FOURIER ANALYSIS & METHODS

JULIE ROWLETT

ABSTRACT. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...
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We don’t need to start with a periodic function. We can just take any old
function on any old interval and use our methods. Here’s how to do that. For a
function f defined on an interval [a — ¢, a + ¢] for some a € R, and some ¢ > 0, we
begin by extending f to be 2¢ periodic on R. Next, we define

)= 1 (% 4a) = fia)

that is
e (x —a)w
Zta=g, t=-—"0"
7r /

Then, the function g(t) is 27 periodic, because

g(t+27r)f((t+:7r)€+a> f(if+a+2€> f(thra).

Above, we used the fact that f is 2¢ periodic. So, now that we got g, we just do all
our Fourier series magic to g. Presuming ¢ is not too terrible, we can expand g in

a Fourier series,
int
g(t) = g cne™.
neZ

Then, we get by substituting for ¢ in terms of x
f(IL') _ Z Cnein(W)'
nez
Here we note that
1 T , 1 T (24 ;

= — e Mdt = — = —intqy.

Cn = 5 _wg()e 27r/_ﬂf(7r+a>e
Substituting in the integral,
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So, we can work our Fourier-series magic on basically any arbitrary function we
like!

1.1. Functions as infinite dimensional vectors. Let us fix an interval, for now
we fix the interval [—7, 7], but by the observations above, we can do the same on
any arbitrary finite interval. We have a function defined on the interval. Let’s call
it f. Assume that

(1.1) /7r |f(z)2dz < oco.

—T

Then, by the Cauchy-Schwarz inequality

< 217r\//_7r|f(ac)|2dgc\//_7r ldz = %Hf”\/ﬂ: LJ;H

So, the ¢, € C are all finite. Do you remember what ||f|| is? Next, we recall
Bessel’s inequality:

len| := (z)e” " dg

1 ™
27 | )

1 (" 2
Sl < o [ Isaypas = UL

ne”Z -

So, if you forgot what ||f|| is, you can figure it out from above. In particular, since
we started out by assuming f satisfies , we see that the sequence

(Cn)nEZ S €2~

So, for any f € £2 on the interval [—7, 7], we can associate a sequence in (2. As
we get into the general theory of Hilbert spaces, it’s going to be useful to introduce
the notation

cn = fn=f(n).
Now, let’s assume that for some f in £2 and some g, they have all the same Fourier

coefficients. What I am about to explain is extremely subtle. It may require some
really careful thinking, or if it bothers you, just forget about it.

1.1.1. £? convergence versus pointwise convergence. For f as above, defined on
[—7, 7], let’s define

F(x):= Z cne'™®.
nez

Note that we have only assumed @ No continuity, no piecewise C!, none of that
stuff. So, this “function” F'(z) might not be defined everywhere. What we’re going
to prove is that:

| 1F@ - sepas=o

—T

First, we compute

/ﬂ |F(x)|?dx = /F(x)mdx: /cheimw

- nez meZ

= g cncm/em"’”eimﬂﬁd:ﬂ: E CnCm (€7 'Y,

m,n€Z m,n€”Z
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We computed way at the beginning that
, , 0
12) (e, 7 —{ ngm
2T n=m.

Hence, the terms in the sum with n # m are all zero. We only have n = m, so we
can just write n for both. Thus we get

D lenl2m =21 Jenl® < |IfI? < o0
nez nez

This means that F(z) is also in L% on the interval. It requires a little more ma-
chinery than what we have currently, but with the power of Hilbert spaces and the
Stone-Weierstrass theorem, we will prove that:

{e™*},,c7 is an orthogonal basis for £? on [—, ).

As a consequence, we will prove that Bessel’s inequality is actually an equality in
this case. For now, please just accept this as a fact. A consequence is that

IFIP =21 leal® = I£I1.

nez

So, F and f have the same £? norm.
Next, we compute the £2 distance between F and f:

/j (Z e’ — f(:c)) (Z Cp €M — f(x)) dx

neZ mEZ

-/ (™ NS e = T
Z /(cnemzieqmzf e f(x) — eme M f(z d:E+/|f )|*dx
Z cncm/ LUEPREY ch/ e f(x)dz— Zcm/ —ime f (g dm+/|f )|?da.

n,meZ neZ meZ

Note that
/ei"”;f( )= /e ne f (g /f e~ = 27e, .

Hence, this together with the definition of Fourier coefficients shows that what we
have above is

Z cncm/ neTIMT 0 ZZWCncn Z 2T CmCm + /\f |2dx

n,mez nez meZ

0
By the same calculation as before, @_ﬁhis is

Z 2mcn Gy, — 2 Z 2mc,Cn + / |f(z)|?dx

nez nez

=[IfIP =27 ) leal® =

nez
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This shows that the £2 distance between f and F is zero. Just like with vectors,
the distance on a Hilbert space is

If - Fl| = \// (@) - Fa)]2.

So, f is the same as its Fourier series, as elements of £2. The elements of £? are
not actually functions, but rather, equivalence classes of functions. To understand
this, let’s think about the equivalence class of the zero function. This consists of

all functions such that -
[ lt@pas o,

—T

This is the case precisely when
f(z) =0 for almost every = € [—, 7].

What does almost every mean? It means that there is a set which has one-
dimensional Lebesgue measure equal to zero, call it A/, and

f(z) =0Vz € [—m, 7] \ V.
What does it mean to have one-dimensional Lebesgue measure equal to zero? Well,
it means that the set, N has no length. For example, a single point has no length.
Two points together also have no length. Any countably infinite set of points also
has no length. So, A/ is some such set which has no length.
So, similarly,
F(z) = f(x) for almost every = € [—m,].

This shows that we can uniquely identify the elements of £2 on the interval with
the elements of £2. The identification is

f < (Cn)nGZ'
On the one hand, for f € £2, it gives us a sequence (the sequence of its Fourier
coefficients) which is in £2. The sequence is unique, because if g has all the same
Fourier coefficients as f, then

g(z) = E cn e almost everywhere, and f(z) = E €™ almost everywhere,
neEZ nez
SO

g(x) = f(x) almost everywhere,

thus
g = f as elements of £2.

So, each element of £2 has a unique sequence associated to it. On the other hand,
let (cn)nez € £2. Then, we can use it to define f € £? via

flx) = Z cne'™.

nez

Z len]? < oo

neE”Z

By definition of ¢2,

By our above calculations

1= [ 15 P =253 leal? < o

neZ
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So, indeed f € £2[]]

In summary, we can legitimately identify £2 functions with infinite dimensional
but finite length vectors. Pretty cool. So, now we shall proceed with the general
theory of (possibly infinite dimensional) Hilbert spaces.

1.2. Hilbert spaces. A Hilbert space is a completeﬂ, normed vector space whose
norm is defined by a scalar product. The definition of a vector space means that if
u and v are elements in your Hilbert space, then for all complex numbers a and b,

au + bv is in your Hilbert space.

So, taking a = b = 0, there is always a 0 vector in your Hilbert space. The fact
that it is normed means that every element of the Hilbert space has a length, which
is equal to its norm. To define this, we describe the scalar product. For a Hilbert
space H, the scalar product satisfies:

u,v € H = (u,v) € C,
ceC = {(cu,v) = c{u,v),

u,v,w € H = (u+w,v) = (u,v) + (w,v),

<U,’U> = <U’u>a
(u,u) >0, =0 <= u=0.

Therefore, we can define the norm of a vector as

[lull == v/ (u, u).

The norm of a vector is also equal to its distance from the 0 element of the Hilbert
space. Similarly,

[lu=oll = v{u—=v,u—wv)

is the distance between the elements u and v in your Hilbert space. We say that a
set of elements

{ua} C H

is an orthonormal basis (ONB) for H if for any v € H there exist complex numbers
(ca) such that

1 =
’U:anuaa <u0¢7’u’6> :6(1’5 - {0 Z#g

This is the Kronecker §. You may be wondering why we haven’t written an index
for a. Well, that’s because a priori, they could be uncountable.

Theorem 1. A Hilbert space is separable if and only if it has either a finite ONB
or a countable ONB.

11t you're the type of person to worry about measurability, don’t. The function defined this
way is indeed measurable. If you’re skeptical, I leave it as an Exercise to prove it!

2Every Cauchy sequence converges. Do you remember what a Cauchy sequence is? If not,
please look it up or ask!
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There is a cute proof here:
http://www.polishedproofs.com/relationship-between-a-countable-orthonormal-basis-and-a-cou
We’re only going to be working with Hilbert spaces which have either a finite
ONB or a countable ONB. The dimension of a Hilbert space is the number of
elements in an ONB. Any finite dimensional Hilbert space is in bijection with the
standard one
C", w,velC" = (u,v)=u-7.
Thus, writing
u=(uy,...,uy), with each component up € C,k=1,...,n

and similarly for v,

n
<u7 U> = Z Uk V.-
k=1

The bijection between any finite (n) dimensional Hilbert space and C™ comes from
taking an ONB of the Hilbert space and mapping the elements of the ONB to the
standard basis vectors of C™. Here are some useful basic results for Hilbert spaces.

Proposition 2. Let H be a Hilbert space. For any u and v in H,
[l +|* = [Jul* + 2R(u, v) + ||o]|.
Proof: Compute:
lJu+v|]? = (u+v,u+v) = (u,u+v)+ (v,u+v)

= (u,u) + {u,v) + {(v,v) + (v, u)

= [l + {u,v) + ||o[* + (u, v).
We all know that for a complex number z,

z 47z =2R(2).

So,

(u, v) + (u,v) = 2R(u, v).
\‘.
Proposition 3. For any Hilbert space, H, for any u and v in H,
[(u, 0] < [lul[[[v]].
Proof: Assume that at least one of the two is non-zero. WLOG let’s assume
v # 0. Let’s play around with
lJu+ tv||? = [|ul|* + 2tR{u, v) + t*||v||?, teR.
This is a real valued function of t. It’s a quadratic function of ¢ in fact. The
derivative is
2t[|v]]? 4 2R (u, v).
It’s an up quadratic function, so its unique minimum is when
_ R{u,v)
[lvl]>
If we then check out what happens at this value of ¢,

R{u,v)

R (u,v)?
|[v]|?

2
Rlu, v) + R{u, v)? o]l

[l + to|* = [|ul|* — 2 = |
ol [*

Jul|* -
]l


 http://www.polishedproofs.com/relationship-between-a-countable-orthonormal-basis-and-a-countable-dense-subset/
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‘We know that
0<|lu+ tv||2

so we get
R(u, v)?

0 < |Jull? - el

= 0 < [[ulP[[o]]* = R(u, v)*.
This gives us
Rlu, v)? < ful?||v]|*.
Well, this is annoying because of that silly . I wonder how we could make it turn

into |(u,v)|? Also, we don’t want to screw up the ||u||?||v||* part. Well, we know
how the scalar product interacts with complex numbers, for A € C,

(Au, v) = Mu, v).
So, if for example
(u,v) = 7’ r = |(u,v)| and 6 € R.
We can modify u, without changing ||ul],
lle™ul] = |full.
Moreover
(e7u,v) = e7 ¥ (u,v) = e re®® = |(u,v)]|.
So, if we repeat everything above replacing u with e=*u we get
Rl u,0)? < [le™Pul P|foll* = [ul[v]?,
and by the above calculation
(e7Pu,v) = |(u,0)| e R = R{e™Pu,v)? = [(u,v)]*.
So, we have
2
[{u, )7 < [l o]
Taking the square root of both sides completes the proof of the Cauchy-Schwarz
inequality.
&

We also have a triangle inequality.

Proposition 4. For any u and v in a Hilbert space H,
[lu+ ol < [lull + [[o]].

Proof: We just use the previous two results:

[lu+ol* = [Jul* + 2R(u, v) + [[v]|* < [Jull* + 2l |ulll]o]| + [[o]|* = (||ul] + [[o]])*
so rooting we get the triangle inequality.

\g.
Proposition 5. We have the Pythagorean theorem: if w and v are orthogonal, then
[lu+ol[* = [ul|* + [Jv] %

Moreover, if {un}n>1 are an ONB for the Hilbert space H, then for any v € H,

[oll> =Y Ko, un)l*

n>1
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Proof: The first statement follows from
[+ v[]* = [|ull® + 2R(u, v) + [Jo]|* = [Ju][* +||v]?,

if v and v are orthogonal, because in that case their scalar product is zero. More-
over, for any collection of orthogonal vectors {uy, ..., u,} we proceed by induction.
Assume that

n—1
g + | =) [
k=1

Then, if u,, is orthogonal to all of uq,...,u,—1 we also have
(Upyur + oo F Up—1) = (Unyu1) + ..+ (Up, Up—1) =0+ ...+ 0.

Hence u,, is also orthogonal to the sum,
n—1
Z Uk -
k=1
By the Pythagorean theorem,

n—1 n—1
lln + Y wrl® = [unl® + 1] Y wl*.
k=1 k=1

By the induction assumption

n—1 n
= [Junl® + Y lurll® = D sl .
k=1 k=1
If {u,} are an ONB, then we can write any v € H as

v:chum c, €C,n>1.

n>1

In other words,

N
lim E Cplly, = .
N—o0 nen
n=1
Hence

N
]\}Enw [l chun — || =0.
n=1

By the triangle inequality

N N N N
o]l = [lv - chun + chunH <|lv- chunH +I chun”:
n=1 n=1 n=1 n=1
and

N N N
1> cnttnll = 1D cnttn — v+ 0l] < 1D cntun — ol [+ [Jo]l-
n=1 n=1 n=1

Hence,

N
lol] = 11> enunl|
n=1

N
<Y entin —v]l.
n=1
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So,

A unl| = |[v]]

N
lim HZCnUnH:HUHy
N—oo el

and
Rl chunll2 = [Jo][*.

By the Pythagorean theorem

N
||chun”2 ZHCnunHZ Z‘Cn|2
n=1

Hence, we have

N

lim Z |cn|2 = Z |Cn|2 = ||UH2

N—oc0
n=1 n>1

Finally, we note that
U um chunaum = ch<unaum> = Cm,
n>1 n>1

because of the assumption that u,, are orthonormal.
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