
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.03.9

We continue preparing for the exam!

1.1. Summing series using Fourier series. We are asked to compute:
∞∑
1

1

9 + n2
.

We are given the hint to expand e3x in a Fourier series on (−π, π). So really, we
extend the function to be 2π periodic on R. We compute the Fourier coefficients∫ π

−π
e3xe−inxdx =

ex(3−in)

3− in

∣∣∣∣x=π
x=−π

=
e3πe−inπ

3− in
− e−3πeinπ

3− in
= (−1)n

2 sinh(3π)

3− in
.

Hence, the Fourier coefficients are

1

2π
(−1)n

2 sinh(3π)

3− in
,

and the Fourier series is
∞∑
−∞

(−1)n sinh(3π)

π(3− in)
einx.

We pull out some constant stuff,

sinh(3π)

π

∞∑
−∞

(−1)neinx

3− in
.

How can we get a series of 1
9+n2 ? We need that pesky (−1)n to go away. It will go

away if x = π because then einπ = (−1)n so (−1)neinπ = 1. Moreover once that is
the case, observe that pairing positive and negative n’s, we get

n > 0,
1

3 + in
+

1

3− in
=

3− in+ 3 + in

(3 + in)(3− in)
=

6

9 + n2
.

The term n = 0 is 1/3. So, for x = π the series is

sinh(3π)

π

1

3
+
∑
n≥1

6

9 + n2

 .

1
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Now, we use the Theorem on the pointwise convergence of Fourier series. Our
function is extended to be 2π periodic. When we approach the point x = π from
the left, the function is tending to e3π. However, since we extend it to be 2π periodic,
if we approach from the right, that is for x > π, the limit is e−3π (the same as if
we approach the point −π from the right because of periodicity). Therefore, the
theorem says that the Fourier series

sinh(3π)

π

1

3
+
∑
n≥1

6

9 + n2

 converges to
e3π + e−3π

2
= cosh(3π).

We simply re-arrange:

π cosh(3π)

sinh(3π)
=

1

3
+ 6

∑
n≥1

1

9 + n2
=⇒

∑
n≥1

1

9 + n2
=

(
π cosh(3π)

sinh(3π)
− 1

3

)
1

6
.

1.2. Best approximation. Minimize:∫ 2

−2
| cos(2πx) + P (x)|2dx, degree of P is at most 2.

This looks weird because it is + not −. Very sneaky indeed. However, we just do
for the usual case, then use −P (x) instead. So, we see that the interval is a nice
finite interval, and we can use the Legendre polynomials, with a slight modification.
Consider

t =
x

2
.

Then we have∫ 2

−2
Pn(x/2)Pm(x/2)dx =

∫ 1

−1
Pn(t)Pm(t)2dt =

{
0 n 6= m

4
2n+1 n = m

Hence the polynomials {Pn(x/2)}n≥0 are orthogonal on L2 on the interval (−2, 2).
We use these to approximate the function:

cj =

∫ 2

−2 Pj(x/2) cos(2πx)dx

4/(2j + 1)
.

The polynomial which best approximates cos(2πx) is

2∑
0

cjPj(x/2).

So the one we seek above is

P (x) = −
2∑
0

cnPn(x/2).

1.3. Solving PDE on finite interval. We should solve:
ut − kuxx = 30x x ∈ (0, 1), t > 0

u(x, 0) = g(x) x ∈ (0, 1)

u(0, t) = 0 = u(1, t)
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We see that the PDE is inhomogeneous with a time independent inhomogeneity.
So, we search for a steady state solution. We need

−kf ′′(x) = 30x =⇒ −kf ′(x) = 15x2 + c =⇒ −kf(x) = 5x3 + cx+ b.

Hence,

f(x) = −5x3

k
− cx

k
− b

k
.

To satisfy the boundary conditions, we need

f(0) = − b
k

= 0 =⇒ b = 0.

We also need

f(1) = −5

k
− c

k
= 0 =⇒ c = −5.

So,

f(x) = −5x3

k
+

5x

k
.

We next solve the problem:
ut − kuxx = 0 x ∈ (0, 1), t > 0

u(x, 0) = g(x)− f(x) x ∈ (0, 1)

u(0, t) = 0 = u(1, t)

We do this using separation of variables. Write u = X(x)T (t). The PDE is then

T ′X −X ′′T = 0 =⇒ T ′

T
=
X ′′

X
.

Both sides are constant. Call it λ. So, we have

X ′′ = λX, X(0) = X(1) = 0.

We must consider λ = 0, λ > 0, and λ < 0. I leave it as an exercise to verify
that there are no non-zero solutions for λ ≥ 0. For λ < 0 we have solutions, up to
constant factors,

Xn(x) = sin(nπx), λn = −n2π2.

This gives us the equation for the partner function, Tn,

T ′n(t) = λnTn =⇒ Tn(t) = e−n
2π2t up to constant factors.

Since we are solving the homogeneous PDE, we smash the solutions together into
a series,

u(x, t) =
∑
n≥1

cnTn(t)Xn(x).

Since we want

u(x, 0) =
∑
n≥1

cnXn(x) = g(x)− f(x),

this tells us that

cn =

∫ 1

0
(g(x)− f(x))Xn(x)dx∫ 1

0
X2
n(x)dx

.

The full solution is

f(x) + u(x, t).



4 JULIE ROWLETT

1.4. PDE on R. We should solve the transport equation:{
ut + cux = g(x, t) x ∈ R, t > 0

u(x, 0) = ϕ(x)

We hit the PDE with the Fourier transform in the x variable, because the PDE is
on R:

∂tû(ξ, t) + ciξû(ξ, t) = ĝ(ξ, t).

Above we have used BETA 13.2 F.10. Next, we use another formula from BETA,
for first order ODEs, to solve the ODE in t. The formula is 9.1.3, which says that
the solution is

û(ξ, t) = e−ciξt
(∫ t

0

eicξsĝ(ξ, s)ds+ C(ξ)

)
.

To have the correct initial data,

û(ξ, 0) = ϕ̂(ξ) =⇒ C(ξ) = ϕ̂(ξ).

So, we have found

û(ξ, t) = e−ciξt
(∫ t

0

eicξsĝ(ξ, s)ds+ ϕ̂(ξ)

)
= e−icξtϕ̂(ξ) +

∫ t

0

e−icξ(t−s)ĝ(ξ, s)ds.

To go backwards, we use BETA 13.2.F7,

u(x, t) = ϕ(x− ct) +

∫ t

0

g(x− c(t− s), s)ds.

1.5. PDE on R+. Solve:
ux + cut + u = 0 x > 0, t > 0

u(0, t) = g(t)

u(x, 0) = 0

We use the Laplace transform in the t variable, because we have the nice condition
that u(x, 0) = 0. So, we have

∂xũ(x, z) + czũ(x, z) + ũ(x, z) = 0.

This is a nice ODE for ũ,

∂xũ(x, z) = −(cz + 1)ũ(x, z) =⇒ ũ(x, z) = a(z)e−(cz+1)x.

The BC tells us that

ũ(0, z) = g̃(z) = a(z).

So, we have found

ũ(x, z) = g̃(z)e(−cz+1)x = e−czxg̃(z)e−x.

To undo the Laplace transform we use BETA 13.5 L4:

u(x, t) = g(t− cx)Θ(t− cx)e−x.

Above, Θ is the heavyside function.
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1.6. The last three theory items: short proofs.

Theorem 1 (Bessel generating function). For all x and for all z 6= 0, the Bessel
functions, Jn satisfy

∞∑
n=−∞

Jn(x)zn = e
x
2 (z−

1
z ).

(1) Write out TWO TAYLOR SERIES:

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.

(2) Multiply the series together

bessel1bessel1 (1.1) exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

.

(3) You have TWO independent variables. Change ONE of them. Let n = j−k.
So you use the two independent variables n and k. Now n goes from −∞
to ∞. Also, j + k = n+ 2k, and j = n+ k Thus:

exz/2e−x/(2z) =
∑
n∈Z

∑
k≥0

(−1)kzn
(x/2)n+2k

k!(n+ k)!
.

Pull the zn in front and recall that (n+ k)! = Γ(n+ k + 1) to have

exz/2e−x/(2z) =
∑
n∈Z

zn
∑
k≥0

(−1)k
(x/2)n+2k

k!Γ(n+ k + 1)
=
∑
n∈Z

znJn(x).

Theorem 2 (Hermite orthogonality). The Hermite polynomials {Hn}∞n=0 are or-

thogonal on R with respect to the weight function w(x) = e−x
2

. Recall here that

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

and so the statement is that∫
R
Hn(x)Hm(x)e−x

2

dx = 0, n 6= m.

Proof:

(1) Assume without loss of generality that n > m. Write using the definition
of Hn and Hm,∫

R
Hn(x)Hm(x)e−x

2

dx = (−1)n
∫
R

dn

dxn
e−x

2

Hm(x)dx.
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(2) Use integration by parts n times. The boundary terms vanish because

dj

dxj
e−x

2

= pj(x)e−x
2

for all j, where pj is some polynomial of degree j. Thus the boundary terms

are of the form polynomial times e−x
2

and the decay of the Gaussian makes
everything vanish at ±∞. After integrating by parts n times get:∫

R
e−x

2 dn

dxn
Hm(x)dx.

(3) Hm is a polynomial of degree m < n. So if you differentiate it n times the
result is zero. Hence the integrand is zero and that whole hot mess is zero.

Theorem 3 (Generating for Hermite). For any x ∈ R and z ∈ C, the Hermite
polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2

.

Proof:

(1) Define a function:

e−(x−z)
2

= e−x
2+2xz−z2 .

(2) Do a Taylor series expansion of this function at the point z = 0:

e−(x−z)
2

=
∑
n≥0

anz
n,

an =
1

n!

dn

dzn
e−(x−z)

2

, evaluated at z = 0.

(3) Compute the coefficients using the chain rule. The exponent is −(x− z)2.
Let u = x− z. Then d

dzu = −1 so

dn

dzn
e−(x−z)

2

∣∣∣∣
z=0

= (−1)n
dn

dun
e−u

2

∣∣∣∣
z=0

.

Since u = x− z, when z = 0, u = x, so

= (−1)n
dn

dun
e−u

2

∣∣∣∣
u=x

.

This is the same as

(−1)n
dn

dxn
e−x

2

.

(4) Insert the coefficients into the Taylor series:

e−(x−z)
2

=
∑
n≥0

(−1)n

n!

dn

dxn
e−x

2

zn.
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(5) Multiply both sides by ex
2

:

ex
2

e−(x−z)
2

= e2xz−z
2

=
∑
n≥0

(−1)n

n!
ex

2 dn

dxn
e−x

2

zn =
∑
n≥0

zn

n!
Hn(x).
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