
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.02.27

We begin by demonstrating one additional property of the Laplace transform.
Recall

Lf(z) =

∫ ∞
0

e−ztf(t)dt =

∫ ∞
0

e−<(z)te−i=(z)tf(t)dt.

For this to be well defined we assume that f satisfies:

lap0lap0 (1.1) f(t) = 0 ∀t < 0,

and that there exists a,C > 0 such that

lapalapa (1.2) |f(t)| ≤ Ceat ∀t ≥ 0.

Proposition 1. If t−1f(t) satisfies (
lap0lap0
1.1) and (

lapalapa
1.2), then

L(t−1f(t))(z) =

∫ ∞
z

Lf(w)dw.

The integral is any contour in the w-plane which starts at z along which =w stays
bounded and <w →∞.

Proof: Note that by (
lapalapa
1.2), if t−1f(t) satisfies this, then at the point t = 0

apparently the function f vanishes, so that the function t−1f(t) is well defined. So,
don’t panic about this point!!! We next define the holomorphic function

F (z) =

∫ ∞
z

f̃(w)dw.

Since f̃(w) → 0 when <(w) → ∞ and =(w) stays bounded, the fundamental
theorem of calculus says that

F ′(z) = −f̃(z).

On the other hand,

d

dz

∫ ∞
0

t−1f(t)e−ztdt =

∫ ∞
0

−f(t)e−ztdt = −f̃(z).

Hence,

F (z) =

∫ ∞
0

t−1f(t)e−ztdt+ c,

1
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for some constant c. Since

lim
<z→∞

F (z) = 0 = lim
<(z)→∞

∫ ∞
0

t−1f(t)e−ztdt =⇒ c = 0.

1.1. Application of the Laplace transform to solving PDEs. Let us consider
the telegraph equation,

uxx = αutt + βut + γu.

This is homogeneous, and generalizes both the heat equation (α = γ = 0, and
β = 1) as well as the wave equation (β = γ = 0, and α = 1). According to those
who know more physics than I, this corresponds to an electromagnetic signal on a
cable.

We wish to solve the problem on a half line with the following boundary and
initial conditions:

u(0, t) = f(t), u(x, 0) = ut(x, 0) = 0.

Tip 1. If we have a half-line problem with boundary condition at x = 0 that is a
function of t try using the Laplace transform in the t variable.

We follow the tip and hit the whole PDE with the Laplace transform in the t
variable. This gives

ũxx(x, z) = αL(utt)(x, z) + βL(ut)(x, z) + γũ(x, z).

We use the properties of the Laplace transform and the initial conditions which say

u(x, 0) = 0, ut(x, 0) = 0,

so

ũxx(x, z) = αz2ũ(x, z) + βzũ(x, z) + γũ(x, z).

This is simply

ũxx(x, z) =
(
αz2 + βz + γ

)
ũ(x, z).

It’s a second order, linear, constant coefficient, homogeneous ODE for the x vari-
able. Let

q =
√
αz2 + βz + γ.

Our solution to the ODE is of the form

ũ(x, z) = a(z)eqx + b(z)e−qx.

We have that lovely BC at x = 0: u(0, t) = f(t). Hence,

ũ(0, z) = f̃(z) =⇒ a(z) + b(z) = f̃(z).

Note that here we are extending f to (−∞, 0) to be identically equal to zero so that
we may Laplace transform it. Assume that <(q) > 0. (If this weren’t the case, just
swap q and −q). To be able to invert the Laplace transform and get the solution
to our PDE, we will not want ũ(x, z)→∞ when x→∞. Hence, we throw out the
eqx solution and just use

ũ(x, z) = b(z)e−qx.

Therefore, b(z) = f̃(z). So, our Laplace-transformed solution is

ũ(x, z) = f̃(z)e−qx.
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By the properties of the Laplace transform, if we can find g(x, t) such that

g̃(x, z) = e−qx,

then the solution to this PDE will be

solnsoln (1.3) u(x, t) = f ∗ g(x, t) =

∫
R
f(t− s)g(x, s)ds =

∫ t

0

f(t− s)g(x, s)ds.

This is because f is zero for negative times.
Now, recalling the definition of q, we are looking for

g(x, t) with g̃(x, z) = e−x
√
αz2+βz+γ .

To find such a g, we would like to invert the Laplace transform.

1.2. Inverting the Laplace transform. The Laplace transform is closely related
to the Fourier transform, and it is this fact, together with the FIT, that will guide
our way to the LIT (Laplace Inverse Theorem).

f̃(z) =

∫ ∞
0

f(t)e−ztdt =

∫ ∞
0

f(t)e−<(z)t−i=(z)tdt.

For this reason, let’s define
g(t) = e−<(z)tf(t),

so we also have
f(t) = e<(z)tg(t).

Then

Lf(z) = ĝ(=(z)) =

∫
R
f(t)e−<(z)e−i=(z)tdt,

because f(t) = 0 for all t < 0. Let’s apply the FIT to the function, g:

g(t) =
1

2π

∫
R
ĝ(ξ)eiξtdξ =

1

2π

∫
R
Lf(<(z) + iξ)eiξtdξ.

To make this look less imposing, let us write y = ξ. So, we have

g(t) =
1

2π

∫ ∞
−∞

f̃(<(z) + iy)eiytdy.

Since f(t) = e<(z)tg(t), we have

f(t) = e<(z)t 1

2π

∫ ∞
−∞

f̃(<(z) + iy)eiytdy =
1

2π

∫ ∞
−∞

f̃(<(z) + iy)e<(z)t+iytdy.

We would like to understand this as a complex integral. If we parametrize the
vertical path for w ∈ C with <(w) = <(z) by w = <(z) + iy, then dw = idy. We
do not have an i. Hence, what we are computing is

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw,

where Γz is the upward vertical path along the line <(w) = <(z). This is the LIT:
Laplace inversion formula:

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw.

By definition of the Laplace transform, this should hold for z ∈ C with <(z) > a
where a comes from (

lapalapa
1.2). If we naively look at this equation, we see that the left

side is independent of z. So, the right side ought to be as well. It is.
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b− iR

b+ iR c+ iR

c− iR
Figure 1. The contour over which we integral. Call the contour ΓR. As one can
see, we assume that c > b.box

Theorem 2 (LIT). Assume that f is Laplace-transformable. Denote by f̃ its
Laplace transform. Then for b > a,

f(t) =
1

2πi

∫ b+i∞

b−i∞
f̃(z)eztdz.

Conversely, assume that F (z) is analytic in <(z) > a. For b > a, R > 0, and
t ∈ R, let

fR,b(t) =
1

2πi

∫ b+iR

b−iR
F (z)eztdz.

Assume that for some α > 1/2 and C > 0 we have

|F (z)| ≤ C(1 + |z|)−α, ∀z ∈ C with <(z) > a,

and assume that for some b > a, fR,b(t) converges pointwise as R → ∞ to some
f(t) which satisfies (

lap0lap0
1.1) and (

lapalapa
1.2). Then

lim
R→∞

fR,b(t) = f(t) ∀b > a,

and

F (z) = Lf(z).

Proof: Let us draw and define a contour, with our amazing tikz skillz yo.
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By assumption the function F is analytic inside the box, and ezt is an entire
function. Therefore ∫

ΓR

F (z)eztdz = 0.

So, we wish to show that the limit as R → ∞ of the top and bottom integrals is
zero. To obtain this, we either wave our hands like Folland or actually estimate:∫ c±iR

b±iR
|F (z)||ezt|dz ≤ |c− b|ect max

b≤x≤c

C

(1 + |x± iR|)α
.

Above we used the fact that between b ± iR and c ± iR, |ezt| ≤ ect together with
the estimate assumed on F . Next, we note that

|x± iR| =
√
x2 +R2 ≥ R.

Therefore we estimate from above by

|c− b|ect C

(1 +R)α
→ 0 as R→∞.

Therefore, if for some b > a,

lim
R→∞

fR,b(t) = f(t),

this means that

lim
R→∞

∫ b+iR

b−iR
F (z)eztdz −

∫ c+iR

c−iR
F (z)eztdz = 0.

To see this, observe that ∫
ΓR

F (z)eztdz = 0 ∀R.

Moreover, the top and bottom integrals go to zero as R → ∞. Hence the sum of
the left and right integrals also tends to zero as R→∞. So,

lim
R→∞

∫ b+iR

b−iR
F (z)eztdz = lim

R→∞

∫ c+iR

c−iR
F (z)eztdz =⇒ lim

R→∞
fR,b(t) = f(t) = lim

R→∞
fR,c(t).

Now, let us parametrize the complex integral. We use γ(s) = b+ is so γ̇(s) = ids.
Hence∫ b+iR

b−iR
F (z)eztdz =

∫ R

−R
F (b+ is)e(b+is)tids = iebt

∫ R

−R
F (b+ is)eistds.

Moreover, we have assumed that

lim
R→∞

fR,b(t) = lim
R→∞

iebt

2πi

∫ R

−R
F (b+ is)eistds = f(t)

so

lim
R→∞

∫ R

−R
F (b+ is)eistds = 2πe−btf(t).

Let us define here

gR,b(s) =

{
F (b+ is) |s| ≤ R
0 |s| > R

.

Then ∫ R

−R
F (b+ is)eistds =

∫
R
gR,b(s)e

istds = ĝR,b(−t).
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Moreover,

lim
R→∞

̂gR,b(−t) = 2πe−btf(t).

Similarly

lim
R→∞

ĝR,b(t) = 2πebtf(−t).

On the other hand,

lim
R→∞

gR,b(s) = F (b+ is).

By the FIT,

F (b+ it) =
1

2π

∫
R

2πebsf(−s)eitsds.

It is more natural to do a change of variables, letting σ = −s, so dσ = −ds, and
we get

F (b+ it) =

∫ σ=−∞

σ=∞
e−bσf(σ)e−itσ(−dσ) =

∫ ∞
−∞

e−σ(b+it)f(σ)dσ

=

∫ ∞
0

e−σ(b+it)f(σ)dσ = Lf(b+ it).

Here we use the fact that f satisfies (
lap0lap0
1.1).

1.3. Computing an inverse Laplace transform to solve the heat equation.
For the case in which our telegraph equation is the heat equation, we have α = γ =
0, and β = 1. Consequently, the square rooted polynomial in z we had named q is
of the simple form:

q =
√
z.

Our Laplace-transformed solution is:

f̃(z)e−
√
zx.

Since the Laplace transform turns convolutions into multiplication, we would like
to find g(x, t) so that

g̃(x, z) = e−
√
zx.

Then, the solution will be given as in (
solnsoln
1.3).

We are therefore looking for g(x, t) so that

g̃(x, z) = e−
√
zx.

If we try to apply the LIT directly, we should compute∫ b+i∞

b−i∞
e−x
√
zeztdz.

Do you know how to integrate that? I do not. It is pretty scary looking. For
starters, there is the

√
z. This really needs to be understood using the complex

logarithm which is, as the name suggests, complex.

Tip 2. Always be careful with log(z) in C. It is not entire. It is a log. Logs come
from trees which have branches. Complex logs always have branches and branch
cuts. You have been warned.
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So, since trying to compute the inverse Laplace transform directly seems impos-
sible, let us try to make a reasonable guess at a function whose Laplace transform
might be what we need to solve the heat equation. To solve the heat equation on
R we used

e−x
2/(4t)(4πt)−1/2.

So, since the Laplace and Fourier transforms are closely related, and we are solving
the heat equation on [0,∞), which is an unbounded interval, this is a good candi-
date. We shall compute its Laplace transform and see what we get. If we are super
lucky, it will just give us the function we want. If we are less lucky, but still pretty
lucky, the process of computing the Laplace transform together with the properties
of the Laplace transform will show us how to get g(x, t) whose Laplace transform

is g̃(x, z) = e−
√
zx.

Let us therefore define:

? =

∫ ∞
0

e−tze−x
2/(4t)(4πt)−1/2dt.

We are computing the Laplace transform of Θ(t)h(x, t) where

h(x, t) = e−x
2/(4t)(4πt)−1/2.

Now, we see that

? =

∫ ∞
0

(4πt)−1/2 exp

(
−(
√
tz)2 −

(
x

2
√
t

)2
)
dt.

We do the completing the square trick in the exponent:

? =

∫ ∞
0

(4πt)−1/2 exp

(
−
(√

tz − x

2
√
t

)2

− x
√
z

)
dt

= e−x
√
z

∫ ∞
0

1

2
√
πt

exp

(
−
(√

tz − x

2
√
t

)2
)
.

To compute this we need to use a very very clever trick. First, let us clean up our
integral just a little bit to remove that pesky

√
t which is getting divided. We let

s =
√
t. Then

ds =
dt

2
√
t

So,

? =
e−x
√
z

√
π

∫ ∞
0

e−(s
√
z−x/(2s))2ds.

Theorem 3 (Cauchy & Schlömilch transform).∫ ∞
0

af((as− b/s)2)ds =

∫ ∞
0

f(y2)dy.

Proof: The proof is so clever.1

1I don’t know if Cauchy and Schlömilch actually had anything to do with this formula. Oscar

Schlömilch was elected a foreign member of the Royal Swedish Academy of Sciences in 1862. He

was a German mathematician who lived from April 13, 1823 until February 7, 1901. Augustin-
Louis Cauchy was a French mathematician who lived August 21, 1789 until May 23, 1857. Did

they ever meet? Why is this named after them?
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We do a substitution in the integral. Let t = b
as . Then

dt = − b

as2
ds =⇒ −as

2

b
dt = ds.

We see that

t2 =
b2

a2s2
=⇒ a2s2

b2
= t−2 =⇒ as2

b
=

b

at2
.

Next, when s→ 0 and s > 0 we see that t→∞. On the other hand, when s→∞,
t→ 0. We also see that

as =
t

b
, − b

s
= −ta.

So, let us call

♥ =

∫ ∞
0

af((as− b/s)2)ds =

∫ 0

∞
af((t/b− ta)2)

(
− b

at2

)
dt

=

∫ ∞
0

f((t/b− at)2)
b

t2
dt.

Note that

(t/b− at)2 = (−(at− t/b))2 = (at− t/b)2.

Hence we have computed

♥ =

∫ ∞
0

f((at− t/b)2)
b

t2
dt.

Therefore

2♥ =

∫ ∞
0

af((as− b/s)2)ds+

∫ ∞
0

f((at− t/b)2)
b

t2
dt

= a

∫ ∞
0

f((as− b/s)2)ds+ b

∫ ∞
0

f((as− b/s)2)
ds

s2
.

As a consequence,

♥ =
1

2

∫ ∞
0

f((as− b/s)2)

(
a+

b

s2

)
ds.

Now we let

y = as− b

s
=⇒ dy =

(
a+

b

s2

)
ds.

We note that when s → 0, y → −∞, and on the flip side, when s → ∞, y → ∞.
Therefore

♥ =
1

2

∫ ∞
−∞

f(y2)dy =

∫ ∞
0

f(y2)dy,

since f(y2) is an even function.

We will use the Cauchy & Schlömilch transform with

a =
√
z, b =

x

2
, f(s) = e−s

2

.

Then, it says that∫ ∞
0

√
z exp(−(as− b/s)2)ds =

∫ ∞
0

√
z exp

(
−
(
s
√
z − x

2s

)2
)
ds
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=

∫ ∞
0

e−y
2

dy =

√
π

2
.

Now we were computing

? =
e−x
√
z

√
π

∫ ∞
0

e−(s
√
z−x/(2s))2ds =

e−x
√
z

√
πz

∫ ∞
0

√
ze−(s

√
z−x/(2s))2ds

=
e−x
√
z

2
√
z
.

So, we have computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

This is almost what we wanted, except for the 2
√
z in the denominator. Here we

use the properties of the Laplace transform. Consider the function:∫ ∞
z

e−x
√
w

2
√
w
dw = −e

−x
√
w

x

∣∣∣∣∣
∞

w=z

=
e−x
√
z

x
.

By the properties of the Laplace transform

L(t−1f(t))(z) =

∫ ∞
z

f̃(w)dw.

So,

L(t−1Θ(t)h(x, t))(z) =

∫ ∞
z

e−x
√
w

2
√
w
dw =

e−x
√
z

x
.

because we computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

We can simply multiply both sides by x to get

L(t−1xΘ(t)h(x, t))(z) = e−x
√
z

as desired. Let us summarize this phenomenal calculation as a theorem for future
reference.

Theorem 4. The Laplace transform of

g(x, s) :=
x

s
Θ(s)h(x, s), h(x, s) =

1√
4πs

e−
x2

4s , Θ(s) =

{
0 x < 0

1 x ≥ 0

in the variable s is

L(g)(x, z) = e−x
√
z.

Therefore going back to our problem, the solution

u(x, t) = (f(s) ∗ (s−1xΘ(s)h(x, s))(t) =

∫
R
f(t− s)g(x, s)ds

=

∫ t

0

f(t− s)
2
√
πs3/2

xe−
x2

4s ds.

This is because f is zero for negative times.
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Remark 1. One of the things I love about this class is that you begin to approach
actual research mathematics. I think that must be exciting for you, because calculus
(envariabelanalys) is like 300 years old. Cauchy’s complex analysis is also a few
hundred years old. That’s not very close to actual current year 2019 math! Here is
an example of how the Cauchy-Schlömilch transform is super awesome (and look,
this paper is only 9 years old which is super young by research terms):

https: // arxiv. org/ abs/ 1004. 2445

1.3.1. Hints to: exercises for the week to be done oneself.

(1) (7.4.1.c) Compute

Fc
(
(1 + x)e−x

)
.

Hint: by definition we are computing∫ ∞
0

(1 + x) cos(ξx)e−xdx.

To me, the easiest thing to do is write

cos(ξx) =
eiξx + e−iξx

2
.

Then we can combine the exponentials. So, we have two terms:∫ ∞
0

e−x
eiξx + e−iξx

2
dx+

∫ ∞
0

xe−x
eiξx + e−iξx

2
dx.

The first integral can be computed as it stands (ask if you get stuck!). For
the second one use integration by parts.

(2) (7.4.1.d) Compute

Fs
(
xe−x

)
.

Hint: Proceed in the same way as the previous problem, expanding out the
sine in terms of complex exponentials.

(3) (7.3.1) Use the Fourier transform to find a solution of the ordinary differ-
ential equation

u′′ − u+ 2g(x) = 0, g ∈ L1(R).

Hint: Hit the whole equation with the Fourier transform in the x variable.
So you are getting

−ξ2û(ξ)− û(ξ) = −2ĝ(ξ).

Solving for û(ξ) we get

û(ξ) = 2
ĝ(ξ)

1 + ξ2
.

From here, we see we got a product. The Fourier transform of a convolution
results in a product. So, find a function whose Fourier transform is 1

1+ξ2 .

Then, you can express the solution as the convolution of 2g with this!
(4) (Eö 50) So we’re supposed to figure out this function:

f(x) =
∑
n≥1

sin((2n− 1)x)

(2n− 1)3
.

https://arxiv.org/abs/1004.2445


FOURIER ANALYSIS & METHODS 11

We look to the table of Fourier series in Folland: we see that item 17 says
that the Fourier series of the function f(x) = x(π − |x|) defined this way
on (−π, π) and extended to be 2π periodic in R is

8

π

∑
n≥1

sin((2n− 1)x)

(2n− 1)3
.

So the series above is:
π

8
x(π − |x|) for x ∈ (−π, π), and extended to be 2π periodic on R.

(5) (8.4.3.a) Consider heat flow in a semi-infinite rod when heat is supplied to
the end at a constant rate c:

ut = kuxx for x > 0, u(x, 0) = 0, ux(0, t) = −c.
With the aid of the computation:

L
(

1√
πt
e−a

2/(4t)

)
(z) =

e−a
√
z

√
z
,

show that

u(x, t) = c

√
k

π

∫ t

0

s−1/2e−x
2/(4ks)ds.

Hint: Let’s hit the PDE with the Laplace transform in the t variable.
We get

L(ut)(x, z) = kL(uxx)(x, z).

By the properties of the Laplace transform, and the IC,

L(ut)(x, z) = zL(u)(x, z)− u(x, 0) = zL(u)(x, z).

So we have the equation:
z

k
Lu(x, z) = Lu(x, z)xx.

This is an ODE now for the Laplace transform of our solution. The solution
is of the form:

Lu(x, z) = A(z)e−x
√
z/k +B(z)ex

√
z/k.

We want this to be bounded for large z so we strike the second solution. The
boundary condition we have is that ux(0, t) = −c, so when we transform
this, we want

Lux(0, z) = −L(c)(z).

We can Laplace transform the constant function:∫ ∞
0

ce−tzdt =
c

z
.

On the other hand, taking the derivative of A(z)e−
√
z/kx with respect to x

and then setting x = 0 we get:

−
√
z

k
A(z) =⇒ −

√
z

k
A(z) = − c

z
.

So, we want

A(z) =
c
√
k

z3/2
.
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Thus our Laplace transformed solution is:

Lu(x, z) =
c
√
k

z3/2
e−x
√
z/k = c

√
k

1

z

(
e−x
√
z/k

√
z

)
.

From here on out we can follow Folland’s hint and use Table 3 which says
that the Laplace transform of

L(

∫ t

0

f(s)ds)(z) = z−1L(f)(z).

So, we have

L

(∫ t

0

1√
πs
e−a

2/(4s)ds

)
(z) =

e−a
√
z

z
√
z
.

Now just deal with the constant factors and choose a correctly...
(6) (8.4.1) Solve:

ut = kuxx − au, x > 0, u(x, 0) = 0, u(0, t) = f(t).

Hint: Let’s hit the PDE with the Laplace transform in the t variable and
see what happens. It is a little bit different this time:

zLu(x, z) = kLu(x, z)xx − aLu(x, z).

So we re-arrange and have

(z + a)Lu(x, z) = kLu(x, z)xx =⇒ z + a

k
Lu(x, z) = Lu(x, z)xx.

This is similar, and our solution is of the form

A(z)e−x
√

(z+a)/k +B(z)ex
√

(z+a)/k.

We want this to be bounded for z large, so we strike the second solution.
The initial condition says we want

A(z) = Lf(z).

So our Laplace-transformed solution is:

Lf(z)e−x
√

(z+a)/k.

This is a product. We can express our solution as a convolution if we find
something whose Laplace transform is that exponential term. Let’s write
the exponential a little differently:

e
− x√

k

√
z−−a

.

We see that item 3 on table 3 with c = −a shows that

L(e−atf(t))(z) = Lf(z −−a).

So if we find a function whose Laplace transform is e
− x√

k

√
z

then we will
be done. We see that item 27 on table 3 gives us just that:

L(t−3/2e−b
2/(4t))(z) = 2b−1

√
πe−b

√
z.

(We already have one thing called a running around, so I changed the name
here to b). Consequently

L(e−att−3/2e−b
2/(4t))(z) = 2b−1

√
πe−b

√
z+a.



FOURIER ANALYSIS & METHODS 13

Now just figure out what you need b to equal to make this work. Your
solution will be a convolution of f and the correct thing to make the right

side equal to e
− x√

k

√
z−−a

.
(7) (Eö 12) We define

f(t) =

∫ 1

0

√
wew

2

cos(wt)dw.

We are supposed to then somehow compute∫
R
|f ′(t)|2dt.

Hint: This definition of f looks remarkably like a Fourier transform of
something... The right side is an L2 norm, so we have the Parseval (is that
the right name?) formula which says that∫

R
|f ′(t)|2dt =

1

2π

∫
R
|f̂ ′(t)|2dt.

Then we look to Table 2 of Folland which says that

f̂ ′(ξ) = iξf̂(ξ).

So we just need to compute

1

2π

∫
R
ξ2|f̂(ξ)|2dξ.

To solve this, the function f requires further inspection... it is very close to
being a Fourier transform. Let us make it so. Begin by extending evenly
(the presence of cosine hints at this...)

f(t) =
1

2

∫
R
χ[−1,1](w)

√
|w|ew

2

cos(wt)dw =
1

2

∫
R
χ[−1,1](w)

√
|w|ew

2

e−iwtdw.

The reason for the last step is that the function (without the cosine) is
even. So if we throw in e−iwt = cos(−wt)+ i sin(−wt) = cos(wt)− i sin(wt)
the integral with the sine will be zero since sine is odd and the rest of the
integrand is zero. So we recognize

f(t) = F
(

1

2
χ[−1,1](w)

√
|w|ew

2

)
(t).

By the FIT

1

2
χ[−1,1](w)

√
|w|ew

2

=
1

2π

∫
R
f(t)eiwtdt =

1

2π
f̂(−w) =

1

2π
f̂(w).

This is because f is even and so it’s Fourier transform is also even. So, we
see that

πχ[−1,1](w)
√
|w|ew

2

= f̂(w).

Hence, we just need to compute

1

2

∫
R
w2
(
χ[−1,1](w)

√
|w|ew

2
)2

dw =
1

2

∫ 1

−1

|w|w2e2w2

dw

=

∫ 1

0

w3e2w2

dw.
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Write the integrand as (w2)(we2w2

). Integrate by parts. It should end
nicely.
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