
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.02.20

Today we shall investigate some transforms related to the Fourier transform.
The first two can be used to solve PDEs on half lines, if the boundary condition is
suitable.

Definition 1. Let f be in L1 or L2 on (0,∞). The Fourier cosine transform,

Fc(f)(ξ) :=

∫ ∞
0

f(x) cos(ξx)dx.

The Fourier sine transform,

Fs(f)(ξ) :=

∫ ∞
0

f(x) sin(ξx)dx.

As with the Fourier transform, the Fourier sine and cosine transforms also have
inversion formula.

Theorem 2. Assume that f ∈ L2[0,∞). Then we have the Fourier cosine inversion
formula

f(x) =
2

π

∫ ∞
0

Fc(f)(ξ) cos(xξ)dξ.

We also have the Fourier sine inversion formula

f(x) =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ.

Proof: First, let us extend f evenly to R, denoting this extension by fe, so that
fe(−x) = fe(x). We compute the standard Fourier transform:

f̂e(ξ) =

∫
R
fe(x)e−ixξdx =

∫
R
fe(x)(cos(xξ)− i sin(xξ))dx = 2

∫ ∞
0

f(x) cos(xξ)dx.

The term with the sine has dropped out because fe(x) sin(xξ) is an odd function of
x. The term with the cosine gets doubled because fe(x) cos(xξ) is an even function.
So, all together we have computed:

f̂e(ξ) = 2

∫ ∞
0

f(x) cos(xξ)dx = 2Fc(f)(ξ).

1



2 JULIE ROWLETT

Since the cosine is an even function,

f̂e(ξ) = f̂e(−ξ).

So, we also have that Fc(f) is an even function. The inversion formula (FIT) says
that

fe(x) =
1

2π

∫
R
eixξ f̂e(ξ)dξ =

1

π

∫
R
eixξFc(f)(ξ)dξ

=
1

π

∫
R

(cos(xξ) + i sin(xξ))Fc(f)(ξ)dξ =
2

π

∫ ∞
0

eixξFc(f)(ξ)dξ.

This is the cosine-FIT! Above we have used the fact that Fc(f) is an even function.
Hence its product with the cosine is also an even function, so that part of the
integral gets a factor of two when we integrate only over the positive real line. The
product of an even function like Fc(f) with an odd function, like the sine, is odd,
so that integral vanishes.

On the other hand, we may also define the odd extension, fo which satisfies
fo(−x) = −fo(x) (for x 6= 0). The value of f at zero is not really important at this
moment.1 We compute the standard Fourier transform of the odd extension:

f̂o(ξ) =

∫
R
fo(x)e−ixξdx =

∫
R
fo(x)(cos(xξ)−i sin(xξ))dx = −2i

∫ ∞
0

f(x) sin(xξ)dx

= −2iFs(f)(ξ).

Above, we have used the fact that fo is odd, and therefore so is its product with
the cosine. On the other hand, the product with the sine is an even function, which

explains the factor of 2. Since the sine itself is odd, we have that f̂o is an odd
function and similarly Fs(f)(ξ) is also an odd function. We apply the FIT:

fo(x) =
1

2π

∫
R
eixξ f̂o(ξ)dξ = − i

π

∫
R

(cos(xξ) + i sin(xξ))Fs(f)(ξ)dξ

=
1

π

∫
R

sin(xξ)Fs(f)(ξ)dξ =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ).

This is the sine-FIT! Above we have used the fact that Fs(f) is an odd function,
and therefore so is its product with the cosine. On the other hand the product of
two odd functions is an even function, so that is the reason for the factor of 2.

1.1. Heat equation on a semi-infinite rod with insulated end. We have
found ourselves in possession of a giant rod which is insulated at the one end
and goes out to infinity at the other. Pretty neat. It has an initial temperature
distribution given by a function f(x). We therefore wish to solve the problem:

ut − uxx = 0, ux(0, t) = 0, u(x, 0) = f(x), x ∈ [0,∞).

Assume that by some method, we have obtained a solution u(x, t) defined on
[0,∞)x × [0,∞)t. To see if we may use a Fourier sine or cosine transform method,

1This is because we are working in L2 which ignores sets of measure zero, and a single point
is a set of measure zero.
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let us see what happens when we extend our solution evenly or oddly. The even
extension would satisfy, by the cosine-FIT:

ue(x, t) =
2

π

∫ ∞
0

Fc(u)(ξ) cos(xξ)dξ.

The odd extension would satisfy, by the sine-FIT

uo(x, t) =
2

π

∫ ∞
0

sin(xξ)Fs(f)(ξ)dξ.

OBS! The extension matches up with our original function on the positive real line
(that is how an extension works!)

We need the derivative with respect to x to vanish at x = 0. Let’s just differ-
entiate these expressions. Note that the x dependence is only in the sine or cosine
term so we have:

∂xue(x, t) = − 2

π

∫ ∞
0

Fc(u)(ξ)ξ sin(xξ)dξ =⇒ ∂xue(0, t) = 0.

On the other hand

∂xuo(x, t) =
2

π

∫ ∞
0

ξ cos(xξ)Fs(u)(ξ)dξ =⇒ ∂xuo(0, t) =
2

π

∫ ∞
0

ξFs(u)(ξ)dξ =???

The even extension automatically gives us the desired boundary condition whereas
the odd extension leads to something complicated looking, which we have no reason
to know is zero.

This indicates that we have a decent chance of solving the problem by:

(1) Extend the initial data evenly to the real line.
(2) Solve the problem using the Fourier transform on the real line.
(3) Verify that the solution satisfies all the conditions: the PDE, the IC, and

the BC.

We do this. Extend f evenly, and write the extension as fe. Then the solution
to the homogeneous heat equation on the real line with initial data fe is

ue(x, t) =
1

2
√
πt

∫
R
fe(y)e−

(x−y)2

4t dy.

We split up the integral:∫ 0

−∞
fe(y)e−(x−y)

2/(4t)dy +

∫ ∞
0

fe(y)e−(x−y)
2/(4t)dy

= −
∫ 0

∞
fe(z)e

−(z+x)2/(4t)dz +

∫ ∞
0

fe(y)e−(x−y)
2/(4t)dy.

Above we made the substitution that z = −y in the first integral. Due to the
evenness of fe, nothing happens when we change y = −z. Reversing the limits of
integration we obtain

−
∫ 0

∞
fe(z)e

−(z+x)2/(4t)dz =

∫ ∞
0

fe(z)e
−(z+x)2/(4t)dz =

∫ ∞
0

fe(y)e−(x+y)
2/(4t)dy.

So, all together we have

ue(x, t) =
1

2
√
πt

∫ ∞
0

f(y)

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
dy.



4 JULIE ROWLETT

Is this an even function? Let us verify:

e−
(x−y)2

4t + e−
(x+y)2

4t = e−
(−x−y)2

4t + e−
(−x+y)2

4t .

AWESOME! Our solution to the heat equation in this way is EVEN. Therefore, it
is the same on the left and right sides. So, we can simply let

u(x, t) = ue(x, t) =
1

2
√
πt

∫ ∞
0

f(y)

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
dy.

The way we have built it, it satisfies the IC, BC, and the PDE!

Exercise 1. Assume that f is also continuous. Use the convolution approximation
theorem to prove that u(x, t)→ f(x) as t→ 0.

1.2. Discrete and fast Fourier transform. We have seen that computing the
Fourier transform is not the easiest thing in the world. The example with the
Gaussian involving all those tricks: completing the square, complex analysis and
contour integral is a nice and easy case. However, in the real world you may come
across functions and not know how to compute the Fourier transform by hand, nor
be able to find it in BETA. It could be lurking in one of our giant handbooks of
calculations (Abramowitz & Stegun, Gradshteyn & Rhizik, to name a few). Or it
could simply never have been computed analytically. In this case you may compute
something called the discrete Fourier transform.

We start with a function, f(t), and think of analyzing f(t) as time analysis,

whereas analyzing f̂(ξ) as frequency analysis. We shall consider a finite dimensional
Hilbert space:

CN =

{
(sn)N−1n=0 , sn ∈ C, 〈(sn), (tn)〉 :=

N−1∑
n=0

sntn

}
.

Now let

ek(n) :=
e2πikn/N√

N
.

Proposition 3. Let

ek := (ek(n))N−1n=0 .

Then

{ek}N−1k=0

are an ONB of CN .

Proof: We simply compute. It is so cute and discrete!

〈ek, ej〉 =
1

N

N−1∑
n=0

e2πikn/Ne−2πijn/N =
1

N

N−1∑
n=0

e2πi(k−j)n/N .

If j = k the terms are all 1, and so the total is N which divided by N gives 1.
Otherwise, we may without loss of generality assume that k > j (swap names if not
the case). Then we are staring at a geometric series! We know how to sum it

N−1∑
n=0

e2πi(k−j)n/N =
1− e2πi(k−j)N/N

1− e2πi(k−j)/N
= 0.
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Here it is super important that k−j is a number between 1 and N−1. We know this
because 0 ≤ j < k ≤ N − 1. Hence when we subtract j from k, we get something
between 1 and N − 1. So we are not dividing by zero!

Now we shall fix T small and N large and look at f(t) just on the interval
[0, (N − 1)T ]. Let

f(n) := f(tn) := f(nT ), tn = nT.

Basically, we’re going to identify f with an element of CN , namely

(f(n))N−1n=0 .

Definition 4. The discrete Fourier transform is for

wk :=
2πk

NT
defined to be

Fk = F (wk) := 〈(f(n)), ek〉 =

N−1∑
n=0

f(tn)e−2πikn/N√
N

.

This can also be written as
N−1∑
n=0

f(tn)e−iwktn

√
N

.

Proposition 5. We have the inversion formula

f(tn) =

N−1∑
k=0

F (wk)en(k) = 〈(Fk), en〉.

Proof: We simply compute this stuff. By definition

〈(Fk), en〉 =

N−1∑
k=0

F (wk)en(k),

because taking two conjugates gives us back the original guy. Now, we insert the
definition of F (wk) which gives us another sum, so we use a different index there.
Hence we have

N−1∑
k=0

N−1∑
m=0

f(tm)e−iwktm

√
N

e2πikn/N√
N

=
1

N

∑∑
f(tm)e−2πikm/Ne2πikn/N

=
1

N

∑∑
f(tm)e2πik(n−m)/N =

1

N

N−1∑
m=0

f(tm)

N−1∑
k=0

e2πik(n−m)/N

=

N−1∑
m=0

f(tm)

N−1∑
k=0

e−2πikm/N√
N

e−2πikn/N√
N

=

N−1∑
m=0

f(tm)〈em, en〉.

By the proposition we just proved before,

〈em, en〉 = δn,m =

{
0 n 6= m

1 n = m.

So, the only term which survives is when m = n, and so we get

f(tn).



6 JULIE ROWLETT

Now, we can see this as a sort of matrix multiplication. To compute the full
frequency Fourier transform vector, we should compute

F (w0)
F (w1)
. . .

F (wN−1)

 .
This is given by the product of the matrix[

ē0 ē1 . . . ēN−1
]

whose columns are

ēn =



e0

e−2πin/N

e−2πi(2)n/N

. . . e−2πikn/N

. . .
e−2πin(N−1)/N


together with the vector 

f(t0)
f(t1)
. . .

f(tN−1)


That is 

F (w0)
F (w1)
. . .

F (wN−1)

 =
[
ē0 ē1 . . . ēN−1

] 
f(t0)
f(t1)
. . .

f(tN−1)


This is a LOT of calculations. We can speed it up by being clever. Many

calculations are repeated in fact. Assume that N = 2X for some giant power X.
The idea is to split up into even and odd terms. We do this:

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
−2πik(2j)/N +

N
2 −1∑
j=0

f(t2j+1)e−2πik(2j+1)/N

 .
We introduce the slightly cumbersome notation:

ekN (n) = e−2πikn/N .

Then,
ekN (2j) = e−2πik(2j)/N = e−2πikj/(N/2) = ekN/2(j).

Now we only need an N
2 ×

N
2 matrix! You see, writing this way,

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
k
N/2(j) + ekN (1)

N
2 −1∑
j=0

f(t2j+1)ekN/2(j)

 .
We can repeat this many times because N is a power of 2. We just keep chopping
in half. If we do this as many times as possible, we will need to do on the order of

N

2
log2(N)
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computations. This is in comparison to the original method which had an N ×N
matrix and was thus on the order of N2 computations. For example, if N = 210,
then comparing N2 = 220 to N

2 log2N = 29 ∗ 10, we see that

210 ∗ 5

220
=

x

100
=⇒ 100 ∗ 210 ∗ 5 = 220x =⇒ 22 ∗ 53 ∗ 2102−20 = x,

so
532−8 = x ≈ 0.488.

This means the amount of work we are doing by using the FFT is less than 0.5%
of the work done using the standard DFT. In other words, we save over 99.5% by
doing the FFT. That’s why it’s called FAST.

1.3. Answers to the exercises to be done oneself.

(1) (Eö 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

(This is in the back of the EÖ document!)
(2) (Eö 67) Compute the Fourier transform of the characteristic function for

the interval (a, b) both directly and by using the known case for the interval

(−a, a). (This is in the back of the EÖ document!)
(3) (7.2.8) Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0.

Show that f̂(ξ) = Γ(a)(1 + iξ)−a where Γ is the Gamma function.
Well, there are not really answers to make sense of here. My hint was to

do a substitution of variables:

f̂(ξ) =

∫ ∞
0

e−ixξ−xxa−1dx.

On the other hand

Γ(a) =

∫ ∞
0

e−tta−1dt.

So let’s try making

x(1 + iξ) = t =⇒ dx(1 + iξ) = dt =⇒ dt

1 + iξ
= dx.

Our integral becomes

f̂(ξ) =

∫ (1+iξ)∞

0

e−t
(

t

1 + iξ

)a−1
dt

1 + iξ

= (1 + iξ)−a
∫ (1+iξ)∞

0

e−tta−1dt.

What is up with those weird limits of integration? Let’s investigate by
drawing a picture.

Integrate along the line from 0 to (1 + iξ)R = R + iRξ. For ξ > 0
that is the first diagonal bit. Next, integrate from R + iRξ to R. The
integrate back along the real axis from R to zero. Our integrand is e−zza−1.
Inside the triangle it’s holomorphic. So by complex analysis the integral
around the triangle is zero. Since |e−z| = e−x if z = x + iy for x, y ∈ R,
along the right side of the triangle the integral is super small, tending
to zero. That says the the integral along this funny diagonal line and
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Figure 1. The contour integral for the exercise about the gamma function.

the integral going from R to 0 are tending to be equal. More precisely

limR→∞
∫ R(1+iξ)

0
f(z)dz +

∫ 0

R
f(z)dz = 0. Hence since flipping the integral

changes its sign limR→∞
∫ R(1+iξ)

0
f(z)dz =

∫∞
0
f(z)dz. So

f̂(ξ) = (1 + iξ)−a
∫ (1+iξ)∞

0

e−tta−1dt = (1 + iξ)−a
∫ ∞
0

e−tta−1dt.

This is (1 + iξ)−aΓ(a).
(4) (7.2.12) For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa∗fb = fa+b and ga∗gb = gmin(a,b).
So we transform:

f̂a ∗ fb(ξ) = f̂a(ξ)f̂b(ξ) = e−a|ξ|−b|ξ| = e−(a+b)|ξ.

Now we use the FIT to say:

fa ∗ fb(x) =
1

2π

∫
R
e−(a+b)|ξ|eixξdξ.

OBS! The integral on the right side this is the Fourier transform of e−(a+b)|ξ|

at the point −x rather than x. So we use our beloved Table 2 (item 11) to
say that the Fourier transform of this function at the point −x is

2(a+ b)(x2 + (a+ b)2)−1,

so substituting

fa ∗ fb(x) =
1

2π
2(a+ b)(x2 + (a+ b)2)−1 =

(a+ b)

π(x2 + (a+ b)2)
= fa+b(x).

We do the same trick to solve the g exercise, yo.

ĝa ∗ gb(ξ) = ĝa(ξ)ĝb(ξ) = χa(ξ)χb(ξ) = χmin(a,b)(ξ).



FOURIER ANALYSIS & METHODS 9

The last step follows from the the definition of the characteristic function.
So, we use the FIT again to say:

ga ∗ gb(x) =
1

2π

∫
R
eixξχmin(a,b)(ξ)dξ.

Same trick: integral on the right is the Fourier transform of χmin(a,b) at the
point −x (rather than x). So we use our favorite Table 2 to say that

ga ∗ gb(x) =
1

2π
x−12 sin(min(a, b)x) =

sin(min(a, b)x)

πx
= gmin(a,b)(x).

(5) (Eö 6.d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

(This is in the back of the EÖ document!)
(6) (Eö 15) Find a solution to the equation

u(t) +

∫ t

−∞
eτ−tu(τ)dτ = e−2|t|.

(This is in the back of the EÖ document!)
(7) (Eö 11) For the function

f(t) =

∫ 2

0

√
w

1 + w
eiwtdw,

compute ∫
R
f(t) cos(t)dt,

∫
R
|f(t)|2dt.

(This is in the back of the EÖ document!)
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