FOURIER ANALYSIS & METHODS

JULIE ROWLETT

ABSTRACT. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...

1. 2018.03.9
We continue preparing for the exam!

1.1. Summing series using Fourier series. We are asked to compute:
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We are given the hint to expand €3* in a Fourier series on (—, 7). So really, we
extend the function to be 27 periodic on R. We compute the Fourier coefficients
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Hence, the Fourier coefficients are

1 n 2sinh(3m
o (-1 2T
™

3—in ’

and the Fourier series is
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We pull out some constant stuff,
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How can we get a series of =57 We need that pesky (—1)" to go away. It will go
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away if = 7w because then "™ = (—1)"™ so (—1)"e"™ = 1. Moreover once that is
the case, observe that pairing positive and negative n’s, we get
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The term n = 0 is 1/3. So, for = 7 the series is

sinh(37) [ 1 6
7'(' 3 * ; 9+ n?

1



2 JULIE ROWLETT

Now, we use the Theorem on the pointwise convergence of Fourier series. Our
function is extended to be 27 periodic When we approach the point z = 7 from
the left, the function is tending to e3™. However, since we extend 1t to be 27 periodic,
if we approach from the right, that is for > 7, the limit is e™°" (the same as if
we approach the point —7 from the right because of periodicity). Therefore, the
theorem says that the Fourier series

inh(3 1 6 3 -3
Snlf(ﬂ-) 3 + Z 952 | converges to % = cosh(3m).

We simply re-arrange:
7 cosh(3m) 1 weosh(3m) 1\ 1
T —~ 16 — - )
sinh(3m) Z 9+n2 ; 9+ n? ( sinh(3m) 3> 6

1.2. Best approximation. Minimize:

2
/ |cos(2mz) + P(x)|*dx,  degree of P is at most 2.
-2

This looks weird because it is + not —. Very sneaky indeed. However, we just do
for the usual case, then use —P(z) instead. So, we see that the interval is a nice
finite interval, and we can use the Legendre polynomials, with a slight modification.
Consider
—
=3
Then we have

/ P (x/2) Py (x/2)dx = /1 P () Pro (t)2dt = {O 4 e

1 72n+1 n=m

Hence the polynomials {P,(x/2)},>0 are orthogonal on £? on the interval (—2,2).
We use these to approximate the function:

o f—22 Pj(x/2) cos(2mx)dx
v /(25 +1)

The polynomial which best approximates cos(27x) is

ch (x/2).

So the one we seek above is

== cnPu(z/2).
0

1.3. Solving PDE on finite interval. We should solve:

U — kg, = 30z z€(0,1), t>0

u(z,0) = g(x) z € (0,1)
u(0,t) =0 =wu(1,1)
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We see that the PDE is inhomogeneous with a time independent inhomogeneity.
So, we search for a steady state solution. We need
—kf'(x) =300 = —kf'(x) =152 + ¢ = —kf(x) =52 +cx +b.

Hence,

To satisfy the boundary conditions, we need
b
f(O):—%zo = b=0.

We also need

So,

We next solve the problem:
U — ktgy =0 ze€(0,1), t>0
u(z,0) = g(z) — f(z) =€ (0,1)
u(0,t) =0=wu(1,?)
We do this using separation of variables. Write u = X (z)T'(t). The PDE is then

T/ XI/
"X -X"T= — = —.
0 = T e

Both sides are constant. Call it A. So, we have
X"=XX, X(0)=X(1)=0.

We must consider A = 0, A > 0, and A < 0. I leave it as an exercise to verify
that there are no non-zero solutions for A > 0. For A < 0 we have solutions, up to

constant factors,
X, (z) = sin(nwzx), A\, = —n’r2

This gives us the equation for the partner function, 7,,,
T (t) = \T,, = T,(t) = e~ ™! up to constant factors.

Since we are solving the homogeneous PDE, we smash the solutions together into
a series,
u(@,t) = enTn(t) Xn(x).
n>1
Since we want
u(@,0) =Y enXn(x) = g(x) — f(2),
n>1
this tells us that
_ Jol9(@) = f(2) X ()da
L X@de

Cn

The full solution is

f(@) + u(z, ).
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1.4. PDE on R. We should solve the transport equation:
us + cuy = g(z,t) x€RE>0
u(z,0) = ¢(x)

We hit the PDE with the Fourier transform in the = variable, because the PDE is
on R:

Above we have used BETA 13.2 F.10. Next, we use another formula from BETA,

for first order ODEs, to solve the ODE in ¢t. The formula is 9.1.3, which says that
the solution is

t
a(€,t) = e ci€t (/ €' g€, s)ds + 0(5)) .
0
To have the correct initial data,

a(§,0) = ¢(§) = C(&) = #(&).

So, we have found

e ) = et ( / e“fsg@,s)dsw(o) — eiete) + / =€) 5(c  5)ds.

To go backwards, we use BETA 13.2.F7,
t
u(z,t) = p(x — ct) + / gz —c(t — s), s)ds.
0

1.5. PDE on R*. Solve:

Up +cup +u=0 x>0, t>0

u(0,t) = g(t)
u(z,0) =0

We use the Laplace transform in the ¢ variable, because we have the nice condition
that u(x,0) = 0. So, we have

Oz t(z, 2) + czi(x, z) + U(x, z) = 0.
This is a nice ODE for u,
Opii(x,z) = —(cz + Da(z, 2) = a(z,2) = a(z)e” (*HD2,
The BC tells us that
(0, 2) = g(z) = a(z).

So, we have found
iz, 2) = §(2)e~FHDT = g TGy
To undo the Laplace transform we use BETA 13.5 L4:
u(z,t) = gt — cx)O(t — cx)e™".

Above, O is the heavyside function.
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1.6. The last three theory items: short proofs.

Theorem 1 (Bessel generating function). For all x and for all z # 0, the Bessel
functions, J, satisfy

Z Jn(2)2" = e2(x=32),
n=—oo
(1) Write out TWO TAYLOR SERIES:
rz/2 _ (7)
¢ B Z 4!
Jj=0

and

ok
e—w/(2z) _ Z (Z) )

!
= k!
(2) Multiply the series together
Tz J —T k . i—k
xz/2 —x/(22) _ (?) (Z) _ k(T itk 2
(1) e = H IR ST = ST (0 (5) T T
3>0 k>0 §.k>0

(3) You have TWO independent variables. Change ONE of them. Let n = j—k.
So you use the two independent variables n and k. Now n goes from —oco
to co. Also, j + k =n+ 2k, and j =n + k Thus:

wz/2 —;v/(22) ZZ k g l’/z) 2k
|
n€Z k>0 Kl(n + k)l
Pull the 2™ in front and recall that (n 4+ k)! = T'(n + k + 1) to have
2 n+2k
o7/2p—/(22) _ Z Z k (z/2) Zsz
!
= = k;Fn+k—|—1
&
Theorem 2 (Hermite orthogonality). The Hermite polynomials {H,}32 , are or-
thogonal on R with respect to the weight function w(x) = e=*" . Recall here that

n ? dm 2
Hy(z) = (-1)"e" dxﬁe )
and so the statement is that
/ H,( e dy = 0, n#m.

Proof:

(1) Assume without loss of generality that n > m. Write using the definition
of H, and H,,,

/ Hn(x)Hm(x)e_”’2dx =(-1" d—e_g”sz(;v)dx.
R R dx™
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(2) Use integration by parts n times. The boundary terms vanish because

J
&

—e
dxzI

for all j, where p; is some polynomial of degree j. Thus the boundary terms

=pj(z)e

are of the form polynomial times e~ and the decay of the Gaussian makes

everything vanish at £0o. After integrating by parts n times get:

/ e d—Hm(z)dx
R

dx™

(3) H,, is a polynomial of degree m < n. So if you differentiate it n times the
result is zero. Hence the integrand is zero and that whole hot mess is zero.

Theorem 3 (Generating for Hermite). For any x € R and z € C, the Hermite
polynomials,

Ho(w) = (1) e
satisfy
Z Hn(m)%r: = 222"
n=0
Proof:
(1) Define a function:
o~ (@=2)? _ gt 2ws—2

(2) Do a Taylor series expansion of this function at the point z = 0:

_ _ 2
e~ (2" = g anpz",

n>0
1 d"
ap = — —— —(2=2) evaluated at z = 0.
nl dzn
(3) Compute the coefficients using the chain rule. The exponent is —(z — 2)?.
Let wu =2 — z. Then d%u:—l SO
dZ z=0 du z=0
Since u = x — z, when z =0, u = z, so
dr 2
= (—1)"—= e
(=1 e .
This is the same as
dn 2
_1 n_— ,— .
(=1 e

(4) Insert the coefficients into the Taylor series:

S S ) L L
€ ’r; ol dx”e z .
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(5) Multiply both sides by e®":

2?2 —(x—2)? _ 2xz—22 _ (_1)11 xQdi 22 _n _ z
ee =e —2 e e e —Zn!Hn(x).
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