
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.01.22

I hope you remember where we left off last time... We shall continue from that
point, perhaps with a brief re-cap!

1.1. Part 2 of the proof of Theorem on Pointwise Convergence of Fourier
Series. Now we return to our problem, in which we have

SN (x) =

∫ π

−π
f(t+ x)DN (t)dt.

We want to show that SN (x) converges to the average of the right and left hand
limits of f . In other words, this is equivalent to showing that

lim
N→∞

∣∣∣∣SN (x)− 1

2
(f(x−) + f(x+))

∣∣∣∣ = 0.

The SN business has an integral, but the f(x±) don’t. They have got a convenient
factor of one half, so... Idea 5: Use our calculation of the integral of DN to write

1

2
f(x−) =

∫ 0

−π
DN (t)dtf(x−),

1

2
f(x+) =

1

2
=

∫ π

0

DN (t)dtf(x+).

Hence we are bound to prove that

lim
N→∞

∣∣∣∣SN (x)−
∫ 0

−π
DN (t)f(x−)dt−

∫ π

0

DN (t)f(x+)dt

∣∣∣∣ = 0.

Now, we use that

SN (x) =

∫ π

−π
f(t+ x)DN (t)dt.

Hence, we want to show that∣∣∣∣∫ π

−π
f(t+ x)DN (t)dt−

∫ 0

−π
DN (t)f(x−)dt−

∫ π

0

DN (t)f(x+)dt

∣∣∣∣→ 0, as N →∞.

It is quite natural to split things into two parts∣∣∣∣∫ 0

−π
DN (t)(f(t+ x)− f(x−))dt+

∫ π

0

DN (t)(f(t+ x)− f(x+))dt

∣∣∣∣ .
1
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Now, we know we’ve got to use the second expression for DN (t), and here’s where
it will come in handy. Let’s insert it∣∣∣∣∫ 0

−π

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+ x)− f(x−))dt+

∫ π

0

e−iNt − ei(N+1)t

2π(1− eit)
(f(t+ x)− f(x+))dt

∣∣∣∣ .
Now, we know that if we take a function which is bounded, then its Fourier coeffi-
cients tend to 0, meaning cn → 0 as |n| → ∞. We’ve got those e−iNt and ei(N+1)t

which look a lot like part of the definition of Fourier coefficient cn for |n| large...
However, we’ve got this integrand defined two different ways on either side of zero.

Idea 6: Define a new function

g(t) =
f(t+ x)− f(x−)

1− eit
, for t < 0,

g(t) =
f(t+ x)− f(x+)

1− eit
, for t > 0.

How to define this function at zero? Let’s look at the limit

lim
t→0−

f(t+ x)− f(x−)

1− eit
= lim
t→0−

t(f(t+ x)− f(x−))

t(1− eit)
=
f ′(x−)

−iei0
= if ′(x−).

For the other side, a similar argument shows that

lim
t→0+

f(t+ x)− f(x−)

1− eit
= if ′(x+).

So, depending upon whether f ′(x−) = f ′(x+) or not, the function g will be con-
tinuous at 0, or not. However, even if it’s not continuous, it is at least piecewise
continuous, as well as piecewise differentiable, just like the original function f is.
To see this, we see that for all other points t ∈ [−π, π], the denominator of g is non-
zero, and the numerator has the same properties as f . Therefore the above shows
that g is indeed quite a lovely function on [−π, π]. The most important fact is that
it is bounded on the closed interval [−π, π], and hence its Fourier coefficients tend
to zero by Bessel’s inequality. This follows from the fact that any bounded function
on a bounded interval, like [−π, π], is in L2 on that interval, i.e. in L2([−π, π]).

Hence, we are looking at

lim
N→∞

∣∣∣∣ 1

2π

∫ π

−π
g(t)e−iNtdt− 1

2π

∫ π

−π
e−i(−N−1)tg(t)dt

∣∣∣∣ = lim
N→∞

|cN (g)− c−N−1(g)| ,

where above, cN (g) is the N th Fourier coefficient of g,

cN (g) =
1

2π

∫ π

−π
g(t)e−iNtdt,

and similarly, c−N−1(g) is the −N − 1st Fourier coefficient of g,

c−N−1(g) =
1

2π

∫ π

−π
e−i(−N−1)tg(t)dt.

Idea 7: Use Bessel’s inequality to say that

cN (g)→ 0 as N →∞, and c−N−1(g)→ 0 as N →∞.

Hence

lim
N→∞

∣∣∣∣ 1

2π

∫ π

−π
g(t)e−iNtdt− 1

2π

∫ π

−π
e−i(−N−1)tg(t)dt

∣∣∣∣ = |0 + 0| = 0.
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Corollary 1. Assume that f and g are piecewise C1, 2π periodic and have the
same Fourier coefficients. Assume that at all points of discontinuity we have

f(x) =
1

2
(f(x−) + f(x+)) ,

g(x) =
1

2
(g(x−) + g(x+)) .

Then f(x) = g(x) holds for all x ∈ R.

Proof: By the theorem, for all x ∈ R, and by the assumptions of the corollary,
f and g have the same Fourier series, hence the same partial sums SN (x) as defined
in the proof of the theorem. Therefore, by the theorem,

lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) =

1

2
(g(x−) + g(x+)) .

The stuff with f is equal to f(x) when f is continuous at x and also when f is not
continuous at x. The stuff with g is similarly equal to g(x) when g is continuous
at x as well as when g is not continuous at x. Hence for all points x ∈ R we get
f(x) = g(x).

1.2. Vibrating string example. Let’s do a PDE application - a vibrating string!
Assume that at t = 0, the ends of the string are fixed, and we have pulled up the
middle of it. This makes a shape which mathematically is described by the function

v(x) =

{
x, 0 ≤ x ≤ π
2π − x, π ≤ x ≤ 2π

We assume that at t = 0 the string is not yet vibrating, so the initial conditions
are then {

u(x, 0) = v(x)

ut(x, 0) = 0

We assume the ends of the string are fixed, so we have the boundary conditions

u(0) = u(2π) = 0.

Well, I suppose we should note that the string is identified with the interval [0, 2π].
We use our first technique, separation of variables. Remember, this is just the
means to an end!! We have the wave equation

�u = 0, �u = ∂ttu− ∂xxu.
Write

u(x, t) = X(x)T (t).

I used f and g before, but it seems that you students really like the BIG X and the
BIG T. Okay, fine with me. So, we put them into the wave equation, assuming for
now that u(x, t) = X(x)T (t)1

X(x)T ′′(t)−X ′′(x)T (t) = 0.

1In the end, u(x, t) is not going to be of this form! So, this technique is just a means to an
end.
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We again separate the variables by dividing the whole equation by X(x)T (t). Then
we have

T ′′(t)

T (t)
− X ′′(x)

X(x)
= 0 =⇒ T ′′

T
=
X ′′

X
= constant.

The two sides depend on different variables, which makes them both have to be con-
stant. We give that a name, λ. Then, since we have those handy dandy boundary
conditions for X (but a much more complicated initial condition for u(x, 0) = v(x))
we start with X. We solve

X ′′ = λX, X(0) = X(2π) = 0.

The cases λ ≥ 0 won’t satisfy the boundary condition. I leave it as an exercise for
you to compute this. Do it! We are left with λ < 0 which by our old multivariable
calculus theorem tells us that

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To get X(0) = 0, we must have a = 0. To get X(2π) = 0 we will need√
|λ|2π = kπ k ∈ Z.

Hence √
|λ| = k

2
, k ∈ Z.

Actually, because sin(−x) = − sin(x) are linearly dependent, we only need to take
k ∈ N (without 0, you know, American N). So, we have X which we index by n,
writing

Xn(x) = sin(nx/2) n ∈ N.
For now, we don’t worry about the constant factor. Next, we have the equation for
the partner-function (can’t forget the partner function!)

T ′′n
Tn

= λn.

Since we know that λn < 0 and
√
|λn| = n/2 we have

λn = −n
2

4
.

Hence, our handy dandy multivariable calculus theorem tells us that the solution

Tn(t) = an cos(nt/2) + bn sin(nt/2).

Now, we have

un(x, t) = Xn(x)Tn(t), �un = 0 ∀n ∈ N.
Hence, we also have

�
∑
n≥1

un(x, t) =
∑
n≥1

�un(x, t) = 0,

because � is a linear partial differential operator. We don’t know which of these
un guys we need to build our solution according to the initial conditions, so we just
take all of them for now and chuck them out later if we don’t need them.

So, we now need

u(x, t) :=
∑
n≥1

un(x, t)



FOURIER ANALYSIS & METHODS 5

to satisfy the initial condition. The easiest of these is the one that has zero on the
right, namely ut(x, 0) = 0. So, we differentiate u(x, t) with respect to t and set
t = 0,

ut(x, t) =
∑
n≥1

Xn(x)T ′n(0) =
∑
n≥1

Xn(x)
(
−an

n

2
sin(0) + bn

n

2
cos(0)

)
=
∑
n≥1

Xn(x)bn.

We need this to be the zero function. Basically, we are expanding the zero function
in terms of the basis functions Xn. In the theorem for pointwise convergence of
Fourier series, we used the cn’s. This was for convenience. The same theorem
holds when we use the sine and cosine expansion like here. They’re all equivalent.
Of course, if we think about how to get the expansion in terms of the basis, the
coefficients will be the scalar product of the zero function and Xn. This will be 0.
So, the coefficients bn = 0 for all n.

Now we use the other initial condition to get the coefficients an,

u(x, 0) =
∑
n≥1

Xn(x)an.

We want this to be equal to

v(x).

Although we’ve been working so far with the interval [−π, π], this is basically the
same. We are now on the interval [0, 2π]. The coefficients will be

1

||Xn||2
〈v,Xn〉 =

1

π

∫ 2π

0

Xn(x)v(x)dx.

What happened to the complex conjugation? Well, it is there, it just ain’t doing
nothin to v because v is real valued. Also, I leave it as an exercise to compute that

||Xn||2 =

∫ 2π

0

sin(nx/2)2dx = π.

So, now is just to compute∫ π

0

sin(nx/2)xdx+

∫ 2π

π

sin(nx/2)(2π − x)dx.

I leave this also as an exercise (you can use BETA :-)

1.3. Derivatives and Fourier series. We’ll prove a few facts about how the
derivatives of functions interact with the Fourier series. The next one is a theory
item (it can appear on the exam). So stay sharp!

Theorem 2. Assume that f is 2π periodic, continuous, and piecewise C1. Then
f ′ has Fourier coefficients a′n, b′n, c′n with

a′n = nbn, b′n = −nan, c′n = incn.

Proof: DO NOT DIFFERENTIATE THE SERIES TERMWISE!!!!!!! THE
ARGUMENT WILL BE CIRCULAR AND TOTALLY WRONG!!!!!
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Instead, use the definition and integrate by parts. By now, we can give the
equivalent formulation of

an =
1

π

∫ π

−π
f(x) cos(nx)dx.

You can check using the linearity of the integral that this is what you get by
definition of cn together with the relationship between cn and an. Anyhow, take
this and do integration by parts.

an =
1

π

sin(nx)

n
f(x)

∣∣∣∣π
−π
− 1

π

∫ π

−π
f ′(x)

sin(nx)

n
dx.

The first term with sine vanishes, and the second term is by definition

−b
′
n

n
.

Hence, re-arranging, we see that

b′n = −nan.

Similarly, we use integration by parts for the

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

1

π

− cos(nx)

n
f(x)

∣∣∣∣π
−π

+
1

π

∫ π

−π
f ′(x)

cos(nx)

n
dx.

The first term evaluates to zero be periodicity. So, we get the second term which
is by definition

an
n
.

Hence

nbn = an.

Finally, we integrate by parts for the cn,

cn =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

f(x)e−inx

−in

∣∣∣∣π
−π

+
1

2π

∫ π

−π

f ′(x)einx

in
dx =

c′n
in
.

Thus, re-arranging

incn = c′n.

We can use this to prove

Theorem 3. Assume that f is 2π periodic, continuous, and piecewise C1. Then
the Fourier series of f converges absolutely uniformly to f on all of R!

Proof: By assumption, f ′ is piecewise continuous. Bessel’s equation tells us
that ∑

Z
|c′n|2 <∞.

We use the preceding theorem to say that for all n 6= 0,

|cn| =
∣∣∣∣c′n 1

n

∣∣∣∣ .
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Hence we can estimate∑
n∈Z
|cneinx| =

∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|

.

There is also a Cauchy-Schwarz theorem for what is known as “little l2”. Little l2

is the set of all sequences {zn}n∈Z such that∑
n∈Z
|zn|2 <∞.

The norm on little l2 is

||{zn}|| =
√∑
n∈Z
|zn|2.

Hence, by Bessel’s inequality ∑
n∈Z
|c′n|2 <∞,

and we know very well that ∑
n∈Z\0

|n|−2 <∞,

we see that∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|
≤ |c0|+

√∑
n∈Z
|c′n|2 +

√ ∑
n∈Z\0

|n|−2 <∞.

Therefore the Fourier series converges absolutely, and uniformly for all x ∈ R,
because we see that the convergence estimates are independent of the point x.
Since the function is continuous, the limit of the series is always f(x).

Let’s do an example of how we can use Fourier series to sum infinite series!

1.4. Example of using Fourier series to compute sums. We shall compute:

∞∑
n=0

1

1 + n2
.

Hint: Expand ex in a Fourier series on (−π, π)). Often, you’ll be given such a hint,
as when this problem appeared on an exam...

Okay, we follow the hint. We need to compute∫ π

−π
exe−inxdx =

ex(1−in)

1− in

∣∣∣∣x=π
x=−π

=
eπe−inπ

1− in
− e−πeinπ

1− in
= (−1)n

2 sinh(π)

1− in
.

Hence, the Fourier coefficients are

1

2π
(−1)n

2 sinh(π)

1− in
,

and the Fourier series for ex on this interval is

ex =

∞∑
−∞

(−1)n sinh(π)

π(1− in)
einx, x ∈ (−π, π).
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We can pull out some constant stuff,

ex =
sinh(π)

π

∞∑
−∞

(−1)neinx

1− in
, x ∈ (−π, π).

Now, we use the theorem which tells us that the series converges to the average of
the left and right hand limits at points of discontinuity, like for example π. The left
limit is eπ. Extending the function to be 2π periodic, means that the right limit
approaching π is equal to e−π. Hence

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
.

Now, we know that einπ = (−1)n, thus

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

1

1− in
.

We now consider the sum, and we pair together ±n for n ∈ N, writing
∞∑
−∞

1

1− in
= 1 +

∑
n∈N

1

1− in
+

1

1 + in
= 1 +

∑
n∈N

2

1 + n2
.

Hence we have found that

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
=

sinh(π)

π

(
1 +

∑
n∈N

2

1 + n2

)
.

The rest is mere algebra. On the left we have the definition of cosh(π). So, moving
over the sinh(π) we have

π cosh(π)

sinh(π)
= 1 + 2

∑
n∈N

1

1 + n2
=⇒

(
π cosh(π)

sinh(π)
− 1

)
1

2
=
∑
n∈N

1

1 + n2
.

Wow.
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