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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.01.24

Today we will continue to look at Fourier series as well as consequences for
derivatives and integrals of functions which have Fourier series. To make things
precise, we need a definition. However, lucky for you, this definition is not one that
you need to memorize.

Definition 1. Let

`2(C) := {(zn)n∈Z, zn ∈ C∀n, and
∑
n∈Z
|zn|2 <∞}.

This is a Hilbert space (complete normed vector space with scalar product) with
the scalar product

〈z, w〉 :=
∑
n∈Z

znwn, z = (zn)n∈Z , w = (wn)n∈Z.

The norm on the Hilbert space, `2 = `2(C) is defined by

||z|| =
√∑
n∈Z
|zn|2.

We also have a Cauchy-Schwarz inequality:

|〈z, w〉| ≤ ||z||||w||.
We will use this together with the relationship between the Fourier coefficients for
a piecewise C1 and continuous function, f , to prove

Theorem 2. Assume that f is 2π periodic, continuous, and piecewise C1. Then
the Fourier series of f converges absolutely uniformly to f on all of R!

Proof: By assumption, f ′ is piecewise continuous. Bessel’s equation tells us
that ∑

Z
|c′n|2 <∞.

We use the preceding theorem to say that for all n 6= 0,

|cn| =
∣∣∣∣c′n 1

n

∣∣∣∣ .
1
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Hence we can estimate∑
n∈Z
|cneinx| =

∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|

.

By Bessel’s inequality ∑
n∈Z
|c′n|2 <∞,

and we know very well that ∑
n∈Z\0

|n|−2 <∞.

So, using the Cauchy-Schwarz inequality on `2, we have∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|
≤ |c0|

√∑
n∈Z
|c′n|2 +

√ ∑
n∈Z\0

|n|−2 <∞.

Therefore the Fourier series converges absolutely, and uniformly for all x ∈ R,
because we see that the convergence estimates are independent of the point x.
Since the function is continuous, the limit of the series is always f(x).

We can repeat this idea to show that the more derivatives a function has, the
faster its Fourier series converges.

Theorem 3. Let f be 2π periodic, and assume that f is Ck−1, and f (k−1) is
piecewise C1, and f is piecewise Ck. Then the Fourier coefficients of f satisfy∑

|nkan|2 <∞,
∑
|nkbn|2 <∞,

∑
|nkcn|2 <∞.

If |cn| ≤ c|n|−k−α for some c > 0 and α > 1, for all n 6= 0, then f ∈ Ck.

Proof: We apply the theorem relating the Fourier coefficients of f to those of
the derivatives of f . Do it k times. We get

c(k)n = (in)kcn.

Next, we apply Bessel’s inequality to conclude that since f is piecewise Ck, f (k) is
bounded on the interval hence it is in L2 on the interval, and so∑

|c(k)n |2 <∞.

Since

|c(k)n | = |n|k|cn|
this shows that ∑

|nkcn|2 <∞.
We have similar estimates for an and bn using the same theorem, specifically

|a(k)n | = |nkan|, |b(k)n | = |nkbn|.
Hence, ∑

|nkan| <∞,
∑
|nkbn| <∞.

For the last statement, since we assumed that f is Ck−1, we let

g(x) := f (k−1)(x).
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Then g is continuous and by assumption it is piecewise C1. Therefore, by the big
convergence theorem, the Fourier series of g converges to (really, it is equal to!)
g(x) for all x in R. Next, we use the assumption and the fact that the Fourier
coefficients of g are

c(k−1)n = (in)k−1cn.

Therefore∑
n∈Z
|c(k−1)n einx| =

∣∣∣c(k−1)0

∣∣∣+
∑
n 6=0

|nk−1||cn| ≤
∣∣∣c(k−1)0

∣∣∣+ c
∑
n 6=0

|n|k−1−k−α <∞.

Hence, the series converges absolutely and uniformly in R. Moreover, differentiating
the series termwise is legitimate, because the result∑

n∈Z
inc(k−1)n einx

also converges absolutely and uniformly in R:∑
n∈Z
|inc(k−1)n | ≤

∑
n 6=0

|n||c(k−1)n | ≤ c
∑
n 6=0

|n||n|k−1−k−α <∞

because α > 1. Since the series is equal to g(x) = f (k−1)(x) for all x ∈ R, and the
series is a differentiable function for all x ∈ R, this shows that g is differentiable for
all x ∈ R. Moreover, g′ is continuous on R, because the series defines a continuous
function.1 This is the case because the series defining g′ converges absolutely and
uniformly for all of R. Hence, f (k−1) is in C1 on all of R, and therefore f is in Ck
on all of R.

We now prove a theorem about integrating Fourier series.

Theorem 4. Let f be a 2π periodic function which is piecewise continuous. Define

F (x) :=

∫ x

0

f(t)dt.

If c0 = 0, then

F (x) = C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

∫ π

−π
F (x)dx.

Similarly,

F (x) =
1

2
A0 +

∑
n≥1

an
n

sin(nx)− bn
n

cos(nx).

Proof: We first note that F is continuous and piecewise C1, because it is the
integral of a piecewise continuous function. Moreover, assuming c0 = 0, we see that

F (x+2π)−F (x) =

∫ x+2π

0

f(t)dt−
∫ x

0

f(t)dt =

∫ x+2π

x

f(t)dt =

∫ π

−π
f(t)dt = 2πc0 = 0.

Above we have used the nifty lemma that allows us to slide around integrals of
periodic functions. So, F satisfies the assumptions of the theorem on pointwise con-
vergence of Fourier series. We therefore have pointwise convergence of the Fourier

1This is true because the series should really be viewed as the limit of the partial series,
and each partial series defines a smooth, thus also continuous, function. The uniform limit of

continuous functions is itself a continuous function.
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series of F . Moreover, applying the theorem relating the Fourier coefficients of
F ′ = f to those of F , we have

Cn =
cn
in

n 6= 0.

(That’s because cn = C ′n and the theorem says C ′n = inCn which shows cn = inCn,
which we can re-arrange as above). Of course, the formula for C0 is just the usual
formula for it, because we can’t say anything more specific without knowing more
information on f . The re-statement in terms of a and b follows from the relationship
between these and the cn.

Remark 1. If c0 6= 0, then define a new function

g(t) := f(t)− c0.
Since f is 2π periodic, so is g. Then, apply the theorem above to g. Note that

G(x) =

∫ x

0

g(t)dt = F (x)− c0x.

Moreover, the Fourier coefficients of g,

1

2π

∫ π

−π
(f(x)− c0)e−inxdx = cn =

1

2π

∫ π

−π
f(x)e−inxdx, ∀n 6= 0.

So, the series for G(x) from the theorem is

C̃0 +
∑
n 6=0

cn
in
einx,

with

C̃0 =
1

2π

∫ π

−π
(F (x)− c0x) dx = C0.

So, in fact, it is the same C0, where we have used the oddness of the function x
above. Then, we get something of a corollary which says that in general, the series
in the theorem,

C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

∫ π

−π
F (x)dx

converges to F (x)− c0x.

1.1. Using Fourier series to compute sums. Let’s figure out how to use a
Fourier series to compute ∑

n≥1

1

n4
.

For starters, we expand x2 in a Fourier series. This is an even function, hence no
sines in its Fourier series. The other terms

an =
1

π

∫ π

−π
x2 cos(nx)dx =

2

π

∫ π

0

x2 cos(nx)dx.

We do this integral:∫ π

0

x2 cos(nx)dx =

∫
x2
(

sin(nx)

n

)′
dx = x2

sin(nx)

n

∣∣∣∣π
0

−
∫ π

0

2x
sin(nx)

n
dx.
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Above we did integration by parts. The first part vanishes. The second term we
handle with integration by parts again,∫ π

0

x sin(nx)dx =

∫ π

0

x (− cos(nx)/n)
′
dx = −x cos(nx)

n

∣∣∣∣π
0

+

∫ π

0

cos(nx)/ndx.

Now this time the second term vanishes because integrating gives us a sine which
is 0 at 0 and at π. So, recalling the constant factors, we get∫ π

0

x2 cos(nx)dx =
2π cos(πn)

n2
=

2π(−1)n

n2
.

Hence our coefficients,

an =
2 ∗ 2(−1)n

n2
.

Moreover, we also compute the term

a0 =
1

π

∫ π

−π
x2dx =

2π3

3π
=

2π2

3
.

Hence, the Fourier series expansion of x2 is

π2

3
+ 4

∑
n≥1

(−1)n cos(nx)

n2
.

Let x = π. Since our periodically extended function, x2 is continuous on all of R,
the Fourier series converges to its value at x = π which means

π2 =
π2

3
+ 4

∑
n≥1

(−1)n(−1)n

n2
=⇒ π2

6
=
∑
n≥1

1

n2
.

To get up to summing n−4 we use Theorem 2.4 about integrating Fourier series.
We see that

c0 =
π2

3
.

We also see that for f(t) = t2,

F (x) :=

∫ x

0

f(t)dt =
x3

3
.

The series from the theorem is

C0 + 4
∑
n≥1

(−1)n sin(nx)

n3
.

The term

C0 =
1

2π

∫ π

−π
F (x)dx = 0,

because F (x) above is odd. Hence, the theorem together with the remark after it
says that

4
∑
n≥1

(−1)n sin(nx)

n3
=
x3

3
− π2x

3
, x ∈ [−π, π].

Exercise: Compute
∑
n−3.
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To proceed, we’re going to need to use the theorem once more to get n4 in the
denominator. Before we do this, let’s multiply everything by 3 to make it nicer.
Then

x3 − π2x = 12
∑
n≥1

(−1)n sin(nx)

n3
, x ∈ [−π, π].

So, here we have

f(t) = t3 − π2t =⇒ F (x) =

∫ x

0

f(t)dt =
x4

4
− π2x2

2
.

We see also that

c0 =
1

2π

∫ π

−π
f(t)dt = 0.

Hence, we apply the theorem directly to F . The theorem says

F (x) = C0 + 12
∑
n≥1

− (−1)n cos(nx)

n4
.

We compute

C0 =
1

2π

∫ π

−π
F (x)dx =

1

π

∫ π

0

x4

4
− π2x2

2
dx =

π4

20
− π4

6
.

Therefore

F (x) =
x4

4
− π2x2

2
=
π4

20
− π4

6
− 12

∑
n≥1

(−1)n cos(nx)

n4
, x ∈ [−π, π].

We do the same trick now of choosing

x = π =⇒ cos(nx) = cos(nπ) = (−1)n, (−1)n(−1)n = 1∀n.

Hence,

F (π) =
π4

4
− π4

2
=
π4

20
− π4

6
− 12

∑
n≥1

1

n4
.

Re-arranging things ∑
n≥1

1

n4
=

1

12

(
π4

20
− π4

6
+
π4

2
− π4

4

)
.

Just for fun, we determine what this is...

π4

20
− π4

6
+
π4

2
− π4

4
=
π4

2

(
1

10
− 1

3
+

1

2

)
=
π4

2

(
3− 10 + 15

30

)

=
π4

2

(
8

30

)
=

2π4

15
.

So, recalling the factor of 1
12 , we see that∑

n≥1

1

n4
=

2π4

(12)(15)
=

π4

6(15)
=
π4

90
.

Wow, who would have guessed that? Not I said the fly!
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1.2. Fourier sine and cosine series. Let’s say we are just looking at [0, π]. There
are two ways to extend a function defined over there to all of [−π, π]. One way is
oddly, and the other way is evenly. If we want to extend oddly, we define

f(x) := −f(−x), x ∈ (−π, 0).

This could create a discontinuity at x = 0, but no worry. Then, we have computed
in an exercise that the an coefficients are all zero, and the bn coefficients are

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

2

π

∫ π

0

f(x) sin(nx)dx.

Here we used the fact that sine is also an oddball. On the other hand, if we want
to extend evenly, we define

f(x) := f(−x), x ∈ (−π, 0).

Then, we have computed in an exercise that the bn are all zero, because our function
is even. Here we have the coefficients

an =
1

π

∫ π

−π
f(x) cos(nx)dx =

2

π

∫ π

0

f(x) cos(nx)dx.

Above we used the fact that cosine is even. In this way, we may define Fourier sine
and cosine series for functions on [0, π]. The Fourier sine series is defined to be∑

n≥1

bn sin(nx), bn =
2

π

∫ π

0

f(x) sin(nx)dx

whereas the Fourier cosine series is

a0
2

+
∑
n≥1

an cos(nx), an =
2

π

∫ π

0

f(x) cos(nx)dx, ∀n ∈ N.

Theorem 5. Let f be a function which is piecewise C1 on [0, π]. Then the Fourier
sine and cosine series converge to f(x) for all x ∈ (0, π) at which f is continuous.
For other points, they converge to

1

2
(f(x−) + f(x+)) .

Proof: First, we extend the function either evenly or oddly. Next, we extend it
to all of R to be 2π periodic. Like Riker, we just make it so. We’re only proving
a statement about points in (0, π). So, what happens outside of this set of points,
well it don’t matter. We apply the theorem on pointwise convergence of Fourier
series now.
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