FOURIER ANALYSIS & METHODS

JULIE ROWLETT

ABSTRACT. Caveat Emptor! These are just informal lecture notes. Errors are inevitable! Read at your own risk! Also, this is by no means a substitute for the textbook, which is warmly recommended: *Fourier Analysis and Its Applications*, by Gerald B. Folland. He was the first math teacher I had at university, and he is awesome. A brilliant writer. So, why am I even doing this? Good question...

$1.\ 2018.01.24$

Today we will continue to look at Fourier series as well as consequences for derivatives and integrals of functions which have Fourier series. To make things precise, we need a definition. However, lucky for you, this definition is *not* one that you need to memorize.

Definition 1. Let

$$\ell^2(\mathbb{C}) := \{ (z_n)_{n \in \mathbb{Z}}, \quad z_n \in \mathbb{C} \forall n, \text{ and } \sum_{n \in Z} |z_n|^2 < \infty \}$$

This is a Hilbert space (complete normed vector space with scalar product) with the scalar product

$$\langle z, w \rangle := \sum_{n \in \mathbb{Z}} z_n \overline{w_n}, \quad z = (z_n)_{n \in \mathbb{Z}}, \quad w = (w_n)_{n \in \mathbb{Z}}.$$

The norm on the Hilbert space, $\ell^2 = \ell^2(\mathbb{C})$ is defined by

$$||z|| = \sqrt{\sum_{n \in \mathbb{Z}} |z_n|^2}.$$

We also have a Cauchy-Schwarz inequality:

$$|\langle z, w \rangle| \le ||z|| ||w||.$$

We will use this together with the relationship between the Fourier coefficients for a piecewise C^1 and continuous function, f, to prove

Theorem 2. Assume that f is 2π periodic, continuous, and piecewise C^1 . Then the Fourier series of f converges absolutely uniformly to f on all of \mathbb{R} !

Proof: By assumption, f' is piecewise continuous. Bessel's equation tells us that

$$\sum_{\mathbb{Z}} |c'_n|^2 < \infty.$$

We use the preceding theorem to say that for all $n \neq 0$,

$$c_n | = \left| c'_n \frac{1}{n} \right|.$$

Hence we can estimate

$$\sum_{n \in \mathbb{Z}} |c_n e^{inx}| = \sum_{n \in \mathbb{Z}} |c_n| = |c_0| + \sum_{n \in \mathbb{Z} \backslash 0} \frac{|c'_n|}{|n|}.$$

By Bessel's inequality

$$\sum_{n\in\mathbb{Z}}|c_n'|^2<\infty,$$

and we know very well that

$$\sum_{\in\mathbb{Z}\setminus 0}|n|^{-2}<\infty.$$

So, using the Cauchy-Schwarz inequality on ℓ^2 , we have

$$\sum_{n\in\mathbb{Z}} |c_n| = |c_0| + \sum_{n\in\mathbb{Z}\setminus 0} \frac{|c'_n|}{|n|} \le |c_0| \sqrt{\sum_{n\in\mathbb{Z}} |c'_n|^2} + \sqrt{\sum_{n\in\mathbb{Z}\setminus 0} |n|^{-2}} < \infty.$$

Therefore the Fourier series converges absolutely, and uniformly for all $x \in \mathbb{R}$, because we see that the convergence estimates are independent of the point x. Since the function is continuous, the limit of the series is always f(x).

...

We can repeat this idea to show that the more derivatives a function has, the faster its Fourier series converges.

Theorem 3. Let f be 2π periodic, and assume that f is \mathcal{C}^{k-1} , and $f^{(k-1)}$ is piecewise \mathcal{C}^1 , and f is piecewise \mathcal{C}^k . Then the Fourier coefficients of f satisfy

$$\sum_{n} |n^k a_n|^2 < \infty, \quad \sum_{n} |n^k b_n|^2 < \infty, \quad \sum_{n} |n^k c_n|^2 < \infty.$$

If $|c_n| \leq c|n|^{-k-\alpha}$ for some c > 0 and $\alpha > 1$, for all $n \neq 0$, then $f \in \mathcal{C}^k$.

Proof: We apply the theorem relating the Fourier coefficients of f to those of the derivatives of f. Do it k times. We get

$$c_n^{(k)} = (in)^k c_n.$$

Next, we apply Bessel's inequality to conclude that since f is piecewise C^k , $f^{(k)}$ is bounded on the interval hence it is in L^2 on the interval, and so

 $\sum |c_n^{(k)}|^2 < \infty.$

Since

$$|c_n^{(k)}| = |n|^k |c_n|$$

this shows that

$$\sum |n^k c_n|^2 < \infty$$

We have similar estimates for a_n and b_n using the same theorem, specifically

$$|a_n^{(k)}| = |n^k a_n|, \quad |b_n^{(k)}| = |n^k b_n|$$

Hence,

$$\sum |n^k a_n| < \infty, \quad \sum |n^k b_n| < \infty.$$

For the last statement, since we assumed that f is \mathcal{C}^{k-1} , we let

$$g(x) := f^{(k-1)}(x)$$

 $\mathbf{2}$

Then g is continuous and by assumption it is piecewise \mathcal{C}^1 . Therefore, by the big convergence theorem, the Fourier series of g converges to (really, it is equal to!) g(x) for all x in \mathbb{R} . Next, we use the assumption and the fact that the Fourier coefficients of g are

$$c_n^{(k-1)} = (in)^{k-1} c_n.$$

Therefore

$$\sum_{n \in \mathbb{Z}} |c_n^{(k-1)} e^{inx}| = \left| c_0^{(k-1)} \right| + \sum_{n \neq 0} |n^{k-1}| |c_n| \le \left| c_0^{(k-1)} \right| + c \sum_{n \neq 0} |n|^{k-1-k-\alpha} < \infty.$$

Hence, the series converges absolutely and uniformly in \mathbb{R} . Moreover, differentiating the series termwise is legitimate, because the result

$$\sum_{n\in\mathbb{Z}}inc_n^{(k-1)}e^{ins}$$

also converges absolutely and uniformly in \mathbb{R} :

$$\sum_{n \in \mathbb{Z}} |inc_n^{(k-1)}| \le \sum_{n \ne 0} |n| |c_n^{(k-1)}| \le c \sum_{n \ne 0} |n| |n|^{k-1-k-\alpha} < \infty$$

because $\alpha > 1$. Since the series is equal to $g(x) = f^{(k-1)}(x)$ for all $x \in \mathbb{R}$, and the series is a differentiable function for all $x \in \mathbb{R}$, this shows that g is differentiable for all $x \in \mathbb{R}$. Moreover, g' is continuous on \mathbb{R} , because the series defines a continuous function.¹ This is the case because the series defining g' converges absolutely and uniformly for all of \mathbb{R} . Hence, $f^{(k-1)}$ is in \mathcal{C}^1 on all of \mathbb{R} , and therefore f is in \mathcal{C}^k on all of \mathbb{R} .

We now prove a theorem about integrating Fourier series. **Theorem 4.** Let f be a 2π periodic function which is piecewise continuous. Define

$$F(x) := \int_0^x f(t)dt.$$

If $c_0 = 0$, then

$$F(x) = C_0 + \sum_{n \neq 0} \frac{c_n}{in} e^{inx}, \quad C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) dx.$$

Similarly,

$$F(x) = \frac{1}{2}A_0 + \sum_{n \ge 1} \frac{a_n}{n}\sin(nx) - \frac{b_n}{n}\cos(nx).$$

Proof: We first note that F is continuous and piecewise C^1 , because it is the integral of a piecewise continuous function. Moreover, assuming $c_0 = 0$, we see that

$$F(x+2\pi) - F(x) = \int_0^{x+2\pi} f(t)dt - \int_0^x f(t)dt = \int_x^{x+2\pi} f(t)dt = \int_{-\pi}^{\pi} f(t)dt = 2\pi c_0 = 0$$

Above we have used the nifty lemma that allows us to slide around integrals of periodic functions. So, F satisfies the assumptions of the theorem on pointwise convergence of Fourier series. We therefore have pointwise convergence of the Fourier

 $^{^{1}}$ This is true because the series should really be viewed as the limit of the partial series, and each partial series defines a smooth, thus also continuous, function. The uniform limit of continuous functions is itself a continuous function.

series of F. Moreover, applying the theorem relating the Fourier coefficients of F' = f to those of F, we have

$$C_n = \frac{c_n}{in} \quad n \neq 0.$$

(That's because $c_n = C'_n$ and the theorem says $C'_n = inC_n$ which shows $c_n = inC_n$, which we can re-arrange as above). Of course, the formula for C_0 is just the usual formula for it, because we can't say anything more specific without knowing more information on f. The re-statement in terms of a and b follows from the relationship between these and the c_n .

Remark 1. If $c_0 \neq 0$, then define a new function

$$g(t) := f(t) - c_0$$

Since f is 2π periodic, so is g. Then, apply the theorem above to g. Note that

$$G(x) = \int_0^x g(t)dt = F(x) - c_0 x.$$

Moreover, the Fourier coefficients of g,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - c_0) e^{-inx} dx = c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx, \quad \forall n \neq 0.$$

So, the series for G(x) from the theorem is

$$\widetilde{C_0} + \sum_{n \neq 0} \frac{c_n}{in} e^{inx},$$

with

$$\widetilde{C}_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(F(x) - c_0 x \right) dx = C_0.$$

So, in fact, it is the same C_0 , where we have used the oddness of the function x above. Then, we get something of a corollary which says that in general, the series in the theorem,

$$C_0 + \sum_{n \neq 0} \frac{c_n}{in} e^{inx}, \quad C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) dx$$

converges to $F(x) - c_0 x$.

1.1. Using Fourier series to compute sums. Let's figure out how to use a Fourier series to compute

$$\sum_{n\geq 1} \frac{1}{n^4}.$$

For starters, we expand x^2 in a Fourier series. This is an even function, hence no sines in its Fourier series. The other terms

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx = \frac{2}{\pi} \int_0^{\pi} x^2 \cos(nx) dx.$$

We do this integral:

$$\int_0^{\pi} x^2 \cos(nx) dx = \int x^2 \left(\frac{\sin(nx)}{n}\right)' dx = x^2 \frac{\sin(nx)}{n} \Big|_0^{\pi} - \int_0^{\pi} 2x \frac{\sin(nx)}{n} dx.$$

Above we did integration by parts. The first part vanishes. The second term we handle with integration by parts again,

$$\int_0^{\pi} x \sin(nx) dx = \int_0^{\pi} x \left(-\cos(nx)/n \right)' dx = -\frac{x \cos(nx)}{n} \Big|_0^{\pi} + \int_0^{\pi} \cos(nx)/n dx.$$

Now this time the second term vanishes because integrating gives us a sine which is 0 at 0 and at π . So, recalling the constant factors, we get

$$\int_0^{\pi} x^2 \cos(nx) dx = \frac{2\pi \cos(\pi n)}{n^2} = \frac{2\pi (-1)^n}{n^2}.$$

Hence our coefficients,

$$a_n = \frac{2 * 2(-1)^n}{n^2}$$

Moreover, we also compute the term

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2\pi^3}{3\pi} = \frac{2\pi^2}{3}.$$

Hence, the Fourier series expansion of x^2 is

$$\frac{\pi^2}{3} + 4\sum_{n\geq 1} \frac{(-1)^n \cos(nx)}{n^2}.$$

Let $x = \pi$. Since our periodically extended function, x^2 is continuous on all of \mathbb{R} , the Fourier series converges to its value at $x = \pi$ which means

$$\pi^{2} = \frac{\pi^{2}}{3} + 4\sum_{n \ge 1} \frac{(-1)^{n}(-1)^{n}}{n^{2}} \implies \frac{\pi^{2}}{6} = \sum_{n \ge 1} \frac{1}{n^{2}}.$$

To get up to summing n^{-4} we use Theorem 2.4 about integrating Fourier series. We see that

$$c_0 = \frac{\pi^2}{3}.$$

We also see that for $f(t) = t^2$,

$$F(x) := \int_0^x f(t)dt = \frac{x^3}{3}.$$

The series from the theorem is

$$C_0 + 4\sum_{n\geq 1} \frac{(-1)^n \sin(nx)}{n^3}.$$

The term

$$C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) dx = 0,$$

because F(x) above is odd. Hence, the theorem together with the remark after it says that

$$4\sum_{n\geq 1}\frac{(-1)^n\sin(nx)}{n^3} = \frac{x^3}{3} - \frac{\pi^2 x}{3}, \quad x\in[-\pi,\pi].$$

Exercise: Compute $\sum n^{-3}$.

To proceed, we're going to need to use the theorem once more to get n^4 in the denominator. Before we do this, let's multiply everything by 3 to make it nicer. Then

$$x^{3} - \pi^{2}x = 12\sum_{n\geq 1} \frac{(-1)^{n}\sin(nx)}{n^{3}}, \quad x \in [-\pi,\pi].$$

So, here we have

$$f(t) = t^3 - \pi^2 t \implies F(x) = \int_0^x f(t)dt = \frac{x^4}{4} - \frac{\pi^2 x^2}{2}.$$

We see also that

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt = 0.$$

Hence, we apply the theorem directly to F. The theorem says

$$F(x) = C_0 + 12 \sum_{n \ge 1} -\frac{(-1)^n \cos(nx)}{n^4}.$$

We compute

$$C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) dx = \frac{1}{\pi} \int_0^{\pi} \frac{x^4}{4} - \frac{\pi^2 x^2}{2} dx = \frac{\pi^4}{20} - \frac{\pi^4}{6}$$

Therefore

$$F(x) = \frac{x^4}{4} - \frac{\pi^2 x^2}{2} = \frac{\pi^4}{20} - \frac{\pi^4}{6} - 12 \sum_{n \ge 1} \frac{(-1)^n \cos(nx)}{n^4}, \quad x \in [-\pi, \pi].$$

We do the same trick now of choosing

$$x = \pi \implies \cos(nx) = \cos(n\pi) = (-1)^n, \quad (-1)^n (-1)^n = 1 \forall n$$

Hence,

$$F(\pi) = \frac{\pi^4}{4} - \frac{\pi^4}{2} = \frac{\pi^4}{20} - \frac{\pi^4}{6} - 12\sum_{n\geq 1}\frac{1}{n^4}$$

Re-arranging things

$$\sum_{n \ge 1} \frac{1}{n^4} = \frac{1}{12} \left(\frac{\pi^4}{20} - \frac{\pi^4}{6} + \frac{\pi^4}{2} - \frac{\pi^4}{4} \right).$$

Just for fun, we determine what this is...

$$\frac{\pi^4}{20} - \frac{\pi^4}{6} + \frac{\pi^4}{2} - \frac{\pi^4}{4} = \frac{\pi^4}{2} \left(\frac{1}{10} - \frac{1}{3} + \frac{1}{2} \right) = \frac{\pi^4}{2} \left(\frac{3 - 10 + 15}{30} \right)$$
$$= \frac{\pi^4}{2} \left(\frac{8}{30} \right) = \frac{2\pi^4}{15}.$$

So, recalling the factor of $\frac{1}{12}$, we see that

$$\sum_{n \ge 1} \frac{1}{n^4} = \frac{2\pi^4}{(12)(15)} = \frac{\pi^4}{6(15)} = \frac{\pi^4}{90}.$$

Wow, who would have guessed that? Not I said the fly!

 $\mathbf{6}$

1.2. Fourier sine and cosine series. Let's say we are just looking at $[0, \pi]$. There are two ways to extend a function defined over there to all of $[-\pi, \pi]$. One way is oddly, and the other way is evenly. If we want to extend oddly, we define

$$f(x) := -f(-x), \quad x \in (-\pi, 0).$$

This could create a discontinuity at x = 0, but no worry. Then, we have computed in an exercise that the a_n coefficients are all zero, and the b_n coefficients are

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx) dx.$$

Here we used the fact that sine is also an oddball. On the other hand, if we want to extend evenly, we define

$$f(x) := f(-x), \quad x \in (-\pi, 0).$$

Then, we have computed in an exercise that the b_n are all zero, because our function is even. Here we have the coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) dx.$$

Above we used the fact that cosine is even. In this way, we may define Fourier sine and cosine series for functions on $[0, \pi]$. The Fourier sine series is defined to be

$$\sum_{n\geq 1} b_n \sin(nx), \quad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$

whereas the Fourier cosine series is

$$\frac{a_0}{2} + \sum_{n \ge 1} a_n \cos(nx), \quad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx, \quad \forall n \in \mathbb{N}.$$

Theorem 5. Let f be a function which is piecewise C^1 on $[0, \pi]$. Then the Fourier sine and cosine series converge to f(x) for all $x \in (0, \pi)$ at which f is continuous. For other points, they converge to

$$\frac{1}{2}\left(f(x_{-})+f(x_{+})\right).$$

Proof: First, we extend the function either evenly or oddly. Next, we extend it to all of \mathbb{R} to be 2π periodic. Like Riker, we just *make it so*. We're only proving a statement about points in $(0, \pi)$. So, what happens outside of this set of points, well it don't matter. We apply the theorem on pointwise convergence of Fourier series now.

