore,
we can rely on the theory of the Hermite polynomials! Consequently, we define

cn =

∫
R f(x)Hn(x)e−x

2

dx

||Hn||2
,

where

||Hn||2 =

∫
R
H2
n(x)e−x

2

dx = 2nn!
√
π.

The polynomial we seek is:

P (x) =

4∑
n=0

cnHn(x).

Some variations on this theme are created by changing the weight function. For
example, consider the problem: find the polynomial of at most degree 6 which
minimizes ∫

R
|f(x)− P (x)|2e−2x

2

dx.

This is not the correct weight function for Hn. However, we can make it so. The

correct weight function for Hn(x) is e−x
2

. So, if the exponential has 2x2 = (
√

2x)2,
then we should change the variable in Hn as well. We will then have, via the
substitution t =

√
2x,∫

R
Hn(
√

2x)Hm(
√

2x)e−2x
2

dx =

∫
R
Hn(t)Hm(t)e−t

2 dt√
2

= 0, n 6= m.

Moreover, the norm squared is now∫
R
H2
n(t)e−t

2 dt√
2

=
||Hn||2√

2
=

2nn!
√
π√

2
.

Consequently, the function Hn(
√

2x) are an orthogonal basis for L2 on R with

respect to the weight function e−2x
2

. We have computed the norms squared above.
The coefficients are therefore

cn =

∫
R f(x)Hn(

√
2x)e−2x

2

dx

2nn!
√
π/
√

2
.

The polynomial is

P (x) =

6∑
n=0

cnHn(
√

2x).
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1.3.2. Weighted L2 on (0,∞) with weight xαe−x. This is rather unlikely to occur,
because the Laguerre polynomials are rather scary, but it is possible. So, best that
you are prepared for this eventuality. In this case, we know that the Laguerre
polynomials are an orthogonal basis for this Hilbert space. So, if we are asked, for
example, find the polynomial of at most degree 7 which minimizes∫ ∞

0

|f(x)− P (x)|2xαe−xdx,

then we should define

cn =

∫∞
0
f(x)Lαn(x)xαe−xdx

||Lαn||2
.

The polynomial we seek is:

P (x) =

7∑
n=0

cnL
α
n(x).

Variations on this theme? That is virtually unimaginable.

1.3.3. Other functions and considerations. We could ask the same type of question
looking for coefficients of sin(nx) or cos(nx), for say n = 0, 1, 2, 3, .., N . Here, one
uses the fact that those functions also yield orthogonal basis for L2 on bounded
intervals. That is the name of the game: using the first N elements of an orthogonal
basis for the L2 space under consideration.

You may wonder why when it says at most degree N we always find all the
coefficients, c0, c1, . . . cN . That is because this is better then stopping at say cN−1.
Find them all. It could turn out that some of these end up being zero, so the
polynomial has degree lower than N . The only way to know that is to check the
calculation of all the c’s, OR to know that certain coefficients will vanish due to
evenness or oddness of functions, things of that nature. So, don’t toss out any of
the coefficients unless you are sure they vanish. Collect them all, like Pokemon!
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