
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.02.11

Theorem 1 (Cute facts about SLPs). Let f and g be eigenfunctions for a regular
SLP in an interval [a, b] with weight function w(x) > 0. Let λ be the eigenvalue for
f and µ the eigenvalue for g. Then:

(1) λ ∈ R och µ ∈ R;
(2) If λ 6= µ, then: ∫ b

a

f(x)g(x)w(x)dx = 0.

Proof: By definition we have Lf + λwf = 0. Moreover, L is self-adjoint, so we
have

〈Lf, f〉 = 〈f, Lf〉.
By being an eigenfunction,

Lf = −λwf.
So combining these facts:

〈Lf, f〉 = 〈−λwf, f〉 = −λ〈wf, f〉

= 〈f, Lf〉 = 〈f,−λwf〉 = −λ〈f, wf〉.
Since w is real valued,

〈wf, f〉 =

∫ b

a

w(x)f(x)f(x)dx =

∫ b

a

|f(x)|2w(x)dx,

〈f, wf〉 =

∫ b

a

f(x)w(x)f(x)dx =

∫ b

a

|f(x)|2w(x)dx.

Since w > 0 and f is an eigenfunction,∫ b

a

|f(x)|2w(x)dx > 0.

So, the equation

−λ〈wf, f〉 = −λ
∫ b

a

|f(x)|2w(x)dx = −λ〈f, wf〉 = −λ
∫ b

a

|f(x)|2w(x)dx

1
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implies
λ = λ.

For the second part, we use basically the same argument based on self-adjointness:

〈Lf, g〉 = 〈f, Lg〉.
By assumption

〈Lf, g〉 = −λ〈wf, g〉 = −λ
∫ b

a

w(x)f(x)g(x)dx.

Similarly,

〈f, Lg〉 = 〈f,−µwg〉 = −µ〈f, wg〉 = −µ〈f, wg〉 = −µ
∫ b

a

f(x)g(x)w(x)dx,

since µ ∈ R and w(x) is real. So we have

−λ
∫ b

a

w(x)f(x)g(x)dx = −µ
∫ b

a

f(x)g(x)w(x)dx.

If the integral is non-zero, then it forces λ = µ which is false. Thus the integral
must be zero.

1.1. Applications to solving PDEs: divide and conquer. Ideally, you want
to deal with inhomogeneous parts one at a time. So, you break the problem down
into pieces and try to solve the pieces: divide and conquer. Deal with each inhomo-
geneity one at a time. Then add them up. It is difficult to give a definitive formula
that one can mindlessly use in every situation (like the quadratic formula for the
solutions to ax2 + bx + c = 0). The best tactic is to keep these principles and ex-
amples in mind (and at hand for reference while you are in the practicing/learning
phase), and to just do lots and lots of problems. Occasionally though, especially in
future “real world problems” you may come to a PDE which has no solution. So,
if you are really struggling, consider the possibility that maybe what you’re trying
to do is impossible. On exams, though, this won’t happen. In the real (research &
applied) world though....

1.1.1. Warm-up example. Solve:

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π

u(−π) = u(π) = 0

ut(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0.

We begin by doing separation of variables. Write u(x, t) = X(x)T (t). We get
the equation

T ′(t)X(x)−X ′′(x)T (t) = 0 ⇐⇒ T ′

T
=
X ′′

X
= λ.

Since we have super nice BCs for X, we start with the X. We want to solve

X ′′(x) = λX(x), X(−π) = X(π) = 0.

First case: λ = 0. Then
X(x) = ax+ b.
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Figure 1. Just for fun, here is an old photo of my grandpa in his plane. Coinci-
dentally, he is a first generation Swede (his parents immigrated from Sweden to the
USA in the early 1900s). Note that I wrote is, because he’s going on 98.

The BCs say
X(−π) = −aπ + b = 0 =⇒ aπ = b.

Next we need
X(π) = aπ + b = 0 =⇒ b = −aπ.

Combining these,
aπ = −aπ =⇒ a = 0 =⇒ b = 0.

So, no solution here because the zero solution doesn’t count! Moving right along,
let us try

λ > 0.

Then, our solution looks like real exponentials or equivalently sinh and cosh.
HINT: If you interval looks like [0, l], it’s probably easiest to work with sinh

and cosh because sinh(0) = 0 and cosh′ = sinh. So this will often make things
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simpler. On the other hand, if you have an interval like [a, b] with a and be not
zero, it may be easier to work with the exponentials. So, that’s why I’m choosing
to do that here. Hence

X(x) = ae
√
λx + be−

√
λx.

The BCs require

X(−π) = ae−
√
λπ + be

√
λπ = 0.

Let’s multiply by e
√
λπ, to get

a+ be2
√
λπ = 0 =⇒ a = −be2

√
λπ.

We check the other BCs

X(π) = ae
√
λπ + be−

√
λπ = 0

substituting the value of a,

−be2
√
λπe
√
λπ + be−

√
λπ = 0.

If b = 0 the whole solution is 0, so we assume this is not the case and divide by b.

Multiplying by e
√
λπ we get

−e4
√
λπ + 1 = 0 ⇐⇒ e4

√
λπ = 1 ⇐⇒ 4

√
λπ = 0 ⇐⇒ λ = 0,

which is a contradiction. So, no solutions lurking over here.
Thus, we consider λ < 0. Then our solution looks like

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

We need

X(−π) = a cos(−
√
|λ|π) + b sin(−π

√
|λ|) = 0 = a cos(

√
|λ|π)− b sin(

√
|λ|π),

where we use the evenness of cosine and oddness of sine. We also need

X(π) = a cos(
√
|λ|π) + b sin(

√
|λ|π) = 0.

Adding these equations we see that we need

a cos(
√
|λ|π) = 0 =⇒ a = 0 or

√
|λ| = (2k + 1)

2
, k ∈ Z.

Subtracting these equations we see that we need

b cos(
√
|λ|π) = 0 =⇒ b = 0 or

√
|λ| = 2k

2
, k ∈ Z.

I know it looks weird but I wrote it this way to make it looks similar to the one
with the cosine. Now, the number

√
|λ| can only have one value. It cannot be two

different things at the same time. So, we have two types of solutions

Xn(x) =

{
cos
(
nx
2

)
n is odd

sin
(
nx
2

)
n is even.

Here we have √
|λn| =

n

2
, λn = −n

2

4
.

Exercise 1. Compute that:∫ π

−π
cos(

√
|λn|x)2dx = π =

∫ π

−π
sin(

√
|λn|x)2dx.
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Now we solve for the partner functions,

T ′n
Tn

= λn =⇒ Tn(t) = eλnt.

We ignore the constant factors because they come in at the end. Then, we write

u(x, t) =
∑
n∈N

Tn(t)Xn(x)
〈v,Xn〉
||Xn||2

,

where
v(x) := u(x, 0).

You can compute these Fourier coefficients if you want to do it, but it’s not actually
necessary to do it on the exam. Just a friendly little tip for saving time.

1.1.2. Dealing with time independent inhomogeneities. Let’s consider the problem

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 5 x ∈ [−π, π], t > 0.

OH NO! It’s not a homogeneous PDE! What do we do?!?!? Don’t panic. Observe
that the inhomogeneity is independent of t.

Idea: Deal with time independent inhomogeneity in the PDE by
finding a steady state solution.

We look for a function f(x) which depends only on x which satisfies the boundary
conditions and also satisfies the inhomogeneous PDE. Since f only depends on x,
the PDE for f is

−f ′′(x) = 5 ⇐⇒ f ′′(x) = −5.

This means that

f ′(x) = −5x+ b =⇒ f(x) = −5x2

2
+ bx+ c.

Now, we want f to satisfy the boundary conditions. So, we want

−5π2

2
− bπ + c = 0 = −5π2

2
+ bπ + c.

If we subtract these equations, then we see that we need to have b = 0. If we add
these equations then we see that we need

−5π2 + 2c = 0 =⇒ c =
5π2

2
.

Thus, we have found a solution to

−f ′′(x) = 5, f(±π) = 0,

which is

f(x) = −5x2

2
+

5π2

2
.

If we then look for a solution to

u(x, 0) =

{
x+ π, −π ≤ x ≤ 0

π − x, 0 ≤ x ≤ π
=: v(x)
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u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0,

and we add it to f , we will get

u(x, 0) + f(x) = v(x) + f(x) 6= v(x).

The initial condition gets messed up because of f . So, we need to compensate for
this. For that reason, we look for a solution to

u(x, 0) = −f(x) + v(x)

u(−π, t) = u(π, t) = 0

ut(x, 0) = 0, x ∈ [−π, π]

utt(x, t)− uxx(x, t) = 0 x ∈ [−π, π], t > 0.

Then, our full solution will be

U(x, t) = u(x, t) + f(x).

It will now satisfy everything. Here it is important to note that when we add u
and f , the boundary condition still holds. So, please think about this, because in
certain variations on the theme, it could possibly not be true.

Anyhow, we are now just dealing with this nice IVP for the homogeneous wave
equation. We can recycle our work from the previous problem. We had the heat
equation there, but watch what happens when we separate variables:

T ′′(t)X(x)−X ′′(x)T (t) = 0 =⇒ T ′′

T
=
X ′′

X
= λ,

is a constant. So, for the X part, we have the problem:

X ′′ = λX, X(±π) = 0.

Since we have just solved this, we can skip to the good bit1

Xn(x) =

{
cos
(
nx
2

)
n is odd

sin
(
nx
2

)
n is even.

Here we have √
|λn| =

n

2
, λn = −n

2

4
.

The partner functions,

Tn(t) = αn cos(
√
|λn|x) + βn sin(

√
|λn|x).

We shall determine the coefficients using the IC. First, we write

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

Next, we use the easier of the two ICs, which is

ut(x, 0) = 0.

So, we also compute

ut(x, t) =
∑
n≥1

T ′n(t)Xn(x).

1Recommended listening is the song by Rizzle Kicks.
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When we plug in 0, we need to have

ut(x, 0) =
∑
n≥1

T ′n(0)Xn(x) = 0.

So, to get this, we need

T ′n(0) = 0∀n.
By definition of the Tn,

T ′n(0) = βn
√
|λn|.

So, to make this zero, since
√
|λn| 6= 0, we need

βn = 0∀n.

Hence, our solution looks like

u(x, t) =
∑
n≥1

αn cos(
√
|λn|t)Xn(x).

The other IC says

u(x, 0) = −f(x) + v(x).

Since cos(0) = 1, we see that we need

−f(x) + v(x) =
∑
n≥1

αnXn(x).

This means that we need

αn =
〈−f + v,Xn〉
||Xn||2

=

∫ π
−π (−f(x) + v(x))Xn(x)dx∫ π

−π |Xn(x)|2dx
.

It suffices to just leave αn like this. As we observed before, our full solution is now

U(x, t) = u(x, t) + f(x) = −5x2

2
+

5π2

2
+
∑
n≥1

αn cos(
√
|λn|x)Xn(x),

with Xn defined as above.

1.1.3. Dealing with non-self-adjoint BCs. Let’s say we have the problem

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 20.

These are not self adjoint BCs. Yikes! However, we can use a similar “steady
state” trick to deal with this. If the BC u(0, t) = 20 were instead u(0, t) = 0, then
the BCs would be self adjoint BCs. So we want to make it so. Since the PDE is
homogeneous, the

Idea: Deal with non-self adjoint BCs which are independent of
time by finding a steady state solution.
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So, we want a function f(x) which satisfies the equation

−f ′′(x) = 0,

and which gives us the bad BC

f(0) = 20.

We have a nice homogeneous BC on the other side, so we don’t want to mess that
up, so we want

f ′(4) = 0.

Then, the function

f(x) = ax+ b.

We use the BCs to compute

f(0) = 20 =⇒ b = 20.

f ′(4) = 0 =⇒ a = 0.

Similar to before, if we add it to the solution of

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

it’s going to screw up the IC. So, instead we look for the solution of

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x)− f(x),

ux(4, t) = 0,

u(0, t) = 0.

We can now deal with this in the standard way. We use SV to write u = XT (just
a means to an end).2 Next, we get the equation

T ′

T
=
X ′′

X
= λ.

We solve the SLP

X ′′ = λX, X(0) = 0 = X ′(4).

The reason we know this is an SLP satisfying the hypotheses of the theorem is
because we verify that the BC is self-adjoint.

Exercise 2. Verify that the only solutions for the cases λ ≥ 0 are solutions which
are identically zero.

2La fin justifie les moyens by M.C. Solaar is recommended listening.
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We only get λ < 0. Then, the solution is of the form

an cos(
√
|λn|x) + bn sin(

√
|λn|x).

The BC at 0 tells us that

an = 0.

The BC at 4 tells us that

cos(
√
|λn|4) = 0 =⇒

√
|λn|4 =

2n+ 1

2
π =⇒

√
|λn| =

2n+ 1

8
π.

We then also get

λn = − (2n+ 1)2π2

64
.

We shall deal with the coefficients at the very end. So, we set

Xn(x) = sin(
√
|λn|x).

The partner function

T ′n
Tn

= λn =⇒ Tn(t) = αne
λnt = αne

−(2n+1)2π2t/64.

We put it all together writing

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

To make the IC, we need

u(x, 0) =
∑
n≥1

Tn(0)Xn(x) = v(x)− f(x).

Since

Tn(0) = αn,

we need ∑
n≥1

αnXn(x) = v(x)− f(x).

So we want the coefficients to be the Fourier coefficients of v − f , thus

αn =
〈v − f,Xn〉
||Xn||2

=

∫ 4

0
(v(x)− f(x))Xn(x)dx∫ 4

0
|Xn(x)|2dx

.

Our full solution is

U(x, t) = u(x, t) + f(x) = 20 +
∑
n≥1

Tn(t)Xn(x).

1.2. Exercises from [
folland
1] for the week.
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1.2.1. To be demonstrated.

(1) (4.2:5) Solve:

ut = kuxx + e−2t sin(x),

with

u(x, 0) = u(0, t) = u(π, t) = 0.

(2) (EO 23) Determine the eigenvalues and eigenfunctions of the SLP:

f ′′ + λf = 0, 0 < x < a,

f(0)− f ′(0) = 0, f(a) + 2f ′(a) = 0.

(3) (EO 24) Determine the eigenvalues and eigenfunctions of the SLP:

−e−4x d

dx

(
e4x du

dx

)
= λu, 0 < x < 1,

u(0) = 0, u′(1) = 0.

(4) (EO 1) A function is 2 periodic with f(x) = (x + 1)2 for |x| < 1. Expand
f(x) in a Fourier series. Search for a 2 periodic solution to the equation

2y′′ − y′ − y = f(x).

(5) (4.2.6) Solve:

ut = kuxx +Re−ct, R, c > 0,

u(x, 0) = 0 = u(0, t) = u(l, t).

Physically this is heat flow in a rod which has a chemical reaction in it such
that the reaction produced inside the rod dies out over time.

(6) (4.3.5) Find the general solution of

utt = c2uxx − a2u,

u(0, t) = u(l, t) = 0,

with arbitrary initial conditions. Physically, this is a model for a string
vibrating in an elastic medium where the term −a2u represents the force
of reaction of the medium on the string.

1.2.2. To solve oneself.

(1) (EO 25) Solve the problem:

uxx + uyy = y, 0 < x < 2, 0 < y < 1

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = y − y3, u(2, y) = 0.

(2) (EO 27) Solve the problem

uxx + uyy + 20u = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0

u(x, 0) = 0, u(x, 1) = x2 − x.
(3) (4.4:1) Solve the equation

uxx + uyy = 0

inside the square 0 ≤ x, y ≤ l, subject to the boundary conditions:

u(x, 0) = u(0, y = u(l, y) = 0, u(x, l) = x(l − x).
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(4) (EO 3) Expand the function cos(x) in a sine series on the interval (0, π/2).
Use the result to compute∑

n≥1

n2

(4n2 − 1)2
.

(5) (4.2.2) Solve:
ut = kuxx, u(x, 0) = f(x),

u(0, t) = C 6= 0, ux(l, t) = 0.

(6) (4.3.1) Show that the function

bn(t) :=
1

nπc

∫ t

0

sin
nπc(t− s)

l
βn(s)ds

solves the differential equation:

b′′n(t) +
n2π2c2

l2
bn(t) = βn(t),

as well as the initial conditions bn(0) = b′n(0) = 0.
(7) (4.4.7) Solve the Dirichlet problem:

uxx + uyy = 0 in S = {(r, θ) : 0 < r0 ≤ r ≤ 1, 0 ≤ θ ≤ β},
u(r0, θ) = u(1, θ) = 0, u(r, 0) = g(r), u(r, β) = h(r).
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