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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2018.01.29

Forward the light brigade. As I am writing these notes, it becomes apparent
that there are certain delicate issues upon which Gerald and I respectfully have
differing ideas about the presentation. Hilbert spaces is one of these. I just don’t
like how he tries to hide the L2 theory under the rug. I prefer to give you the
concise mathematical information leave the decision up to you: would you like to
hide certain bits under the rug? Well, that’s okay, but you should know for future
reference where to find those bits (like this almost everywhere, sets of measure zero,
Lebesgue integration, measurability stuff). It’s fine to ignore it (hide it under the
rug), but I think you should at least know it’s under there.

Now, it turns out that when I said we assume the scalar product is continuous,
this was not necessary. We will actually see that this is true, but we get it for free
by the other parts in the definition of the norm! That’s nice! This is somewhat
irrelevant, because the important thing is that the scalar product is continuous.
The reason why it’s continuous is not so important. So, feel free to skip this bit if
you like.

Proposition 1. Using only the assumptions that the scalar product satisfies:

〈u, v〉 = 〈v, u〉

〈au, v〉 = a〈u, v〉
〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

〈u, u〉 ≥ 0, 〈u, u〉 = 0 ⇐⇒ u = 0,

then the scalar product is a continuous function from H ×H → C.

Proof: It suffices to estimate

|〈u, v〉 − 〈u′, v′〉| .
I would like to somehow get

u− u′ and v − v′.
So, well, just throw them in the first and last

〈u− u′, v〉 = 〈u, v〉 − 〈u′, v〉.
1
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That shows that

〈u− u′, v〉+ 〈u′, v〉 = 〈u, v〉.

So, we see that

〈u, v〉 − 〈u′, v′〉 = 〈u− u′, v〉+ 〈u′, v〉 − 〈u′, v′〉

We can smash the last two terms together because −1 ∈ R so

−〈u′, v′〉 = 〈u′,−v′〉 =⇒ 〈u′, v〉 − 〈u′, v′〉 = 〈u′, v − v′〉.

Hence,

|〈u, v〉 − 〈u′, v′〉| = |〈u− u′, v〉+ 〈u′, v − v′〉| .

By the triangle inequality

|〈u− u′, v〉+ 〈u′, v − v′〉| ≤ |〈u− u′, v〉|+ |〈u′, v − v′〉| .

By the Cauchy-Schwarz inequality

|〈u− u′, v〉|+ |〈u′, v − v′〉| ≤ ||u− u′||||v||+ ||u′||||v − v′||.

We therefore see that for any fixed pair (u, v) ∈ H ×H, given ε > 0, we can define

δ := min

{
ε

2(||v||+ 1)
,

ε

2(||u||+ 1)
, 1

}
.

Then we estimate

||u− u′|| < δ =⇒ ||u′|| < ||u||+ δ ≤ ||u||+ 1,

||u− u′||||v|| ≤ ε||v||
2(||v||+ 1)

<
ε

2
.

and

||u′||||v − v′|| ≤ (||u||+ 1)ε

2(||u||+ 1)
≤ ε

2
,

so we obtain

|〈u, v〉 − 〈u′, v′〉| < ε.

We proceed with some important theory about Hilbert spaces. This theory is
going to be important because we will use Sturm-Liouville theory later to define
many different (but equivalent) orthogonal bases for L2 on finite intervals. Why is
this useful? Because we can solve PDEs in this way!!! That’s the whole reason for
all this theory. Here is the main idea:

(1) Start with a PDE where the x variable is in a finite (bounded) interval.
(2) Assume you can write your unknown function, u, (the unsub) as a product

like u(x, t) = X(x)T (t). Plug it into the PDE.
(3) Solve for X using the boundary conditions. This will probably give lots of

Xs which can be indexed by N.
(4) Each Xn has a partner Tn. Solve for these. Probably, you’ve got some

unknown constants.
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(5) Is the PDE homogeneous? If so, X1T1 +X2T2 + . . . also solves the PDE so
you can smash them together into a big party series. If *not* then you may
need to do something else (i.e. steady state solution). In the homogeneous
case, you will then use the IC and the collection {Xn} to find the coefficients
in Tn and end up with a solution of the form∑

n∈N
Xn(x)Tn(t).

It’s precisely in this last step where the Hilbert space theory is being used
to say that you can use the Xn obtain the IC, because the Hilbert space
theory tells us when certain functions are basis functions for L2!

So, the motivation is still to solve PDEs, even if things start to seem more
abstract. Now, we’ve had one version of Bessel’s inequality which was for the
Fourier coefficients of an L2 function. This next version says basically the same
thing, but for arbitrary Hilbert spaces, not just L2. Since it is super important for
the proof, we include this proof here:

Proposition 2. We have the Pythagorean theorem: if u and v are orthogonal, then

||u+ v||2 = ||u||2 + ||v||2.

Moreover, if {un}n≥1 are an ONB for the Hilbert space H, then for any v ∈ H,

||v||2 =
∑
n≥1

|〈v, un〉|2 .

Proof: The first statement follows from

||u+ v||2 = ||u||2 + 2<〈u, v〉+ ||v||2 = ||u||2 + ||v||2,

if u and v are orthogonal, because in that case their scalar product is zero. More-
over, for any collection of orthogonal vectors {u1, . . . , un} we proceed by induction.
Assume that

||u1 + . . .+ un−1||2 =

n−1∑
k=1

||uk||2.

Then, if un is orthogonal to all of u1, . . . , un−1 we also have

〈un, u1 + . . .+ un−1〉 = 〈un, u1〉+ . . .+ 〈un, un−1〉 = 0 + . . .+ 0.

Hence un is also orthogonal to the sum,

n−1∑
k=1

uk.

By the Pythagorean theorem,

||un +

n−1∑
k=1

uk||2 = ||un||2 + ||
n−1∑
k=1

uk||2.

By the induction assumption

= ||un||2 +

n−1∑
k=1

||uk||2 =

n∑
k=1

||uk||2.
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If {un} are an ONB, then we can write any v ∈ H as

v =
∑
n≥1

cnun, cn ∈ C, n ≥ 1.

In other words,

lim
N→∞

N∑
n=1

cnun = v.

Hence

lim
N→∞

||
N∑

n=1

cnun − v|| = 0.

By the triangle inequality

||v|| = ||v −
N∑

n=1

cnun +

N∑
n=1

cnun|| ≤ ||v −
N∑

n=1

cnun||+ ||
N∑

n=1

cnun||,

and

||
N∑

n=1

cnun|| = ||
N∑

n=1

cnun − v + v|| ≤ ||
N∑

n=1

cnun − v||+ ||v||.

Hence, ∣∣∣∣∣||v|| − ||
N∑

n=1

cnun||

∣∣∣∣∣ ≤ ||
N∑

n=1

cnun − v||.

So,

lim
N→∞

∣∣∣∣∣||
N∑

n=1

cnun|| − ||v||

∣∣∣∣∣ =⇒ lim
N→∞

||
N∑

n=1

cnun|| = ||v||,

and

lim
N→∞

||
N∑

n=1

cnun||2 = ||v||2.

By the Pythagorean theorem

||
N∑

n=1

cnun||2 =

N∑
n=1

||cnun||2 =

N∑
n=1

|cn|2.

Hence, we have

lim
N→∞

N∑
n=1

|cn|2 =
∑
n≥1

|cn|2 = ||v||2.

Finally, we note that

〈v, um〉 = 〈
∑
n≥1

cnun, um〉 =
∑
n≥1

cn〈un, um〉 = cm,

because of the assumption that un are orthonormal.

Theorem 3 (Bessel’s Inequality for general Hilbert spaces). Let {φn}n∈N be an
orthonormal set in a Hilbert space H. Then if f ∈ H,∑

n∈N
|〈f, φn〉| ≤ ||f ||2.



FOURIER ANALYSIS & METHODS 5

Proof: By the Pythagorean theorem, for each N ∈ N,

‖
N∑

n=1

f̂nφn‖2 =

N∑
n=1

|f̂n|2.

Above, we have used the convenient notation

f̂n = 〈f, φn〉.

So, we compute that the square of the distance between f and its partial Fourier
series

0 ≤ ‖f −
N∑

n=1

f̂nφn‖2 = ‖f‖2 − 2<〈f,
N∑
1

f̂nφn〉+ ‖
N∑
1

f̂nφn‖2.

Let’s look at the middle bit:

〈f,
N∑
1

f̂nφn〉 =

N∑
1

f̂n〈f, φn〉 =

N∑
1

f̂nf̂n =

n∑
1

|f̂n|2.

Hence,

0 ≤ ||f ||2 − 2

N∑
1

|f̂n|2 +

N∑
n=1

|f̂n|2 = ||f ||2 −
N∑
1

|f̂n|2

so re-arranging
N∑
1

|f̂n|2 ≤ ||f ||2.

Letting N →∞ completes the proof.

Now, it turns out that the version of Bessel’s inequality for the Fourier coefficients
will actually be an equality, because {einx}n∈Z is a basis for L2 on [−π, π]. In
general, Bessel’s inequality on a Hilbert space becomes an equality if and only if
the orthonormal set {φn} is a basis.

1.1. Proof of the 3 equivalent conditions to be an ONB in a Hilbert space.
This seems to be a fun one for some reason. It is rather nicely straightforward.
Perhaps what makes it so nice is the pleasant setting of a Hilbert space, or translated
directly from German, a Hilbert room. Hilbert rooms are cozy.

Theorem 4. Let {φn}n∈N be orthonormal in a Hilbert space, H. TFAE (the fol-
lowing are equivalent):

(1) f ∈ H och 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N
〈f, φn〉φn.

(3) ||f ||2 =
∑
n∈N
|〈f, φn〉|2 .
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Proof: We shall proceed in order prove (1) =⇒ (2), then (2) =⇒ (3), and
finally (3) =⇒ (1). Just stay calm and carry on. So we begin by assuming (1)
holds, and then we shall show that (2) must hold as well. First, we note that by
Bessel’s inequality, the series∑

n∈N
|〈f, φn〉|2 ≤ ||f ||2 <∞.

Hence, if we know anything about convergent series, then we sure better know that
the tail of the series tends to zero. The tail of the series is∑

n≥N

|〈f, φn〉|2 → 0 as N →∞.

Now, let us define some elements in our Hilbert space, which we shall show comprise
a Cauchy sequence. Let

gN :=

N∑
n=1

〈f, φn〉φn.

For M ≥ N , we have, using the Pythagorean Theorem and the orthonormality of
the {φn},

||gM−gN ||2 = ||
M∑

n=N+1

〈f, φn〉φn||2 =

M∑
n=N+1

|〈f, φn〉|2 ≤
∞∑

n=N+1

|〈f, φn〉|2 → 0 as N →∞.

Hence, by definition of Cauchy sequence (which one really should know at this
point!), {gN}N≥1 is a Cauchy sequence in our Hilbert space. By definition of Hilbert
space, every Hilbert space is complete. Thus every Cauchy sequence converges to
a unique limit. Let us now call the limit of our Cauchy sequence, which is by
definition,

lim
N→∞

gN = lim
N→∞

N∑
n=1

〈f, φn〉φn =
∑
n∈N
〈f, φn〉φn = g.

We will now show that f − g satisfies

〈f − g, φn〉 = 0∀n ∈ N.

Then, because we are assuming (1) holds, this implies that f − g = 0, ergo f = g.
So, we compute this inner product,

〈f − g, φn〉 = 〈f, φn〉 − 〈g, φn〉.

We insert the definition of g as the series,

〈g, φn〉 = 〈
∑
m≥1

〈f, φm〉φm, φn〉 =
∑
m≥1

〈f, φm〉〈φm, φn〉 = 〈f, φn〉.

Above, we have used in the second equality the linearity of the inner product and the
continuity of the inner product. In the third equality, we have used that 〈φm, φn〉
is 0 if m 6= n, and is 1 if m = n. Hence, only the term with m = n survives in the
sum. Thus,

〈f − g, φn〉 = 〈f, φn〉 − 〈g, φn〉 = 〈f, φn〉 − 〈f, φn〉 = 0, ∀n ∈ N.

By (1), this shows that f − g = 0 =⇒ f = g.
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Next, we shall assume that (2) holds, and we shall use this to demonstrate (3).
Well, note that

f = lim
N→∞

gN =⇒ ||f − gN ||2 → 0, as N →∞.

Then, by the triangle inequality,

||f ||2 = ||f−gN+gN ||2 ≤ ||f−gN ||2+||gN ||2 = ||f−gN ||2+

N∑
n=1

|〈f, φn〉|2 ≤ |f−gN ||2+
∑
n∈N
|〈f, φn〉|2.

On the other hand, by Bessel’s Inequality,∑
n∈N
|〈f, φn〉|2 ≤ ||f ||2.

So, we have a little sandwich, en smörg̊as, if you will, with ||f ||2 right in the middle
of our sandwich,∑

n∈N
|〈f, φn〉|2 ≤ ||f ||2 ≤ ||f − gN ||2 +

∑
n∈N
|〈f, φn〉|2.

Letting N →∞ on the right side, the term ||f − gN || → 0, and so we indeed have∑
n∈N
|〈f, φn〉|2 ≤ ||f ||2 ≤

∑
n∈N
|〈f, φn〉|2.

This of course means that all three terms are equal, because the terms all the way
on the left and right side are the same!

Finally, we assume (3) holds and use it to show that (1) must also hold. This
is pleasantly straightforward. We assume that for some f in our Hilbert space,
〈f, φn〉 = 0 for all n. Using (3), we compute

||f ||2 =
∑
n∈N
|〈f, φn〉|2 =

∑
n∈N

0 = 0.

The only element in a Hilbert space with norm equal to zero is the 0 element. Thus
f = 0.
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