
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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The Hilbert space theory is useful for solving PDEs. We will see this connection
through Sturm-Liouville problems. We’ve just got a little bit of theory to complete
before we get to the SLPs.

1.1. The Best Approximation Theorem. This is another fun and cozy Hilbert
room theory item.

Theorem 1. Let {φn}n∈N be an orthonormal set in a Hilbert space, H. If f ∈ H,
then

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and equality holds ⇐⇒ cn = 〈f, φn〉 is true ∀n ∈ N.

Proof: We make a few definitions: let

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,

and

ϕ :=
∑

cnφn.

Then we compute

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2<〈f − g, g − ϕ〉.

I claim that

〈f − g, g − ϕ〉 = 0.

Just write it out (stay calm and carry on):

〈f, g〉 − 〈f, ϕ〉 − 〈g, g〉+ 〈g, ϕ〉

=
∑

f̂n〈f, φn〉 −
∑

cn〈f, φn〉 −
∑

f̂n〈φn,
∑

f̂mφm〉+
∑

f̂n〈φn,
∑

cmφm〉

=
∑
|f̂n|2 −

∑
cnf̂n −

∑
|f̂n|2 +

∑
f̂ncn = 0,

where above we have used the fact that φn are an orthonormal set. Then, we have

||f − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≥ ||f − g||2,
1
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with equality iff
||g − ϕ||2 = 0.

Let us now write out what this norm is, using the definitions of g and ϕ. By their
definitions,

g − ϕ =
∑

(f̂n − cn)φn.

By the Pythagorean theorem, due to the fact that the φn are an orthonormal set,

and hence multiplying them by the scalars, f̂n − cn, they remain orthogonal, we
have

||g − ϕ||2 =
∑∣∣∣f̂n − cn∣∣∣2 .

This is a sum of non-negative terms. Hence, the sum is only zero if all of the terms
in the sum are zero. The terms in the sum are all zero iff∣∣∣f̂n − cn∣∣∣ = 0∀n ⇐⇒ cn = f̂n∀n ∈ N.

1.2. Spectral Theorem Motivation. Basically, a linear (partial or ordinary)
differential operator with constant coefficients will act on a certain Hilbert space.
For example, the operator

∆ = −∂2x
acts on the Hilbert space H2. Don’t worry about what it is precisely, because
what’s important is just that it’s a Hilbert space. This operator takes elements
of the Hilbert space H21 and sends them to the Hilbert space L2. It is a linear
operator because

∂2x(f(x) + g(x)) = f ′′(x) + g′′(x) = ∂2x(f(x)) + ∂2x(g(x)).

So if we think of the functions as vectors, then ∆ is like a linear map that takes
in vectors and spits out vectors. Just like linear maps on finite dimensional vector
spaces, which can be represented by a matrix, a linear operator on a Hilbert space
can be represented by a matrix. If it is a sufficiently “nice” operator, then there
will exist an orthonormal basis of eigenfunctions with corresponding eigenvalues.
Here it is useful to recall

Theorem 2 (Spectral Theorem for Cn). Assume that A is a Hermitian matrix.
Then there exists an orthonormal basis of Cn which consists of eigenvectors of A.
Moreover, each of the eigenvalues is real.

Proof: Remember what Hermitian means. It means that for any u, v ∈ Cn, we
have

〈Au, v〉 = 〈u,Av〉.
By the Fundamental Theorem of Algebra, the characteristic polynomial

p(x) := det(A− xI)

factors over C. The roots of p are {λk}nk=1. These are by definition the eigenvalues
of A. First, we consider in case A has zero as an eigenvalue. If this is the case, then
we define

K0 := Ker(A) = {u ∈ Cn : Au = 0}.

1The Hilbert space, H2 sits inside L2.
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We note that all nonzero u ∈ K0 are eigenvectors of A for the eigenvalue 0. Since
K0 is a k-dimensional subspace of Cn, it has an ONB {v1, . . . , vk}. If k = n, we
are done. So, assume that k < n. Then we consider

K⊥0 = {u ∈ Cn : 〈u, v〉 = 0∀v ∈ K0}.

Any u ∈ Cn can the be written as

u = u0 + u⊥0 , u0 ∈ K0 and u⊥0 ∈ K⊥0 .

Since A has eigenvalues {λj}nj=1, and 0 appears with multiplicity k, λk+1 6= 0. It
has some non-zero eigenvector. Let’s call it u. Then we compute

〈Au, v〉 = λk+1〈u, v〉 = 〈u,Av〉 = 0∀v ∈ K0.

Hence, we see that

u ∈ K⊥0 .
Since it is an eigenvector it is not zero, so we define

vk+1 :=
u

||u||
.

Next we define K1 to be the span of the vectors {v1, . . . , vk+1}. We look at A
restricted to K⊥1 . We note that A maps K1 to itself because if

v =

k+1∑
1

cjvj =⇒ Av =

k+1∑
1

cjAvj =

k+1∑
1

cjλjvj ∈ K1.

Similarly, if w ∈ K⊥1 ,

〈Aw, v〉 = 〈w,Av〉 = 0∀v ∈ K1.

So, A maps K⊥1 into itself. Since the kernel of A is in K1, A is a surjective and
injective map from K⊥1 into itself. So, there is an eigenvalue λk+2, for A as a
linear map from K⊥1 to itself. It has an eigenvector, which we may assume has unit
length, contained in K⊥1 . Call it vk+2. Continue inductively until we reach in this
way {v1, . . . , vn} to span Cn.

Let us do an example. On [−π, π], the functions which satisfy

∆f = λf, f(−π) = f(π)

are

f(x) = fn(x) = einx.

The corresponding

λn = n2.

So, the eigenvalues of ∆ with this particular boundary condition are n2, and the
corresponding eigenfunctions are e±inx. We have proven that these are orthogonal.
We can make them orthonormal by dividing by the norms,{

einx√
2π

}
n∈Z

.
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We note that for all f and g in L2 which satisfy f(−π) = f(π), g(−π) = g(π) and
which are also (at least weakly) twice differentiable, we would also get f ′(−π) =
f ′(π) and similarly for g, so that

〈∆f, g〉 =

∫ π

−π
−f ′′(x)g(x)dx = −f ′(x)g(x)

∣∣∣π
−π

+

∫ π

−π
f ′(x)g′(x)dx

= −f ′(x)g(x)
∣∣∣π
−π

+ f(x)g′(x)
∣∣∣π
−π
−
∫ π

−π
f(x)g′′(x)dx.

Due to the boundary conditions, all that survives is

−
∫ π

−π
f(x)g′′(x)dx = 〈f,∆g〉.

So we see that

〈∆f, g〉 = 〈f,∆g〉.
This is just like the spectral theorem for Hermitian matrices! There is a similar
spectral theorem here, a “grown-up linear algebra” theorem, called The Spectral
Theorem. This grown-up version of the spectral theorem says that, like a Hermitian
matrix, the operator ∆ also has an L2 orthonormal basis of eigenfunctions. Hence,
by this theorem, we know that the orthonormal set,{

einx√
2π

}
n∈Z

,

(which à priori could be missing stuff) is in fact not missing anything, spans all of
L2, and is an ONB. If you’re interested in this topic, you can try to convince me
to give a PhD/Master’s course on it. With sufficiently many interested students, I
may be convinced.

1.3. Regular SLPs. Let L be a linear, second order ordinary differential operator.
So, we can write

L(f) = r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x).

Above, r, q, and p are specified REAL VALUED functions. As a simple example,
take r(x) = −1, and q(x) = p(x) = 0. Then we have

L(f) = ∆f = −f ′′(x).

We are working with functions defined on an interval [a, b] which is a finite interval.
So, the Hilbert space in which everything is happening is L2 on that interval. Like
with matrices, we can think about the adjoint of the operator L. The adjoint by
definition satisfies

〈Lf, g〉 = 〈f, L ∗ g〉,
where we are using L∗ to denote the adjoint operator. Whatever it is. On the
left side, we know what everything is, so we write it out by definition of the scalar
product

〈Lf, g〉 =

∫ b

a

L(f)g(x)dx =

∫ b

a

(r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x)) g(x)dx.

Integrating by parts, we get

= (rḡ)f ′|ba −
∫ b

a

(rḡ)′f ′ + (qg)f |ba −
∫ b

a

(qḡ)′f +

∫ b

a

pfḡ



FOURIER ANALYSIS & METHODS 5

= (rḡ)f ′ + (qḡ)f |ba −
∫ b

a

[(rḡ)′f ′ + (qḡ)′f − pfḡ] .

We integrate by parts once more on the (rḡ)′f ′ term to get

= (rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba +

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ.

So, if the boundary conditions are chosen to make the stuff evaluated from a to b
(these are called the boundary terms in integration by parts) vanish, then we could
define

L∗g = (rg)′′ − (qg)′ + pg,

since then

〈Lf, g〉 =

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ = 〈f, L∗g〉.

Here we use that r, q and p are real valued functions, so r̄ = r, q̄ = q, and p̄ = p.
For the spectral theorem to work, we will want to have

L = L∗.

When this holds, we say that L is formally self-adjoint. So, we need

Lf = L∗f ⇐⇒ rf ′′ + qf ′ + pf = (rf)′′ − (qf)′ + pf.

We write the things out:

rf ′′+qf ′+pf = (rf ′+r′f)′−qf ′−q′f+pf ⇐⇒ rf ′′+qf ′ = rf ′′+2r′f ′+r′′f−qf ′−q′f

⇐⇒ qf ′ = 2r′f ′ + r′′f − qf ′ − q′f ⇐⇒ (2q − 2r′)f ′ + (q′ − r′′)f = 0.

To ensure this holds for all f , we set the coefficient functions equal to zero:

2q − 2r′ = 0 =⇒ q = r′, q′ = r′′.

Well, that just means that q = r′. So, we need L to be of the form

Lf = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

We then note that the boundary conditions we will want shall make this:

(rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba = (rḡ)f ′ − (rḡ)′f + (r′ḡ)f |ba = 0,

⇐⇒ rḡf ′ − r′ḡf − rḡ′f + r′ḡf |ba = 0 ⇐⇒ rḡf ′ − rḡ′f |ba = 0

⇐⇒ r(ḡf ′ − ḡ′f)|ba = 0.

Hence, it is enough to have

ḡ(b)f ′(b)− ḡ′(b)f(b)− (ḡ(a)f ′(a)− ḡ′(a)f(a)) = 0 ⇐⇒

ḡ(b)f ′(b)− ḡ′(b)f(b) = ḡ(a)f ′(a)− ḡ′(a)f(a).

This is how we get to the definition of a regular SLP on an interval [a, b]. It is
specified by

(1) a formally self-adjoint operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].



6 JULIE ROWLETT

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies the
boundary condition.

We then have a miraculous fact.

Theorem 3 (Adult Spectral Theorem). For every regular Sturm-Liouville problem
as above, there is an orthonormal basis of L2

w consisting of eigenfunctions {φn}n∈N
with eigenvalues {λn}n∈N. We have

lim
n→∞

λn =∞.

Here, L2
w is the weighted Hilbert space consisting of (the almost everywhere-equivalence

classes of measurable) functions on the interval [a, b] which satisfy∫ b

a

|f(x)|2w(x)dx <∞,

and the scalar product is

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx.

We are not equipped to prove this fact. You can rest assured however that it is
done through the techniques of functional analysis and bears similarity to the proof
of the spectral theorem for finite dimensional vector spaces. I may be convinced to
do a course which proves this fact and which also proves how the eigenvalues λn
tend to ∞ as n → ∞. I mean, they could go like λn ∼ n, or like λn ∼

√
n or like

λn ∼ en, which is it? The answer is a form of Weyl’s law...
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