
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.02.25

Let’s do another example involving a half-space problem, in which we will use
the Fourier sine and cosine transforms as guiding intuition.

1.1. Dirichlet problem in a quadrant. Consider the problem

uxx + uyy = 0, x, y > 0, u(x, 0) = f(x), u(0, y) = g(y).

To deal with these inhomogeneities let us instead solve two nicer problems:

(1) wxx + wyy = 0, x, y > 0, w(x, 0) = f(x), w(0, y) = 0.
(2) vxx + vyy = 0, x, y > 0, v(x, 0) = 0, v(0, y) = g(y).

Let us take the Fourier transform in the x variable. We obtain:

−ξ2ŵ(ξ, y) + ∂yyŵ(ξ, y) = 0 =⇒ ŵ(ξ, y) = A(ξ)e−|ξ|y +B(ξ)e|ξ|y.

The functions A and B can depend on ξ but not on y. We would like to use
Fourier methods which requires staying within L2. Hence we do not want the
second solution because y > 0 so it is very much not in L2. Thus, we keep the first
solution. The boundary condition then says that we need

ŵ(ξ, 0) = A(ξ) = f̂(ξ) =⇒ ŵ(ξ, y) = f̂(ξ)e−|ξ|y.

We look at table 2 of Folland to find a function whose Fourier transform is e−|ξ|y.
OBS! The transform is occurring in the x variable, from whose perspective y is a
constant. Thus, the item on the table is a slight modification of 10, in particular
the function

y

π
(x2 + y2)−1 has Fourier transform in the x variable e−y|ξ|.

So, we are basically looking for a convolution of f with this function on the left
side. However, we are only working on the positive quadrant, a half space type
problem. Moreover, we have the boundary condition at w(0, y) = 0. The idea is to
use either an even or odd extension of f . To get the condition w(0, y) = 0, which
is the Dirichlet boundary condition, we should use the odd extension of f , that is
fo. The intuition behind this is that if we think about the Fourier sine and cosine
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transforms, it is the sine itself which vanishes at zero. It is also the Fourier sine
transform which corresponds to odd functions. So, this part of the solution

w(x, y) =

∫ ∞
−∞

fo(z)
y

π((x− z)2 + y2)
dz =

∫ 0

−∞
fo(z)

y

π((x− z)2 + y2)
dz+

∫ ∞
0

f(z)
y

π((x− z)2 + y2)
dz

We do a substitution in the first integral, with t = −z

=

∫ 0

−∞
fo(z)

y

π((x− z)2 + y2)
dz = −

∫ 0

∞
fo(−t)

y

π((x+ t)2 + y2)
dt

=

∫ 0

∞
f(t)

y

π((x+ t)2 + y2)
dt = −

∫ ∞
0

f(t)
y

π((x+ t)2 + y2
dt.

Re-naming the variable of integration z, we get

w(x, y) =

∫ ∞
0

f(z)

[
y

π((x− z)2 + y2)
− y

π((x+ z)2 + y2)

]
dz.

The other problem is basically identical, we simply Fourier transform in the y
variable. Thus the solution to the second problem is

v(x, y) =

∫ ∞
0

g(z)

[
x

π((y − z)2 + x2)
− x

π((y + z)2 + x2)

]
dz.

We obtain the full solution by adding:

u(x, y) = w(x, y) + v(x, y).

1.2. The Laplace transform. We shall now enter Chapter 8, and learn about
another useful transform, known as the Laplace transform.

Definition 1. Assume that

lap0lap0 (1.1) f(t) = 0 ∀t < 0,

and that there exists a,C > 0 such that

lapalapa (1.2) |f(t)| ≤ Ceat ∀t ≥ 0.

Then for we define for z ∈ C with <(z) > a the Laplace transform of f at the point
z to be

Lf(z) = f̂(−iz) =

∫ ∞
0

f(t)e−ztdt.

Let us verify that this is well defined. To do so, we estimate

|Lf(z)| ≤
∫ ∞
0

|f(t)e−zt|dt ≤
∫ ∞
0

Ceat|e−zt|dt =

∫ ∞
0

eate−<(z)tdt

=
et(a−<(z))

a−<(z)

∣∣∣∣∞
0

=
1

<(z)− a
.

Above we have used the fact that∣∣ecomplex number
∣∣ = ereal part.

Due to this beautiful convergence, Lf(z) is holomorphic in the half plane <(z) > a.
This is because we may differentiate under the integral sign due to the absolute
convergence of the integral. The assumption that f(t) = 0 for all negative t is
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not actually necessary, we could just make it so. For this purpose we define the
heavyside function, commonly denoted by

Θ(t) :=

{
1 t ≥ 0

0 t < 0
.

If we have some f defined on R which satisfies (
lapalapa
1.2) but is not (

lap0lap0
1.1), we can apply

the Laplace transform to Θf . Another thing which can happen is that we have a
function which is only defined on [0,∞). In that case, we can just extend it to be
identically zero on (−∞, 0).

Let’s familiarize ourselves with the Laplace transform by demonstrating some of
its fundamental properties.

Proposition 2 (Properties of L). Assume f and g satisfy (
lapalapa
1.2) and (

lap0lap0
1.1), then

(1) Lf(x+ iy)→ 0 as |y| → ∞ for all x > a.
(2) Lf(x+ iy)→ 0 as x→∞ for all y.
(3) L(Θ(t− a)f(t− a))(z) = e−azLf(z).
(4) L(ectf(t))(z) = Lf(z − c).
(5) L(f(at)) = a−1Lf(a−1z).
(6) *** If f is continuous and piecewise C1 on [0,∞), and f ′ satisfies (

lapalapa
1.2)

and (
lap0lap0
1.1), then

L(f ′)(z) = zLf(z)− f(0).

(7) L(
∫ t
0
f(s)ds)(z) = z−1Lf(z).

(8) L(tf(t))(z) = −(Lf)′(z).
(9) L(f ∗ g)(z) = Lf(z)Lg(z).

Proof: There’s a bunch of stars next to #6 because it’s the reason the Laplace
transform is useful for solving PDEs and ODEs. It’s quite similar to how the
Fourier transform takes in derivatives and spits out multiplication. Intuitively, this
fact about L should jive with the similar fact about F because well, the Laplace
transform is just the Fourier transform taken at a complex point.

The first statement

Lf(z) =

∫ ∞
0

e−(x+iy)tf(t)dt =

∫ ∞
0

e−xtf(t)e−iytdt = ĝ(y),

for the function
g(t) = e−xtf(t).

The Riemann-Lebesgue lemma says that ĝ(y) → 0 when |y| → ∞. The second
statement is more satisfying because we just compute and estimate directly. We
did this estimate above already, where we got

|Lf(z)| ≤ 1

<(z)− a
→∞ when <(z) = x→∞.

The third one is also a direct computation:

L(Θ(t− a)f(t− a))(z) =

∫ ∞
0

Θ(t− a)f(t− a)e−ztdt =

∫ ∞
−a

Θ(s)f(s)e−z(s+a)ds.

Above we did the substitution s = t − a so ds = dt. Since f and the Heavyside
function are zero for negative s, and the Heavyside function is 1 for positive s, this
is

e−za
∫ ∞
0

f(s)e−zsds = e−zaLf(z).
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Similarly, we directly compute

L(ectf)(z) =

∫ ∞
0

ecte−ztf(t)dt =

∫ ∞
0

e−(z−c)tf(t)dt = Lf(z − c).

Again no surprise, we compute

L(f(at))(z) =

∫ ∞
0

e−ztf(at)dt =

∫ ∞
0

e−zs/af(s)
ds

a
= a−1Lf(z/a).

Here we used the substitution s = at so a−1ds = dt. Now we are finally getting to
the important one:

L(f ′)(z) =

∫ ∞
0

e−ztf ′(t)dt = e−ztf(t)
∣∣∞
0

+

∫ ∞
0

ze−ztf(t)dt.

We have used integration by parts above. By (
lapalapa
1.2) and since <(z) > a, the limit as

t→∞ is zero, and so we get

L(f ′)(z) = −f(0) + zLf(z).

Awesome. Next we define

F (t) =

∫ t

0

f(s)ds.

Then, we use the preceding fact:

L(F ′)(z) = zLF (z)− F (0) = zLF (z).

Since F ′ = f we get

z−1L(f)(z) = L(

∫ t

0

f(s)ds)(z).

Next, we compute:

L(tf(t))(z) =

∫ ∞
0

te−ztf(t)dt =

∫ ∞
0

d

dz

(
−e−zt

)
f(t)dt

=
d

dz

(
−
∫ ∞
0

e−ztf(t)dt

)
= −(Lf)′(z).

Yes, we have used the absolute convergence of the integral to swap limits. It’s legit
yo. Finally,

L(f ∗ g)(z) = F(f ∗ g)(−iz) = f̂(−iz)ĝ(−iz) = Lf(z)Lg(z).

We may also use the notation

f̃(z) = Lf(z).

1.3. Applications to solving PDEs and ODEs. We see that

L(f ′)(z) = zLf(z)− f(0).

Let’s do it again:

L(f ′′)(z) = zL(f ′)(z)−f ′(0) = z (zLf(z)− f(0))−f ′(0) = z2Lf(z)−zf(0)−f ′(0).

In general:
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Proposition 3. Assume that everything is defined, then

L(f (k))(z) = zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1.

Proof: Well clearly we should do a proof by induction! Check the base case
first:

L(f ′)(z) = zLf(z)− f(0).

Here k = 1 and the sum has only one term with j = k = 1. It works. Now we
assume the above formula holds and we show it for k + 1. We compute

L(f (k+1))(z) = L((f (k))′)(z) = zL(f (k))(z)− f (k)(0).

By induction this is

z

zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1

− f (k)(0).

This is

zk+1Lf(z)−
k∑
j=1

f (k−j)(0)zj − f (k)(0).

Let us change our sum: let j + 1 = l. Then our sum is

k+1∑
l=2

fk−(l−1)(0)zl−1 =

k+1∑
l=2

f (k+1−l)(0)zl−1.

Observe that

f (k)(0) = fk+1−1(0)z1−1.

Hence

−
k∑
j=1

f (k−j)(0)zj − f (k)(0) = −
k+1∑
l=1

f (k+1−l)(0)zl−1.

So, we have computed

L(f (k+1))(z) = zk+1Lf(z)−
k+1∑
l=1

f (k+1−l)(0)zl−1.

That is the formula for k + 1, which is what we needed to obtain.

For this reason one can use L to solve linear constant coefficient ODEs which
can be non-homogeneous! Let us see how this works...

1.4. Solving ODEs. A linear, constant coefficient ODE of order n looks like:
n∑
k=0

cku
(k)(t) = f(t).

In order for the solution to be unique, there must be specified initial conditions on
u, that is

u(0), u′(0), . . . u(n−1)(0).
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We are not requiring f(t) to be the zero function, so the ODE could be inhomoge-
neous. Notoriously difficult to solve right? NOT ANYMORE! We hit both sides of
the ODE with L:

n∑
k=0

ckL(u(k))(z) = f̃(z).

Let’s write out the left side using our proposition. First we have

c0ũ(z).

Then we have

c1 (zũ(z)− u(0)) .

In general we have

ck

zkũ(z)−
k∑
j=1

u(k−j)(0)zj−1

 .

So, if we collect all the terms with ũ(z), we get

(c0 + c1z + c2z
2 + . . .+ cnz

n)ũ(z) = P (z)ũ(z),

P (z) =

n∑
k=0

ckz
k.

Now let’s collect all the rest:

−
n∑
k=1

ck

k∑
j=1

u(k−j)(0)zj−1 = Q(z).

This is just a polynomial also. So our ODE has been LAPLACE-TRANSFORMED
into

P (z)ũ(z) +Q(z) = f̃(z).

We can solve this for ũ(z):

ũ(z) =
f̃(z)−Q(z)

P (z)
.

Hence to get our solution u(t) we just need to invert the Laplace transform of the
right side, that is our solution will be

u(t) = L−1

(
f̃(z)−Q(z)

P (z)

)
.

1.5. Exercises for the week. These exercises will be demonstrated for you.

(1) (Eö 55)
(2) (7.4.6) Solve Laplace’s equation uxx + uyy = 0 in the semi-infinite strip

x > 0, 0 < y < 1 with the boundary conditions ux(0, y) = 0, uy(x, 0) = 0,
u(x, 1) = e−x. Express the answer as a Fourier integral.

(3) (8.4.2) Find the temperature in a semi-infinite rod (the half-line x > 0) if
its initial temperature is zero, and the end x = 0 is held at temperature 1
for 0 < t < 1 and temperature 0 thereafter.

(4) (Eö 14)
(5) (Eö 45)
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1.5.1. Exercises for the week to be done oneself.

(1) (7.4.1.c) Compute
Fc
(
(1 + x)e−x

)
.

(2) (7.4.1.d) Compute
Fs
(
xe−x

)
.

(3) (7.3.1) Use the Fourier transform to find a solution of the ordinary differ-
ential equation

u′′ − u+ 2g(x) = 0, g ∈ L1(R).

(4) (Eö 50)
(5) (8.4.3.a) Consider heat flow in a semi-infinite rod when heat is supplied to

the end at a constant rate c:

ut = kuxx for x > 0, u(x, 0) = 0, ux(0, t) = −c.
With the aid of the computation:

L
(

1√
πt
e−a

2/(4t)

)
(z) =

e−a
√
z

√
z
,

show that

u(x, t) = c

√
k

π

∫ t

0

s−1/2e−x
2/(4ks)ds.

(6) (8.4.1) Solve:

ut = kuxx − au, x > 0, u(x, 0) = 0, u(0, t) = f(t).

(7) (Eö 12)
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