
FOURIER ANALYSIS & METHODS
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.01.19

What is this mysterious L2 thing? It seems to have raised a few eyebrows. So,
let’s demystify it a bit. Let us fix a finite (not infinite) interval [a, b]. Then L2([a, b])
is a complete normed vector space which has an inner product. Once we have fixed
the interval, we may simply write L2. The “vectors” in this vector space can be
understood as functions.1 Of course, you’ve memorized that the inner product of
two elements of L2 is

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

For this reasons, the functions in L2 need to satisfy:

〈f, f〉 =

∫ b

a

f(x)f(x)dx =

∫ b

a

|f |2 <∞.

This guarantees that the elements of L2 all have definable norms,

||f || =
√
〈f, f〉.

So, as long as you can integrate |f |2 over the interval [a, b] and get something finite,
f ∈ L2. Although we don’t necessarily need it right now, you may be happy to
know that the inner product satisfies a Cauchy-Schwarz inequality,

|〈f, g〉| ≤ ||f ||||g||.

Exercise 1. Use the Cauchy-Schwarz inequality to prove that for any f ∈ L2 on
the interval [−π, π], the Fourier coefficients,

cn =
1

2π

∫ π

−π
f(x)e−inxdx,

1For those of you interested in the finer details, they are actually equivalence classes of mea-
surable functions. However, since we can always select a function to represent its equivalence
class, we’re just going to think about the elements of L2 as measurable functions. Measurable is

a notion from measure theory, and you can just take it on faith that everything you’ve ever seen
or heard of or could possibly dream up is measurable. So just don’t worry about the measurable
part.
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satisfy

|cn| ≤
||f ||√

2π
.

What are some examples? Well, any function f which is bounded on the interval
will be an L2 function. Let’s make this official in what we’ll call the standard
estimate.

Proposition 1 (The standard estimate). Assume f is defined on some interval
[a, b]. Assume that f satisfies a bound of the form |f(x)| ≤ M for x ∈ [a, b]. (We
actually only need this for “almost every” x, but to make that precise, we need some
Lebesgue measure theory). Then,∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)M.

Proof: Standard estimate!∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx ≤
∫ b

a

Mdx = M(b− a).

So, if f is bounded on an interval, then |f |2 ≤ M2, is also bounded, hence the
integral is bounded. Something like f(x) = 1

x will be problematic if the interval

contains 0. However, even though f(x) = x−1/3 blows up as x → 0, it blows up
slowly enough that ∫ π

−π
|x−1/3|2dx <∞.

So, the function doesn’t have to be bounded for the integral to be finite, but it also
can’t blow up too badly.

2. Bessel’s Inequality (L2 convergence of Fourier series)

Today we’re going to investigate the issue of convergence of Fourier series. To
move towards this question of convergence, we prove an important estimate known
as the Bessel Inequality.

Theorem 2 (Bessel Inequality). Assume that f is 2π periodic and integrable on
[−π, π]. Then the Fourier coefficients {cn}n∈Z satisfy∑

n∈Z
|cn|2 ≤

1

2π

∫ π

−π
|f(x)|2dx.

Proof: It’s all about estimating. We want to show that for any N , we have

SN :=

N∑
n=−N

|cn|2 ≤
1

2π

∫ π

−π
|f(x)|2dx.

Then, since it’s true for all N , it’s true as N → ∞, so it’s true for the whole sum
over n ∈ Z. Note that this is equivalent to showing that

0 ≤ 1

2π

∫ π

−π
|f(x)|2dx− SN ⇐⇒ 0 ≤

∫ π

−π
|f(x)|2dx− 2πSN .
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We have seen above that L2 is a complete normed vector space. So, we can calculate
the “distance” between elements of this vector space using the norm:

||f − g|| =

√∫ b

a

|f(x)− g(x)|2dx.

So, let us cook up a function who has L2 norm equal to SN (or maybe 2πSN ) and
whose distance to f we want to estimate. Of course, a natural guess is the partial
Fourier series,

gN :=

N∑
−N

cne
inx.

Then, we compute ∫ π

−π
|gN (x)|2dx =

∫ π

−π
gN (x)gN (x)dx

=

∫ π

−π

N∑
n=−N

cne
inx

N∑
m=−N

cmeimxdx

=

N∑
n,m=−N

cncm

∫ π

−π
einxe−imxdx.

These integrals are zero whenever n 6= m. Why? (Well, because we proved it...)
So, we only get terms in the sum with n = m, hence we may use the same letter,
and all the other terms are gone because they vanish. So,

||gN ||2 =

N∑
n=−N

|cn|22π = 2πSN .

Remember that when n = m the scalar product 〈einx, eimx〉 = 2π. Super. So, we
are now going to compare gN and f .

For the sake of simplicity, we will drop the limits of integration, because all
integrals are from −π to π. We will also write f for f(x) and drop the dx from
the integral. To compare f to gN , we start by looking at the L2 distance between
them:

? =

∫
|f − gN |2 =

∫
(f − gN )f − gN

=

∫
|f |2 − gNf − fgN + |gN |2

=

∫
|f |2 −

N∑
n=−N

cn

∫
feinx −

N∑
n=−N

cn

∫
fe−inx +

N∑
n,m=−N

cncm

∫
einxe−imx.

Above, we used the linearity of the integral. Next, we use the definition of cn,

cn =
1

2π

∫
fe−inx =⇒ cn =

1

2π

∫
fe−inx =

1

2π

∫
fe−inx =

1

2π

∫
feinx.

So, we use this to simplify above,

? =

∫
|f |2 −

N∑
n=−N

cn2πcn −
N∑

n=−N
cn2πcn +

N∑
n,m=−N

cncm

∫
einxe−imx.
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The last term simplifies by noting that the integral vanishes whenever n 6= m.
When n = m the integral is 2π. So noting that cncn = |cn|2,

? =

∫
|f |2 −

N∑
n=−N

cn2πcn −
N∑

n=−N
cn2πcn +

N∑
n=−N

cncn2π

=

∫
|f |2 − 2π

N∑
n=−N

|cn|2.

What can we say about ? from the beginning? By definition

? =

∫
|f − gN |2 ≥ 0,

because the integral of something non-negative is non-negative. So,

0 ≤ ? =

∫
|f |2 − 2π

N∑
n=−N

|cn|2 =⇒ 0 ≤ 1

2π

∫
|f |2 − SN =⇒ SN ≤

1

2π

∫
|f |2.

This is what we wanted to show.

Corollary 3. We have ∑
n∈N
|an|2 + |bn|2 ≤ 2

∑
n∈Z
|cn|2,

and

lim
|n|→∞

?n = 0, ? = a, b, or c.

Exercise 2. The proof is an exercise. First, use the previous exercises to express
the a’s and b’s in terms of the c’s. Next, what can you say about the terms of a
non-negative, convergent series?

3. Pointwise convergence of Fourier Series

By Bessel’s inequality, we know that∑
n∈Z
|cn|2 ≤

1

2π

∫ π

−π
|f |2.

Now, it’s important to note that when the series of |cn|2 converges, then eventually
|cn|2 < 1 so also |cn| < 1. Then, |cn| > |cn|2. So, just because the series of |cn|2
converges, the series with just cn might not. For example,∑

n≥1

1

n2
<∞

whereas ∑
n≥1

1

n
=∞.

So Bessel’s inequality doesn’t tell us that the Fourier series∑
n∈Z

cne
inx
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always converges. This is a bit of a concern, because we want to use our method
to solve PDEs. If our solution is one of these Fourier series, then we’re up a creek
without a paddle if that series doesn’t converge to anything!

This is the motivation to investigate the subtle question of pointwise convergence
of Fourier series. Although math is fun just for itself, here, we’re always motivated
by a desire to understand real, relevant, physical and chemical processes! (Like heat,
waves, electromagnetism, quantum particles, chemical reactions, the hydrogen and
other atoms, etc...)

Definition 4. We say that a function is piecewise Ck on a (possibly infinite) in-
terval, I, if there is a discrete set, S of points in the interval (possibly empty set)
such that f is Ck on I \ S. Moreover, we assume that the left and right limits of
f (j) exist at all of the points in S, for all j = 0, 1, . . . , k.

In case the notion of discrete set is unfamiliar, if the set S contains finitely many
points, then it’s a discrete set. If the interval I = R, then both Z and N are discrete
sets, but Q is not. To be perfectly precise, a set in R is discrete if it is countable,
thus we may write it as {pn}n∈N, and for each pn there exists εn > 0 such that
|pn − pm| > εn∀m 6= n. That is, in the little interval [pn − εn/2, pn + εn/2], the
only point of our discrete set contained in that interval is pn.

Examples of piecewise C1 functions are our periodically extended |x|, which is
continuous on R but only piecewise C1. The periodically extended x is piecewise
C0 and also piecewise C1. Actually, both of these guys are piecewise C∞, because
apart from the odd multiples of π, (and 0 for |x|) these functions are lovely and
smooth.

Now we are going to prove the great big theorem about pointwise convergence
of Fourier series.

Theorem 5. Let f be a 2π periodic function. Assume that f is piecewise C1 on
R, where piecewise C1 is defined as above. Denote the left limit at x by f(x−) and
the right limit by f(x+). Let

SN (x) =

N∑
−N

cne
inx,

where

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

Then

lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) , ∀x ∈ R.

Proof: This is a big theorem, because it’s got a lot of clever ideas in the proof.
Smaller theorems can be proven by just “following your nose.” So, to try to help
with the proof, we’re going to highlight the big ideas. To learn the proof, you can
start by learning all the big ideas in the order in which they’re used. Once you’ve
got these down, then try to fill in the math steps starting at one idea, working to
get to the next idea. The big ideas are like light posts guiding your way through
the dark and spooky math.

To begin with, the result should hold for each and every point x ∈ R. Idea 1:
Fix a point x ∈ R.

Next, as usual, we should use the definitions.
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Idea 2: Expand the series using its definition.
So, we write

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(y)e−inydyeinx.

Now, let’s move that lonely einx inside the integral so it can get close to its friend,
e−iny. Then,

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(y)e−iny+inxdy.

OBS that f on the right is not involved with x, but in the theorem we are trying
to prove, we want to relate SN (x) to f(x). How can we get an x inside the f?

Idea 3: Change the variable. Let t = y − x.
Then y = t+ x. We have

SN (x) =

N∑
−N

1

2π

∫ π−x

−π−x
f(t+ x)e−intdt.

Remember that very first fact we proved for periodic functions? It said that the
integral of a periodic function of period P from any point a to a + P is the same,
no matter what a is. Here P = 2π. This leads to...

Idea 4: Use the Lemma on integrals of periodic functions to shift the integral∫ π−x

−π−x
f(t+ x)e−intdt =

∫ π

−π
f(t+ x)e−intdt.

Thus

SN (x) =

N∑
−N

1

2π

∫ π

−π
f(t+ x)e−intdt =

∫ π

−π
f(t+ x)

1

2π

N∑
−N

eintdt.

This is how we get to the Idea 4: Define the N th Dirichlet kernel, DN (t), and
investigate it by (1) collecting even and odd terms and (2) expressing it like a
geometric series.

DN (t) =
1

2π

N∑
−N

eint.

Collecting the even and odd terms, recall that

n ∈ N =⇒ eint + e−int = 2 cos(nt), n > 0.

Hence, we can pair up all the terms ±1, ±2, etc, and write

DN (t) =
1

2π
+

N∑
n=1

1

π
cos(nt).

So, we see that DN (t) is an even function. Moreover, we use the above expression
to compute that ∫ π

−π
DN (t)dt = 1.

Since DN (t) is even, we also have:

dnintdnint (3.1)

∫ 0

−π
DN (t)dt =

1

2
=

∫ π

0

DN (t)dt.
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The second observation is that DN (t) looks almost like a geometric series, but
the problem is that it goes from minus exponents to positive ones. We can fix that
right up by factoring out the largest negative exponent, so

DN (t) =
1

2π
e−iNt

2N∑
n=0

eint.

We know how to sum a partial geometric series, don’t we? This gives

dngeodngeo (3.2) DN (t) =
1

2π
e−iNt

1− ei(2N+1)t

1− eit
=
e−iNt − ei(N+1)t

2π(1− eit)
.

To be continued. . .
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