
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.02.15

We shall do one last example on a bounded interval. Solve:

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

Non! Sacre bleu! Tabernac!1 This is an inhomogeneous PDE and the inhomo-
geneity (tx) depends on time! A steady-state solution cannot save us. What do we
do?

1.1. Using Fourier Series with non-constant coefficients to deal with time-
dependent inhomogeneity. There’s a lovely way to deal with this type of inho-
mogeneity. We first solve the homogeneous problem. Having done that on Monday,
we simply recall the solutions we obtained there.

λn = − (2n+ 1)2π2

64
, Xn(x) = sin(

√
|λn|x).

Tn(t) = αne
λnt.

αn =
〈v,Xn〉
||Xn||2

=

∫ 4

0
v(x)Xn(x)dx∫ 4

0
|Xn(x)|2dx

.

Let us now call

w(x, t) =
∑
n≥1

Tn(t)Xn(x).

So, this solves everything except the creepy tx part. We shall deal with that part
by looking for a solution to

ut − uxx = tx, 0 < x < 4, t > 0,

1This is how they curse in French Canada.
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u(x, 0) = 0,

ux(4, t) = 0,

u(0, t) = 0.

Idea: look for a solution of the form∑
n≥1

cn(t)Xn(x).

So, we keep our Xn from the homogeneous problem’s SLP, and we look for different
cn which will now be functions of t. We want the function to satisfy

ut − uxx = tx,

so we put the series in the left side into this PDE:∑
n≥1

c′n(t)Xn(x)− cn(t)X ′′n(x) = tx.

We use the fact the X ′′n = λnXn, so we want to solve∑
n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx.

Here is where we do something clever:

Idea: write out tx as a Fourier series in terms of Xn.

The t just goes along for the ride, and

tx = t
∑
n≥1

anXn(x),

where

an =
〈x,Xn〉
||Xn||2

=

∫ 4

0
xXn(x)dx∫ 4

0
|Xn|2dx

.

As usual, we do not need to compute these integrals.
So, we want: ∑

n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx =
∑
n≥1

tXn(x)an.

We equate the coefficients of Xn:

(c′n(t)− λncn(t)) = tan.

This is an ODE for cn(t). We also want the IC, cn(0) = 0. The solution to the
homogeneous ODE,

f ′ − λnf = 0 =⇒ f(t) = eλnt times some constant factor.

A particular solution to the inhomogeneous ODE is a linear function of the form:

Ant+Bn =⇒ An − λn(Ant+Bn) = ant =⇒ An =
−an
λn

, Bn =
An
λn

= −an
λ2n
.

So general solutions are of the form:

cn(t) = Cne
λnt − an

λn
t− an

λ2n
, for some constant Cn.
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To obtain the initial condition that c′n(0) = 0, we see that we need

Cn =
an
λ2n
.

Thus, we have found

cn(t) =
an
λ2n
eλnt − an

λn
t− an

λ2n
.

Therefore the solution we seek is

u(x, t) =
∑
n≥1

cn(t)Xn(x),

and the full solution to the original problem is

U(x, t) = w(x, t) + u(x, t).

1.2. Transition to the real line. It is now time to COMPLETELY CHANGE
GEARS. We are now going to deal with FUNCTIONS AND PROBLEMS ON
THE WHOLE REAL LINE. Why am I shouting? Well, it’s because the tech-
niques on finite intervals and those on R (or R2, Rn etc) are DIFFERENT. DO
NOT MIX THEM UP. It’s like that South Park episode with the pig and the ele-
phant, “Pig and elephant just don’t splice” https://www.youtube.com/watch?v=

RztfjHdM-pg. The pig could be compared to a finite interval, whereas the elephant
is R. They just don’t splice. They need to be considered separately. No, it is also
not a good idea to get them drunk and have Chef sing a song so that they hook
up. Bad idea. Don’t do it.

Definition 1 (The real one). The set

L1(R) = the set of equivalence classes, [f ] of functions which satisfy:

f is measurable, and

∫
R
|f(x)|dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere
on R with respect to the Lebesgue measure on R.

Definition 2 (The real one). The set

L2(R) = the set of equivalence classes, [f ] of functions which satisfy:

f is measurable, and

∫
R
|f(x)|2dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere
on R with respect to the Lebesgue measure on R.

Definition 3 (The workable definition of L1(R)). It will suffice for the purposes
of this humble course to treat L1(R) as the set of functions on R which satisfy∫

R
|f(x)|dx <∞.

The L1(R) norm is then defined to be

||f ||L1 =

∫
R
|f(x)|dx.

The set of such functions, denoted by L1(R), is a complete normed vector space but
not a Hilbert space. A complete normed vector space is also known as a Banach
space.

https://www.youtube.com/watch?v=RztfjHdM-pg
https://www.youtube.com/watch?v=RztfjHdM-pg
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Definition 4 (The workable definition of L2(R)). It will suffice for the purposes
of this humble course to treat L2(R) as the set of functions on R which satisfy∫

R
|f(x)|2dx <∞.

This set of functions, denoted by L2(R), is a Hilbert space with the scalar product:

〈f, g〉 =

∫
R
f(x)g(x)dµ.

Hence, by definition, the norm on L2(R) is

||f ||L2(R) =

√∫
R
|f(x)|2dx.

A lot of things which are true for L2 on a finite interval are no longer true on
L2(R). For example, the functions

einx, sin(x), cos(x)

are all neither in L1(R) nor in L2(R). Furthermore, there is no relationship between
L1(R) and L2(R). There are functions which are in L1(R) but not in L2(R):

f(x) =


0 x ≤ 0
√
x 0 < x < 1

0 x ≥ 1

is in L1(R) but it is not in L2(R).

Exercise 1. Verify that this function is in L1(R) but not in L2(R). Compute its
L1(R) norm.

On the other hand, the function

f(x) =

{
0 x ≤ 1
1
x x > 1

is in L2(R) but not in L1(R).

Exercise 2. Verify that this function is in L2(R) but not in L1(R). Compute its
L2(R) norm.

The function
e−|x|

is in both L1(R) and in L2(R).

Exercise 3. Verify that this function is in both L1(R) and L2(R). Compute its L1

and L2 norms. Come up with your own examples of functions which are

(1) In L1(R) but not in L2(R).
(2) In L2(R) but not in L1(R).
(3) In both L1(R) and L2(R).

So, all we can say is that

L1(R) 6⊂ L2(R), L2(R) 6⊂ L1(R), L1(R) ∩ L2(R) 6= ∅.
So, we’re in a whole new territory here. To begin we shall define the convolution.
This will be super important for solving the heat equation on the real line.
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Definition 5. The convolution of f and g is a function f ∗ g : R→ C defined by

f ∗ g(x) =

∫
R
f(x− y)g(y)dy,

whenever the integral on the right exist.

Proposition 6. Assume that f and g are both in L2(R). Then

(1) |f ∗ g(x)| ≤ ||f ||||g|| for all x ∈ R
(2) f ∗ (ag + bh) = af ∗ g + bf ∗ h for all a, b ∈ C
(3) f ∗ g = g ∗ f
(4) f ∗ (g ∗ h) = (f ∗ g) ∗ h

Proof: This is useful to do because it helps to familiarize oneself with the
convolution. We first estimate

|f ∗ g(x)| =
∣∣∣∣∫

R
f(x− y)g(y)dy

∣∣∣∣ ≤ ∫
R
|f(x− y)||g(y)|dy.

The point x ∈ R is fixed and arbitrary, so we define a function

φ(y) = f(x− y).

Then

|f ∗ g(x)| ≤
∫
R
|φ(y)||g(y)|dy ≤ ||φ||||g||.

We compute

||φ||2 =

∫
R
|f(x− y)|2dy = −

∫ −∞
∞

|f(t)|2dt =

∫ ∞
−∞
|f(t)|2dt = ||f ||2.

Above, we used the substitution t = x − y so dt = −dy, and the integral got
reversed. The − goes away when we re-reverse the integral. So, in the end we see
that

|f ∗ g(x)| ≤ ||f ||||g||
as desired. The second property follows simply by the linearity of the integral itself.
For the third property, we will use substitution again:

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

We want to get g(x− z) so we define

y = x− z =⇒ x− y = z, dz = −dy.
Hence,

f ∗ g(x) = −
∫ −∞
∞

f(z)g(x− z)dz =

∫ ∞
−∞

g(x− z)f(z)dz = g ∗ f(x).

We do something rather similar in the fourth property:

f ∗ (g ∗ h)(x) =

∫
R
f(x− y)

∫
R
g(y − z)h(z)dzdy.

For the other term we have

(f ∗ g) ∗ h(x) =

∫
R

(f ∗ g)(x− y)h(y)dy =

∫
R

∫
R
f(x− y − z)g(z)h(y)dzdy.

So, we define
t = y − z =⇒ x− y = x− t− z, dt = dy.
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Then

f ∗ (g ∗ h)(x) =

∫
R

∫
R
f(x− t− z)g(t)h(z)dzdt.

Finally, we call z = y and t = z (sorry if this gives you a headache!) because they
are just names, and then we get

f ∗ (g ∗ h)(x) =

∫
R

∫
R
f(x− y − z)g(y)h(z)dzdy.

If you’re worried about the order of integration, don’t be. Since everything is in
L2, these integrals converge absolutely, so those Italian magicians, Fubini & Tonelli
allow us to do the switch-a-roo with the integrals as much as we like.

One of the useful features of convolution is that we can use it to smooth out
non-smooth functions. This is known as mollification, which comes from the verb,
to mollify, which means to make smooth.2

Proposition 7 (Mollification). If f ∈ C1(R) ∩ L2(R), f ′ ∈ L2(R), and g ∈ L2(R),
then f ∗ g ∈ C1(R). Moreover (f ∗ g)′ = f ′ ∗ g.

Proof: Everything converges beautifully so just stick that differentiation right
under the integral defining

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

Hence

(f ∗ g)′(x) =

∫
R
f ′(x− y)g(y)dy = f ′ ∗ g(x).

If you are not satisfied with this explanation, a rigorous proof can be obtained using
the Dominated Convergence Theorem, but that is a theorem which we cannot prove
in the context of this humble course.

1.2.1. An example. Let’s compute a convolution. Let f(x) = 1
1+x2 and

g(x) =

{
1 |x| < 3

0 |x| > 3
.

The function g is not differentiable at the points ±3. The function f is perfectly
smooth on R. Let’s convolve them!

f ∗ g(x) =

∫
R
f(x− y)g(y)dy =

∫
R

1

1 + (x− y)2
g(y)dy =

∫ 3

−3

1

1 + (x− y)2
dy.

If we dig deep into our calculus memory, we vaguely recall that

(arctan(t))′ =
1

1 + t2
.

So, this integral becomes:

− arctan(x− y)|3−3 = − arctan(x− 3) + arctan(x+ 3).

2One can mollify garlic, tahini, chickpeas, soy sauce, olive oil, oregano, black pepper, lemon
juice, in suitable proportions, together with a bit of hot sauce like Cholula, Tabasco, or Sriracha,

to make hummus.
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This is indeed a smooth function of x.

1.3. The Fourier transform. One of the reasons that the convolution is so nice
is because it plays well with the Fourier transform. So let us define this Fourier
transform.

Proposition 8. Assume that f ∈ L1(R). Then

f̂(ξ) :=

∫
R
f(x)e−ixξdx

is a well-defined complex number for any ξ ∈ R.

Proof: Simply estimate∣∣∣∣∫
R
e−ixξf(x)dx

∣∣∣∣ ≤ ∫
R
|f(x)|dx <∞.

1.3.1. Example of computing a Fourier transform. Let us get a feel for this by
computing a Fourier transform. Consider the function f(x) = e−a|x| where a > 0.
Then it is certainly in L1(R) so we ought to be able to compute its Fourier transform.
This is by definition

f̂(ξ) =

∫
R
e−ixξe−a|x|dx =

∫ 0

−∞
e−ixξeaxdx+

∫ ∞
0

e−ixξe−axdx.

We compute these integrals by finding a primitive for the integrand:

f̂(ξ) =
ex(a−iξ)

a− iξ

∣∣∣∣0
−∞

+
ex(−a−iξ)

−a− iξ

∣∣∣∣∞
0

=
1

a− iξ
+

1

a+ iξ
=
a+ iξ + a− iξ

a2 + ξ2
=

2a

a2 + ξ2
.

1.4. Answers for this week’s exercises to be done oneself.

(1) (Eo 25, 27, 3) Please see the end of the Eö document! It has answers!
(2) (4.4:1)

u(x, y) =
8l2

π3

∑
n≥1

1

(2n− 1)3 sinh((2n− 1)π)
sin

(
(2n− 1)πx

l

)
sinh

(
(2n− 1)πy

l

)
.

(3) (4.2.2) Here we define first:

bn =
2

l

∫ l

0

f(x) sin

(
(2n− 1)πx

2l

)
dx.

Then the answer to this one is:

u(x, t) = C +
∑
n≥1

(
bn −

4C

π(2n− 1)

)
exp

(
− (n− 1/2)2π2kt

l2

)
sin

((
n− 1

2

)
πx

l

)
.
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(4) (4.3.1) And the answer is... Geez Folland where is the answer? Oh, right
this one is to “verify” etc. Well, the way I find this easiest to do is to
re-write using the angle addition formula for the sine:

bn(t) =
l

nπc

∫ t

0

sin(nπct/l) cos(−nπcs/l)βn(s)ds+
l

nπc

∫ t

0

cos(nπct/l) sin(−nπcs/l)βn(s)ds.

Then we can take out the s-independent terms to the front of the integral,
so that

bn(t) = sin(nπct/l)
l

nπc

∫ t

0

cos(−nπcs/l)βn(s)ds+cos(nπct/l)
l

nπc

∫ t

0

sin(−nπcs/l)βn(s)ds.

Now we can compute the derivatives and verify the formulas using the
product rule together with the fundamental theorem of calculus. Please
just ask if you have questions about how this works. Also, if you solved in
a different way but ended up correct, that’s just peachy too!

(5) (4.4.7) Wow, this answer is long. Let

g(r) =
∑

cn sin

(
nπ log r

log r0

)
and

h(r) =
∑

dn sin

(
nπ log r

log r0

)
,

then

u(r, θ) =
∑
n≥1

(ane
nπθ/ log r0 + bne

−nπθ/ log r0) sin

(
nπ log r

log r0

)
,

where

an + bn = cn, ane
nπβ/ log r0 + bne

−nπβ/ log r0 = dn.

Happy Weekend! ♥
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