
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.03.7

It is time to prepare for the exam! We will start by considering the other possible
scenarios for “best approximation type problems.”

1.1. Weighted L2 on R with weight similar to e−x
2

. Find the polynomial of
at most degree 4 which minimizes∫

R
|f(x)− P (x)|2e−x

2

dx.

We know that the Hermite polynomials are an orthogonal basis for L2 on R with the

weight function e−x
2

. We see that same weight function in the integral. Therefore,
we can rely on the theory of the Hermite polynomials! Consequently, we define

cn =

∫
R f(x)Hn(x)e−x

2

dx

||Hn||2
,

where

||Hn||2 =

∫
R
H2
n(x)e−x

2

dx = 2nn!
√
π.

The polynomial we seek is:

P (x) =

4∑
n=0

cnHn(x).

Some variations on this theme are created by changing the weight function. For
example, consider the problem: find the polynomial of at most degree 6 which
minimizes ∫

R
|f(x)− P (x)|2e−2x

2

dx.

This is not the correct weight function for Hn. However, we can make it so. The

correct weight function for Hn(x) is e−x
2

. So, if the exponential has 2x2 = (
√

2x)2,
then we should change the variable in Hn as well. We will then have, via the
substitution t =

√
2x,∫

R
Hn(
√

2x)Hm(
√

2x)e−2x
2

dx =

∫
R
Hn(t)Hm(t)e−t

2 dt√
2

= 0, n 6= m.

1
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Moreover, the norm squared is now∫
R
H2
n(t)e−t

2 dt√
2

=
||Hn||2√

2
=

2nn!
√
π√

2
.

Consequently, the function Hn(
√

2x) are an orthogonal basis for L2 on R with

respect to the weight function e−2x
2

. We have computed the norms squared above.
The coefficients are therefore

cn =

∫
R f(x)Hn(

√
2x)e−2x

2

dx

2nn!
√
π/
√

2
.

The polynomial is

P (x) =
6∑

n=0

cnHn(
√

2x).

1.2. Weighted L2 on (0,∞) with weight xαe−x. This is rather unlikely to occur,
because the Laguerre polynomials are rather scary, but it is possible. So, best that
you are prepared for this eventuality. In this case, we know that the Laguerre
polynomials are an orthogonal basis for this Hilbert space. So, if we are asked, for
example, find the polynomial of at most degree 7 which minimizes∫ ∞

0

|f(x)− P (x)|2xαe−xdx,

then we should define

cn =

∫∞
0
f(x)Lαn(x)xαe−xdx

||Lαn||2
.

The polynomial we seek is:

P (x) =

7∑
n=0

cnL
α
n(x).

Variations on this theme? That is virtually unimaginable.

1.3. Other best approximations. We could ask the same type of question look-
ing for coefficients of sin(nx) or cos(nx), for say n = 0, 1, 2, 3, .., N . Here, one uses
the fact that those functions also yield orthogonal basis for L2 on bounded inter-
vals. That is the name of the game: using the first N elements of an orthogonal
basis for the L2 space under consideration.

You may wonder why when it says at most degree N we always find all the
coefficients, c0, c1, . . . cN . That is because this is better then stopping at say cN−1.
Find them all. It could turn out that some of these end up being zero, so the
polynomial has degree lower than N . The only way to know that is to check the
calculation of all the c’s, OR to know that certain coefficients will vanish due to
evenness or oddness of functions, things of that nature. So, don’t toss out any of
the coefficients unless you are sure they vanish. Collect them all, like Pokemon!
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1.4. Theory Items: The Cliff Notes Version.

Theorem 1 (Pointwise Convergence of Fourier Series). Let f be a 2π periodic
function. Assume that f is piecewise continuous on R, and that for every x ∈ R,
the left and right limits of both f and f ′ exist at x, and these are finite. Let

SN (x) =

N∑
−N

cne
inx,

where

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

Then

lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) , ∀x ∈ R.

Proof:

(1) Fix the point x ∈ R.
(2) Expand the series.

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(y)e−inydyeinx.

(3) Change variable of integration to t = y−x. Use periodicity to say that the
limits of integration don’t change, so we have

SN (x) =

∫ π

−π
f(t+ x)

1

2π

N∑
−N

eintdt.

(4) Define the N th Dirichlet kernel:

DN (t) =
1

2π

N∑
−N

eint.

It is even, integral from ±π to 0 is 1
2 . It is also equal to

DN (t) =
e−iNt − ei(N+1)t

2π(1− eit)
.

(5) In terms of DN now

SN (x) =

∫ π

−π
f(t+ x)DN (t)dt.

(6) Use the fact about the integral of DN to write

1

2
f(x−) =

∫ 0

−π
DN (t)dtf(x−),

1

2
f(x+) =

1

2
=

∫ π

0

DN (t)dtf(x+).

(7) Show that now you just need to estimate:∣∣∣∣∫ 0

−π
DN (t)(f(t+ x)− f(x−))dt+

∫ π

0

DN (t)(f(t+ x)− f(x+))dt

∣∣∣∣ .
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(8) Insert the alternate expression for DN ,
fsestfsest (1.1)∣∣∣∣∫ 0

−π

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+ x)− f(x−))dt+

∫ π

0

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+ x)− f(x+))dt

∣∣∣∣ .
(9) Define a new function

g(t) =

{
f(t+x)−f(x−)

1−eit , t < 0
f(t+x)−f(x+)

1−eit , t > 0

Show that g is piecewise continuous and piecewise differentiable, because

lim
t→0−

f(t+ x)− f(x−)

1− eit
= lim
t→0−

t(f(t+ x)− f(x−))

t(1− eit)
=
f ′(x−)

−iei0
= if ′(x−)

and

lim
t→0+

f(t+ x)− f(x−)

1− eit
= if ′(x+).

(10) Use Bessel’s inequality for the Fourier coefficients of g to prove that (
fsestfsest
1.1)

tends to zero as N →∞.

These are the main steps, learn them and practice filling in the gaps

Theorem 2 (Fourier coefficients of function and derivative). This time in Swedish
for fun! L̊at f vara en 2π-periodisk funktion med f ∈ C2(R). Sedan Fourierkoeffi-
cienterna cn av f och Fourierkoefficienterna c′n av f ′ uppfyller

c′n = incn.

Proof: Use the definition of the Fourier series and coefficients of f and f ′ and
integrate by parts.

Theorem 3 (Big bad convolution approximation). Let g ∈ L1(R) such that∫
R
g(x)dx = 1.

Define

α =

∫ 0

−∞
g(x)dx, β =

∫ ∞
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist
for all points of R. Assume that either f is bounded on R or that g vanishes outside
of a bounded interval. Let, for ε > 0,

gε(x) =
g(x/ε)

ε
.

Then

lim
ε→0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.
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(1) This reduces to showing:

lim
ε→0

∫
−∞

f(x− y)gε(y)dy −
∫ 0

−∞
f(x+)g(y)dy = 0

and also

lim
ε→0

∫ ∞
0

f(x− y)gε(y)dy −
∫ ∞
0

f(x−)g(y)dy = 0.

(2) Choose one of these, saying the argument works in the same way for both.
Make sure you understand why that is true!

(3) I take the first one. Observe that for z = εy, we get∫ 0

−∞
g(y)dy =

∫ 0

−∞
g(z/ε)

dz

ε
=

∫ 0

−∞
gε(z)dz.

(4) Re-write the second term using gε(y) because f(x+) is a constant, so you
are estimating ∫ 0

−∞
gε(y) (f(x− y)− f(x+)) dy.

(5) Split the integral into two terms:∫ y0

−∞
+

∫ 0

y0

.

Remember that y0 < 0.
(6) START WITH THE SECOND OF THESE. Look at∫ 0

y0

gε(y) (f(x− y)− f(x+)) dy.

Use the definition of f(x+) and the fact that y < 0 so x − y > y to argue
that there exists y0 < 0 such that |f(x− y)− f(x+)| can be made as small
as you want. Then estimate∣∣∣∣∫ 0

y0

gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣ ≤ small

∫ 0

y0

|gε(y)|dy ≤ small

∫
R
|gε(y)|dy = small||g||L1 .

The L1 norm of g is finite by assumption, so this can be made as small as
desired.

(7) NOW THAT y0 is FIXED, look at the integral∣∣∣∣∫ y0

−∞
(f(x− y)− f(x+))gε(y)dy

∣∣∣∣ .
If f is bounded by M > 0, then |f(x− y)− f(x+)| ≤ 2M . Estimating:

2M

∣∣∣∣∫ y0

−∞
gε(y)dy

∣∣∣∣ = 2M

∫ y0/ε

−∞
|g(z)|dz.

Since y0 < 0, as ε → 0, y0/ε → −∞. Tail of convergent integral, so can

take ε > 0 but small to make
∫ y0/ε
−∞ |g(z)|dz as small as we want.

(8) If g vanishes outside of a bounded interval, take ε > 0 so small that g
vanishes for z ∈ (−∞, y0/ε). Then you also make this term small (zero in
fact).
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Theorem 4 (FIT). For f ∈ L2(R),

f(x) =
1

2π

∫
R
eixξ f̂(ξ)dξ.

Theorem 5 (Plancharel). For f and g in L2(R),

〈f, g〉 =

∫
R
f(x)g(x)dx =

1

2π

∫
R
f̂(x)ĝ(x)dx =

1

2π
〈f̂ , ĝ〉.

Proof:

(1) Start with the left side and use the FIT on f , to write

〈f, g〉 =
1

2π

∫
R

∫
R
eixξ f̂(ξ)g(x)dξdx.

(2) Move the complex conjugate to engulf the eixξ,

=
1

2π

∫
R

∫
R
f̂(ξ)g(x)e−ixξdξdx.

(3) Swap the order of integration and integrate x first:∫
R
f̂(ξ)g(x)e−ixξdx = f̂(ξ)ĝ(ξ).

Put it back in:

〈f, g〉 =
1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ =

1

2π
〈f̂ , ĝ〉.

Theorem 6 (Sampling). Let f ∈ L2(R). We take the definition of the Fourier
transform of f to be ∫

R
e−ixξf(x)dx,

and we then assume that there is L > 0 so that f̂(ξ) = 0 ∀ξ ∈ R with |ξ| > L.
Then:

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

Proof:

(1) Because f̂ is zero outside the interval [−L,L], expand it in a Fourier series:

f̂(x) =

∞∑
−∞

cne
inπx/L, cn =

1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

(2) Use the FIT and keep in mind that f̂ is zero outside [−L,L]:

f(t) =
1

2π

∫
R
eixtf̂(x)dx =

1

2π

∫ L

−L
eixtf̂(x)dx.

(3) Substitute Fourier expansion of f̂ into the integral:

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

cne
inπx/Ldx.
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(4) Investigate the coefficients (keep in mind that f̂(x) = 0 for |x| > L) and
use the FIT:

cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx =

1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.

(5) Substitute into:

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx

(6) Swap n and −n because that’s just changing the order of summation which
doesn’t change a thing.

f(t) =
1

2L

∞∑
−∞

f
(nπ
L

)∫ L

−L
ex(it−inπ/L)dx.

(7) Compute∫ L

−L
ex(it−inπ/L)dx =

eL(it−inπ/L)

i(t− nπ/L)
− e−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt− nπ).

Reduce to obtain (use fact that sine is odd):

sin(Lt− nπ)

Lt− nπ
=
− sin(nπ − Lt)

Lt− nπ
=

sin(nπ − Lt
nπ − Lt

.

Theorem 7 (Three equivalent conditions to be an ONB in Hilbert space). L̊at
{φn}n∈N vara ortonormala i ett Hilbert-rum, H. Följande tre är ekvivalenta:

(1) f ∈ H och 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N
〈f, φn〉φn.

(3) ||f ||2 =
∑
n∈N
|〈f, φn〉|2 .

Proof:

(1) Show (1) =⇒ (2) =⇒ (3) =⇒ (1). Start by assuming (1) holds.
(2) Observe that ∑

n∈N
|〈f, φn〉|2 ≤ ||f ||2 <∞.

(3) Use this and the Pythagorean Theorem to show that if

gN :=

N∑
n=0

〈f, φn〉φn,

then {gN} is a Cauchy sequence.
(4) Hilbert spaces are complete so gN → g ∈ H.
(5) Show that 〈f − g, φn〉 = 0 for all n. Since (1) is true, this means f = g.
(6) Next you assume (2) holds. Use the Pythagorean Theorem to obtain (3).
(7) Next you assume (3) holds. If 〈f, φn〉 = 0 for all n, then by (3), ||f ||2 = 0

so f = 0.
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Theorem 8 (Best Approximation). L̊at {φn}n∈N vara en ortonormal mängd i ett
Hilbert-rum, H. Om f ∈ H,

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

och = gäller ⇐⇒ cn = 〈f, φn〉 gäller ∀n ∈ N.

Proof:

(1) Define

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,

and

ϕ :=
∑

cnφn.

(2) Then,

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2<〈f − g, g − ϕ〉.

(3) Stay calm and carry on, using the properties of the scalar product to show
that

〈f − g, g − ϕ〉 = 0.

(4) Thus

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≤ ||f − g||2,

with equality if and only if ||g − ϕ||2 = 0. Use the Pythagorean Theorem
to show that

||g − ϕ||2 =
∑∣∣∣f̂n − cn∣∣∣2 ,

so this vanishes iff cn = f̂n for all n.

Theorem 9 (SLPs). L̊at f och g vara egenfunktioner till ett regulärt SLP i inter-
vallet [a, b] med w ≡ 1. L̊at λ vara egenvärden till f och µ vara dess till g. Sedan
gäller:

(1) λ ∈ R och µ ∈ R;
(2) Om λ 6= µ, gäller: ∫ b

a

f(x)g(x)dx = 0.

Proof:

(1) The scalar product here is

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

(2) Self-adjointness in the definition of regular SLP says

〈f, Lg〉 = 〈Lf, g〉.

(3) Use this, properties of the scalar product, and the eigenvalue equations for
f and g to obtain the results. Just follow your nose.
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Theorem 10 (Bessel generating function). For all x and for all z 6= 0, the Bessel
functions, Jn satisfy

∞∑
n=−∞

Jn(x)zn = e
x
2 (z−

1
z ).

(1) Write out TWO TAYLOR SERIES:

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.

(2) Multiply the series together

bessel1bessel1 (1.2) exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

.

(3) You have TWO independent variables. Change ONE of them. Let n = j−k.
So you use the two independent variables n and k. Now n goes from −∞
to ∞. Also, j + k = n+ 2k, and j = n+ k Thus:

exz/2e−x/(2z) =
∑
n∈Z

∑
k≥0

(−1)kzn
(x/2)n+2k

k!(n+ k)!
.

Pull the zn in front and recall that (n+ k)! = Γ(n+ k + 1) to have

exz/2e−x/(2z) =
∑
n∈Z

zn
∑
k≥0

(−1)k
(x/2)n+2k

k!Γ(n+ k + 1)
=
∑
n∈Z

znJn(x).

Theorem 11 (Hermite orthogonality). The Hermite polynomials {Hn}∞n=0 are

orthogonal on R with respect to the weight function w(x) = e−x
2

. Recall here
that

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

and so the statement is that∫
R
Hn(x)Hm(x)e−x

2

dx = 0, n 6= m.

Proof:

(1) Assume without loss of generality that n > m. Write using the definition
of Hn and Hm,∫

R
Hn(x)Hm(x)e−x

2

dx = (−1)n
∫
R

dn

dxn
e−x

2

Hm(x)dx.

(2) Use integration by parts n times. The boundary terms vanish because

dj

dxj
e−x

2

= pj(x)e−x
2
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for all j, where pj is some polynomial of degree j. Thus the boundary terms

are of the form polynomial times e−x
2

and the decay of the Gaussian makes
everything vanish at ±∞. After integrating by parts n times get:∫

R
e−x

2 dn

dxn
Hm(x)dx.

(3) Hm is a polynomial of degree m < n. So if you differentiate it n times the
result is zero. Hence the integrand is zero and that whole hot mess is zero.

Theorem 12 (Generating for Hermite). For any x ∈ R and z ∈ C, the Hermite
polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2

.

Proof:

(1) Define a function:

e−(x−z)
2

= e−x
2+2xz−z2 .

(2) Do a Taylor series expansion of this function at the point z = 0:

e−(x−z)
2

=
∑
n≥0

anz
n,

an =
1

n!

dn

dzn
e−(x−z)

2

, evaluated at z = 0.

(3) Compute the coefficients using the chain rule. The exponent is −(x− z)2.
Let u = x− z. Then d

dzu = −1 so

dn

dzn
e−(x−z)

2

∣∣∣∣
z=0

= (−1)n
dn

dun
e−u

2

∣∣∣∣
z=0

.

Since u = x− z, when z = 0, u = x, so

= (−1)n
dn

dun
e−u

2

∣∣∣∣
u=x

.

This is the same as

(−1)n
dn

dxn
e−x

2

.

(4) Insert the coefficients into the Taylor series:

e−(x−z)
2

=
∑
n≥0

(−1)n

n!

dn

dxn
e−x

2

zn.

(5) Multiply both sides by ex
2

:

ex
2

e−(x−z)
2

= e2xz−z
2

=
∑
n≥0

(−1)n

n!
ex

2 dn

dxn
e−x

2

zn =
∑
n≥0

zn

n!
Hn(x).
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