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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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We don’t need to start with a periodic function. We can just take any old
function on any old interval and use our methods. Here’s how to do that. For a
function f defined on an interval [a− `, a+ `] for some a ∈ R, and some ` > 0, we
begin by extending f to be 2` periodic on R. Next, we define

g(t) := f

(
t`

π
+ a

)
= f(x),

that is
t`

π
+ a = x, t =

(x− a)π

`
.

Then, the function g(t) is 2π periodic, because

g(t+ 2π) = f

(
(t+ 2π)`

π
+ a

)
= f

(
t`

π
+ a+ 2`

)
= f

(
t`

π
+ a

)
.

Above, we used the fact that f is 2` periodic. So, now that we got g, we just do all
our Fourier series magic to g. Presuming g is not too terrible, we can expand g in
a Fourier series,

g(t) =
∑
n∈Z

cne
int.

Then, we get by substituting for t in terms of x

f(x) =
∑
n∈Z

cne
in( (x−a)π

` ).

Here we note that

cn =
1

2π

∫ π

−π
g(t)e−intdt =

1

2π

∫ π

−π
f

(
t`

π
+ a

)
e−intdt.

Substituting in the integral,

x =
t`

π
+ a, dx =

`dt

π

cn =
1

2π

π

`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx =

1

2`

∫ a+`

a−`
f(x)e−in(x−a)π/`dx.
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So, we can work our Fourier-series magic on basically any arbitrary function we
like!

1.1. Functions as infinite dimensional vectors. Let us fix an interval, for now
we fix the interval [−π, π], but by the observations above, we can do the same on
any arbitrary finite interval. We have a function defined on the interval. Let’s call
it f . Assume that

fl2fl2 (1.1)

∫ π

−π
|f(x)|2dx <∞.

Then, by the Cauchy-Schwarz inequality

|cn| :=
1

2π

∣∣∣∣∫ π

−π
f(x)e−inxdx

∣∣∣∣ ≤ 1

2π

√∫ π

−π
|f(x)|2dx

√∫ π

−π
1dx =

1

2π
||f ||
√

2π =
||f ||
2π

.

So, the cn ∈ C are all finite. Do you remember what ||f || is? Next, we recall
Bessel’s inequality: ∑

n∈Z
|cn|2 ≤

1

2π

∫ π

−π
|f(x)|2dx =

||f ||2

2π
.

So, if you forgot what ||f || is, you can figure it out from above. In particular, since
we started out by assuming f satisfies (

fl2fl2
1.1), we see that the sequence

(cn)n∈Z ∈ `2.

So, for any f ∈ L2 on the interval [−π, π], we can associate a sequence in `2. As
we get into the general theory of Hilbert spaces, it’s going to be useful to introduce
the notation

cn = f̂n = f̂(n).

Now, let’s assume that for some f in L2 and some g, they have all the same Fourier
coefficients. What I am about to explain is extremely subtle. It may require some
really careful thinking, or if it bothers you, just forget about it.

1.1.1. L2 convergence versus pointwise convergence. For f as above, defined on
[−π, π], let’s define

F (x) :=
∑
n∈Z

cne
inx.

Note that we have only assumed (
fl2fl2
1.1). No continuity, no piecewise C1, none of that

stuff. So, this “function” F (x) might not be defined everywhere. What we’re going
to prove is that: ∫ π

−π
|F (x)− f(x)|2dx = 0.

First, we compute∫ π

−π
|F (x)|2dx =

∫
F (x)F (x)dx =

∫ ∑
n∈Z

cne
inx
∑
m∈Z

cmeimx

=
∑
m,n∈Z

cncm

∫
einxeimxdx =

∑
m,n∈Z

cncm〈einx, eimx〉.
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We computed way at the beginning that

eorthoeortho (1.2) 〈einx, eimx〉 =

{
0 n 6= m

2π n = m.

Hence, the terms in the sum with n 6= m are all zero. We only have n = m, so we
can just write n for both. Thus we get∑

n∈Z
|cn|22π = 2π

∑
n∈Z
|cn|2 ≤ ||f ||2 <∞.

This means that F (x) is also in L2 on the interval. It requires a little more ma-
chinery than what we have currently, but with the power of Hilbert spaces and the
Stone-Weierstrass theorem, we will prove that:

{einx}n∈Z is an orthogonal basis for L2 on [−π, π].

As a consequence, we will prove that Bessel’s inequality is actually an equality in
this case. For now, please just accept this as a fact. A consequence is that

||F ||2 = 2π
∑
n∈Z
|cn|2 = ||f ||2.

So, F and f have the same L2 norm.
Next, we compute the L2 distance between F and f :∫ π

−π

(∑
n∈Z

cne
inx − f(x)

)(∑
m∈Z

cmeimx − f(x)

)
dx

=

∫
(
∑
n

cne
inx − f(x))(

∑
m

cme
−imx − f(x))dx

=
∑
n,m∈Z

∫ (
cne

inxcme
−imx − cneinxf(x)− cme−imxf(x)

)
dx+

∫
|f(x)|2dx

=
∑
n,m∈Z

cncm

∫
einxe−imxdx−

∑
n∈Z

cn

∫
einxf(x)dx−

∑
m∈Z

cm

∫
e−imxf(x)dx+

∫
|f(x)|2dx.

Note that ∫
einxf(x) =

∫
e−inxf(x) =

∫
f(x)e−inx = 2πcn.

Hence, this together with the definition of Fourier coefficients shows that what we
have above is∑

n,m∈Z
cncm

∫
einxe−imxdx−

∑
n∈Z

2πcncn −
∑
m∈Z

2πcmcm +

∫
|f(x)|2dx.

By the same calculation as before, (
eorthoeortho
1.2), this is∑

n∈Z
2πcncn − 2

∑
n∈Z

2πcncn +

∫
|f(x)|2dx

= ||f ||2 − 2π
∑
n∈Z
|cn|2 = 0.
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This shows that the L2 distance between f and F is zero. Just like with vectors,
the distance on a Hilbert space is

||f − F || =

√∫
|f(x)− F (x)|2.

So, f is the same as its Fourier series, as elements of L2. The elements of L2 are
not actually functions, but rather, equivalence classes of functions. To understand
this, let’s think about the equivalence class of the zero function. This consists of
all functions such that ∫ π

−π
|f(x)|2dx = 0.

This is the case precisely when

f(x) = 0 for almost every x ∈ [−π, π].

What does almost every mean? It means that there is a set which has one-
dimensional Lebesgue measure equal to zero, call it N , and

f(x) = 0∀x ∈ [−π, π] \ N .
What does it mean to have one-dimensional Lebesgue measure equal to zero? Well,
it means that the set, N has no length. For example, a single point has no length.
Two points together also have no length. Any countably infinite set of points also
has no length. So, N is some such set which has no length.

So, similarly,
F (x) = f(x) for almost every x ∈ [−π, π].

This shows that we can uniquely identify the elements of L2 on the interval with
the elements of `2. The identification is

f ↔ (cn)n∈Z.

On the one hand, for f ∈ L2, it gives us a sequence (the sequence of its Fourier
coefficients) which is in `2. The sequence is unique, because if g has all the same
Fourier coefficients as f , then

g(x) =
∑
n∈Z

cne
inx almost everywhere, and f(x) =

∑
n∈Z

cne
inx almost everywhere,

so
g(x) = f(x) almost everywhere,

thus
g = f as elements of L2.

So, each element of L2 has a unique sequence associated to it. On the other hand,
let (cn)n∈Z ∈ `2. Then, we can use it to define f ∈ L2 via

f(x) :=
∑
n∈Z

cne
inx.

By definition of `2, ∑
n∈Z
|cn|2 <∞.

By our above calculations

||f || =
∫ π

−π
|f(x)|2dx = 2π

∑
n∈Z
|cn|2 <∞.
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So, indeed f ∈ L2.1

In summary, we can legitimately identify L2 functions with infinite dimensional
but finite length vectors. Pretty cool. So, now we shall proceed with the general
theory of (possibly infinite dimensional) Hilbert spaces.

1.2. Hilbert spaces. A Hilbert space is a complete2, normed vector space whose
norm is defined by a scalar product. The definition of a vector space means that if
u and v are elements in your Hilbert space, then for all complex numbers a and b,

au+ bv is in your Hilbert space.

So, taking a = b = 0, there is always a 0 vector in your Hilbert space. The fact
that it is normed means that every element of the Hilbert space has a length, which
is equal to its norm. To define this, we describe the scalar product. For a Hilbert
space H, the scalar product satisfies:

u, v ∈ H =⇒ 〈u, v〉 ∈ C,

c ∈ C =⇒ 〈cu, v〉 = c〈u, v〉,

u, v, w ∈ H =⇒ 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉,

〈u, v〉 = 〈v, u〉,

〈u, u〉 ≥ 0, = 0 ⇐⇒ u = 0.

Therefore, we can define the norm of a vector as

||u|| :=
√
〈u, u〉.

The norm of a vector is also equal to its distance from the 0 element of the Hilbert
space. Similarly,

||u− v|| =
√
〈u− v, u− v〉

is the distance between the elements u and v in your Hilbert space. We say that a
set of elements

{uα} ⊂ H
is an orthonormal basis (ONB) for H if for any v ∈ H there exist complex numbers
(cα) such that

v =
∑

cαuα, 〈uα, uβ〉 = δα,β =

{
1 α = β

0 α 6= β.

This is the Kronecker δ. You may be wondering why we haven’t written an index
for α. Well, that’s because à priori, they could be uncountable.

Theorem 1. A Hilbert space is separable if and only if it has either a finite ONB
or a countable ONB.

1If you’re the type of person to worry about measurability, don’t. The function defined this

way is indeed measurable. If you’re skeptical, I leave it as an Exercise to prove it!
2Every Cauchy sequence converges. Do you remember what a Cauchy sequence is? If not,

please look it up or ask!
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There is a cute proof here:
http://www.polishedproofs.com/relationship-between-a-countable-orthonormal-basis-and-a-countable-dense-subset/.
We’re only going to be working with Hilbert spaces which have either a finite

ONB or a countable ONB. The dimension of a Hilbert space is the number of
elements in an ONB. Any finite dimensional Hilbert space is in bijection with the
standard one

Cn, u, v ∈ Cn =⇒ 〈u, v〉 = u · v.
Thus, writing

u = (u1, . . . , un), with each component uk ∈ C, k = 1, . . . , n

and similarly for v,

〈u, v〉 =

n∑
k=1

ukvk.

The bijection between any finite (n) dimensional Hilbert space and Cn comes from
taking an ONB of the Hilbert space and mapping the elements of the ONB to the
standard basis vectors of Cn. Here are some useful basic results for Hilbert spaces.

Proposition 2. Let H be a Hilbert space. For any u and v in H,

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2.

Proof: Compute:

||u+ v||2 = 〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, v〉+ 〈v, u〉
= ||u||2 + 〈u, v〉+ ||v||2 + 〈u, v〉.

We all know that for a complex number z,

z + z = 2<(z).

So,
〈u, v〉+ 〈u, v〉 = 2<〈u, v〉.

Proposition 3. For any Hilbert space, H, for any u and v in H,

|〈u, v〉| ≤ ||u||||v||.

Proof: Assume that at least one of the two is non-zero. WLOG let’s assume
v 6= 0. Let’s play around with

||u+ tv||2 = ||u||2 + 2t<〈u, v〉+ t2||v||2, t ∈ R.
This is a real valued function of t. It’s a quadratic function of t in fact. The
derivative is

2t||v||2 + 2<〈u, v〉.
It’s an up quadratic function, so its unique minimum is when

t = −<〈u, v〉
||v||2

.

If we then check out what happens at this value of t,

||u+ tv||2 = ||u||2 − 2
<〈u, v〉
||v||2

<〈u, v〉+ <〈u, v〉2 ||v||
2

||v||4
= ||u||2 − <〈u, v〉

2

||v||2
.

 http://www.polishedproofs.com/relationship-between-a-countable-orthonormal-basis-and-a-countable-dense-subset/
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We know that
0 ≤ ||u+ tv||2

so we get

0 ≤ ||u||2 − <〈u, v〉
2

||v||2
=⇒ 0 ≤ ||u||2||v||2 −<〈u, v〉2.

This gives us
<〈u, v〉2 ≤ ||u||2||v||2.

Well, this is annoying because of that silly <. I wonder how we could make it turn
into |〈u, v〉|? Also, we don’t want to screw up the ||u||2||v||2 part. Well, we know
how the scalar product interacts with complex numbers, for λ ∈ C,

〈λu, v〉 = λ〈u, v〉.
So, if for example

〈u, v〉 = reiθ, r = |〈u, v〉| and θ ∈ R.
We can modify u, without changing ||u||,

||e−iθu|| = ||u||.
Moreover

〈e−iθu, v〉 = e−iθ〈u, v〉 = e−iθreiθ = |〈u, v〉| .
So, if we repeat everything above replacing u with e−iθu we get

<〈e−iθu, v〉2 ≤ ||e−iθu||2||v||2 = ||u||2||v||2,
and by the above calculation

〈e−iθu, v〉 = |〈u, v〉| ∈ R =⇒ <〈e−iθu, v〉2 = |〈u, v〉|2 .
So, we have

|〈u, v〉|2 ≤ ||u||2||v||2.
Taking the square root of both sides completes the proof of the Cauchy-Schwarz
inequality.

We also have a triangle inequality.

Proposition 4. For any u and v in a Hilbert space H,

||u+ v|| ≤ ||u||+ ||v||.

Proof: We just use the previous two results:

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2 ≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2

so rooting we get the triangle inequality.

Proposition 5. We have the Pythagorean theorem: if u and v are orthogonal, then

||u+ v||2 = ||u||2 + ||v||2.
Moreover, if {un}n≥1 are an ONB for the Hilbert space H, then for any v ∈ H,

||v||2 =
∑
n≥1

|〈v, un〉|2 .
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Proof: The first statement follows from

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2 = ||u||2 + ||v||2,

if u and v are orthogonal, because in that case their scalar product is zero. More-
over, for any collection of orthogonal vectors {u1, . . . , un} we proceed by induction.
Assume that

||u1 + . . .+ un−1||2 =

n−1∑
k=1

||uk||2.

Then, if un is orthogonal to all of u1, . . . , un−1 we also have

〈un, u1 + . . .+ un−1〉 = 〈un, u1〉+ . . .+ 〈un, un−1〉 = 0 + . . .+ 0.

Hence un is also orthogonal to the sum,

n−1∑
k=1

uk.

By the Pythagorean theorem,

||un +

n−1∑
k=1

uk||2 = ||un||2 + ||
n−1∑
k=1

uk||2.

By the induction assumption

= ||un||2 +

n−1∑
k=1

||uk||2 =

n∑
k=1

||uk||2.

If {un} are an ONB, then we can write any v ∈ H as

v =
∑
n≥1

cnun, cn ∈ C, n ≥ 1.

In other words,

lim
N→∞

N∑
n=1

cnun = v.

Hence

lim
N→∞

||
N∑
n=1

cnun − v|| = 0.

By the triangle inequality

||v|| = ||v −
N∑
n=1

cnun +

N∑
n=1

cnun|| ≤ ||v −
N∑
n=1

cnun||+ ||
N∑
n=1

cnun||,

and

||
N∑
n=1

cnun|| = ||
N∑
n=1

cnun − v + v|| ≤ ||
N∑
n=1

cnun − v||+ ||v||.

Hence, ∣∣∣∣∣||v|| − ||
N∑
n=1

cnun||

∣∣∣∣∣ ≤ ||
N∑
n=1

cnun − v||.
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So,

lim
N→∞

∣∣∣∣∣||
N∑
n=1

cnun|| − ||v||

∣∣∣∣∣ =⇒ lim
N→∞

||
N∑
n=1

cnun|| = ||v||,

and

lim
N→∞

||
N∑
n=1

cnun||2 = ||v||2.

By the Pythagorean theorem

||
N∑
n=1

cnun||2 =

N∑
n=1

||cnun||2 =

N∑
n=1

|cn|2.

Hence, we have

lim
N→∞

N∑
n=1

|cn|2 =
∑
n≥1

|cn|2 = ||v||2.

Finally, we note that

〈v, um〉 = 〈
∑
n≥1

cnun, um〉 =
∑
n≥1

cn〈un, um〉 = cm,

because of the assumption that un are orthonormal.
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