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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.03.01

We are on the home stretch! So far, the geometric settings we can handle are:

(1) finite intervals and rectangles, using Fourier series and SLP techniques;
(2) the entire real line, using Fourier transform;
(3) with nice boundary conditions, a half line using Fourier sine/cosine trans-

form;
(4) with a time-dependent boundary condition, a half line using Laplace trans-

form;
(5) combining techniques to deal with half-spaces and quadrants;
(6) certain types of problem in disks and annuli.

1.1. Fun with drums and Bessel functions. So who else is going to the metal
festival this weekend (The Abyss Festival)? There will be a LOT of drumming
going on. Why do drums sound the way they do? This is actually a question that
even today we do not completely understand. You’ll soon understand why...

We shall solve the initial value problem for a vibrating drum. We begin by
mathematicizing the drumhead as a circular membrane. Since it is a drumhead,
the boundary is attached to the rest of the drum, so the boundary does not vibrate,
it remains fixed. We think of the drumhead as being instantaneously still at the
moment when we hit it. Consequently, the height on the drum at a point z = (x, y)
and time t satisfies:

utt−uxx−uyy = 0, x2+y2 ≤ L2,


u(x, y, t) = 0 (x, y) on the boundary

ut(x, y, 0) = 0

u(x, y, 0) = f(x, y)

.

To solve this problem, we see that it is pretty decent and homogeneous, and it is
also occurring in a bounded region of the plane. So we see if we can use separation
of variables. For this we first separate the time and space variables. So our equation
is

T ′′(t)S(x, y)− Sxx(x, y)T − Syy(x, y)T = 0.
1
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We divide everything by TS, move things around, and get

T ′′

T
=
Sxx + Syy

S
.

Since each side depends on a different variable, we have the equation

Sxx + Syy
S

= λ =
T ′′

T
.

Which side to solve first? We have the nice homogeneous boundary condition for
the space variables, so we should solve for the space variables first. Consequently
we seek a solution to:

Sxx + Syy = λS.

Expressing the boundary using x and y it is:

x2 + y2 = L2.

This is not something of the form “variable equals value.” It is more complicated.
The reason is because the natural coordinate system for a disk is not the square
Cartesian coordinates. The natural coordinate system is the polar coordinate sys-
tem.

Exercise 1. Show that the differential operator

∂xx + ∂yy

in polar coordinates (r, θ) becomes

∂rr + r−1∂r + r−2∂θθ.

Hint: use the chain rule!

In terms of polar coordinates the boundary is at r = L. This is the type of
expression we usually have for a boundary. The function S should vanish at r = L.
Moreover, we are on a disk. So, the function S at θ and θ+2kπ should be the same
for all k ∈ Z. Let us separate variables, writing S = R(r)Θ(θ). Then our equation
becomes

R′′Θ + r−1R′Θ + r−2Θ′′ = λRΘ, R(L) = 0, Θ(θ + 2kπ) = Θ(θ).

Let’s get the different variables cordoned off to different sides of the equation. So,
we first divide by RΘ:

R′′

R
+ r−1

R′

R
+ r−2

Θ′′

Θ
= λ.

Multiply everything by r2 to liberate the term with Θ from any r dependence:

r2
R′′

R
+ r

R′

R
+

Θ′′

Θ
= r2λ ⇐⇒ r2

R′′

R
+ r

R′

R
− r2λ = −Θ′′

Θ
.

Each side depends on a different variable, so they are both constant. Since we have
the lovely periodicity condition for Θ, and its equation is more simple, let us look
for its solution first. We have

−Θ′′

Θ
= constant = µ, Θ(θ + 2kπ) = Θ(θ).

So, we are looking for a 2π periodic function which has Θ′′ equal to a constant
times Θ. The only functions which have this are sines and cosines! Equivalently,
we may use complex exponentials. So, we may choose to use

{sin(nx), cos(nx)}n∈N0
, or {einx}n∈Z.
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Either of these will do the job. The numbers

µ = µn = −n2.

So, now let us take the value of µn and use it to find the partner function Rn. It
satisfies

r2
R′′n
Rn

+ r
R′n
Rn
− r2λ = −Θ′′n

Θn
= −− n2 = n2.

Re-arranging the equation, we get

eq:almostbeq:almostb (1.1) r2R′′n + rR′n − r2λ− n2Rn = 0.

This is quite close to Bessel’s equation.

Definition 1. The differential equation

x2u′′(x) + xu′(x) + (x2 − α2)u(x) = 0, α ∈ C

is Bessel’s equation. The differential equation

u2u′′(x) + xu′(x)− (x2 + α2)u(x) = 0,

is the modified Bessel equation.

So, let’s try to relate our equation (
eq:almostbeq:almostb
1.1). The main differences are: λ factor

attached to r2 term and different signs. Let us consider first the case in which
λ < 0. Then −λ > 0. So, let us write

Rn(r) = Fn(x), x = r
√
|λ| =⇒ R′n(r) = F ′n(x)

√
|λ|.

So we also have

rR′n(r) =
x√
|λ|
R′n(r) =

x√
|λ|
F ′n(x)

√
|λ| = xF ′n(x).

Similarly we get

r2R′′n(r) = x2F ′′n (x).

Moreover, since λ < 0,

−r2λ = x2.

So for the function Fn the differential equation (
eq:almostbeq:almostb
1.1) is

x2F ′′n (x) + xF ′n(x) + x2Fn(x)− n2Fn(x).

This is

x2F ′′n (x) + xF ′n(x) + (x2 − n2)Fn(x) = 0.

This is Bessel’s equation! The solution in this case is given by the function

Fn(x) = Jn(x) =⇒ Rn(r) = Jn(r
√
|λ|).

What should
√
|λ| be? This comes from the boundary condition. We need

Rn(L) = 0 =⇒ Jn(L
√
|λ|) = 0 =⇒ L

√
|λ| is a number where Jn vanishes.

Theorem 2. The Bessel function Jn has infinitely many zeros along the real axis.
We may therefore write {zn,m}m≥1 to indicate the mth positive zero of the Bessel
function Jn.
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Consequently, we require

L
√
|λ| = zn,m for some m ≥ 1.

This shows that (recalling λ < 0 in this case)

λ = λn,m = −
z2n,m
L2

.

Exercise 2. Consider the case λ > 0. Do a similar change of variables to (
eq:almostbeq:almostb
1.1) to

show that in this case we obtain the modified Bessel equation:

x2F ′′n (x) + xF ′n(x)− (x2 + n2)Fn(x) = 0.

Check the literature to see that the solutions are the modified Bessel functions, In
and Kn. Verify in the literature that the functions Kn(x) → ∞ when x → 0. So,
these do not yield physically viable solutions to the wave equation because there is
no reason for our drum to go off to infinity at the center point. Verify that the
functions In(x) do not have any positive real zeros, so there is no way to obtain the
boundary condition Rn(L) = 0. Hence, these too can be discarded.

So, with the exercise, we are able to conclude that only the case λ < 0 yields
physically viable solutions. Equipped with this knowledge, we may return to our
equation for the time dependent function.

T ′′n,m
Tn,m

= λn,m = −
z2n,m
L2

=⇒ Tn,m(t) = an,m cos(zn,mt/L) + bn,m sin(zn,mt/L).

The coefficients shall be determined by our initial conditions. Using superposition
to create a super solution we have

u(t, r, θ) =
∑
n,m≥1

(an,m cos(zn,mt/L) + bn,m sin(zn,mt/L)) Jn(zm,nr/L)(cos(nθ)+sin(nθ)).

The time derivative should vanish when t = 0, which means that the coefficients

bn,m = 0 ∀n,m.

The other condition is

u(0, r, θ) =
∑
n,m≥1

an,mJn(zm,nr/L)(cos(nθ) + sin(nθ)) = f(r, θ).

So, we would like to have a sort of Fourier expansion in terms of these Bessel
functions and sines and cosines. We will have a theorem which says that indeed
this is true. Thus

an,m =
〈f, Jn(zm,nr/L)(cos(nθ) + sin(nθ))〉
||Jn(zm,nr/L)(cos(nθ) + sin(nθ))||2

.

Here since we are doing things on a disk and using polar coordinates, our scalar
products are:

〈f, Jn(zm,nr/L)(cos(nθ)+sin(nθ))〉 =

∫ L

0

∫ 2π

0

f(r, θ)Jn(zm,nr/L)(cos(nθ) + sin(nθ))rdrdθ,

and

||Jn(zm,nr/L)(cos(nθ)+sin(nθ))||2 =

∫ L

0

∫ 2π

0

|Jn(zm,nr/L)(cos(nθ)+sin(nθ))|2rdrdθ.
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1.2. What are Bessel functions? So, what exactly are these Bessel functions?
We shall see that they are a bit like the redneck cousins of the sine and cosine
functions. Let us write Bessel’s equation in this way:

x2f ′′ + xf ′ + (x2 − ν2)f = 0.

Assume that f has a series expansion (we will later see that this assumption luckily
works out - if it didn’t - we’d just have to keep trying other methods). Then we
write

f(x) =
∑
j≥0

ajx
j+b.

Stick it into the ODE:

x2
∑
j≥0

aj(j+ b)(j+ b− 1)xj+b−2 + x
∑
j≥0

aj(j+ b)xj+b−1 + (x2− ν2)
∑
j≥0

ajx
j+b = 0.

Pull the factors of x inside the sum:∑
j≥0

aj(j + b)(j + b− 1)xj+b +
∑
j≥0

aj(j + b)xj+b +
∑
j≥0

ajx
j+b+2 − ν2ajxj+b = 0.

Begin with j = 0. To make the sum vanish, it will certainly suffice to make all the
individual terms in the sum vanish. So we would like to have

a0
(
b(b− 1) + b− ν2

)
xb = 0.

This will be true if

a0 = 0 or b2 − ν2 = 0 =⇒ b = ±ν.
Next look at j = 1. We need

a1
(
(1 + b)(1 + b− 1) + (1 + b)− ν2

)
xb+1 = 0.

Let’s simplify what’s in the parentheses, so we need

a1
(
(1 + b)2 − ν2

)
= 0.

So, here are our options:

(1) Let b = ν, set a1 = 0, and be free to choose a0 OR
(2) Let (1 + b) = ν, set a0 = 0, and be free to choose a1.

If we think about it, the second option is rather like doing the first one for ν − 1
instead of ν. So, the two options are basically equivalent, but the first one is a bit
more simple, so that is what we choose to do. We set b = ν, a1 = 0, and we shall
choose a0 6= 0 later.

What happens with the higher terms? Once j ≥ 2 the term with ajx
j+b+2 gets

involved. Let’s group the terms in the series in a nice way:∑
j≥0

xj+baj
(
(j + b)(j + b− 1) + (j + b)− ν2

)
+ ajx

j+b+2 = 0.

This is ∑
j≥0

xj+baj
(
(j + b)2 − ν2

)
+ ajx

j+b+2 = 0.

We figured out how to make the terms with the powers xb and xb+1 vanish. For
the higher powers, the coefficient of

xj+b+2 is aj+2

(
(j + 2 + b)2 − ν2

)
+ aj .
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Therefore, we need

aj+2

(
(j + 2 + b)2 − ν2

)
= −aj =⇒ aj+2 = − aj

(j + 2 + b)2 − ν2)
.

Recalling that we picked b = ν, this means

aj+2 = − aj
(j + 2 + ν)2 − ν2

,

so we are not dividing by zero which is a good thing. Equivalently, for j ≥ 2, we
have

aj = − aj−2
(j + ν)2 − ν2

= − aj−2
j2 + 2νj

= − aj−2
j(j + 2ν)

.

We therefore see that since we picked a1 = 0, all of the odd terms are zero.
On the other hand, for the even terms, we can figure out what these are using
induction. I claim that

a2k =
(−1)ka0

22kk!(1 + ν)(2 + ν) . . . (k + ν)
.

To begin we check the base case which has k = 1:

a2 = − a0
2(2 + 2ν)

= − a0
4(1 + ν)

=
(−1)1a0

22(1)1!(1 + ν)
.

So the formula is correct. We next assume that it holds for k and verify using what
we computed above that it works for k + 1. We have for j = 2k + 2,

a2k+2 = − a2k
(2k + 2)(2k + 2 + 2ν)

.

We insert the expression for a2k by the induction assumption that the formula holds
for k:

a2k+2 = − (−1)ka0
(2k + 2)(2k + 2 + 2ν)22kk!(1 + ν)(2 + ν) . . . (k + ν)

.

We note that

(2k + 2)(2k + 2 + 2ν) = 4(k + 1)(k + 1 + ν) = 22(k + 1)(k + 1 + ν).

So

a2k+2 = − (−1)ka0
22(k+1)(k + 1)k!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)

.

Finally we note that

(k + 1)k! = (k + 1)!.

So,

a2k+2 = − (−1)ka0
22(k+1)(k + 1)!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)

.

This is the formula for k + 1, so it is indeed correct. Before we proceed, we recall
one of the many special functions,

Γ(s) :=

∫ ∞
0

ts−1e−tdt, s ∈ C, <(s) > 1.
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Exercise 3. Use integration by parts to show that

sΓ(s) = Γ(s+ 1).

Next, show that Γ(1) = 1. Use induction to show that Γ(n+ 1) = n! for n ≥ 1.
Since Γ(1) = 1, this is the reason we define

0! := 1.

Moreover, viewing Γ as an extension of the factorial function to real numbers, we
can compute silly expressions like

π! = Γ(π + 1), e! = Γ(e+ 1), i! = Γ(i+ 1).

Use the so-called functional equation sΓ(s) = Γ(s + 1) to show that Γ extends to
a meromorphic function whose only poles occur at the points 0 and the negative
integers.

So, motivated by the form of the coefficients, the tradition is to choose

a0 =
1

2νΓ(ν + 1)
.

Therefore coefficient

a2k =
(−1)k

22k+νk!(1 + ν)(2 + ν) . . . (k + ν)Γ(ν + 1)
=

(−1)k

22k+νk!Γ(k + ν + 1)
.

This is because

(ν + 1)Γ(ν + 1) = Γ(ν + 2).

Next

(ν + 2)Γ(ν + 2) = Γ(ν + 3).

We continue all the way to

(ν + k)Γ(ν + k) = Γ(ν + k + 1).

We have therefore arrived at the definition of the Bessel function of order ν,

Jν(x) :=
∑
k≥0

(−1)k
(
x
2

)2k+ν
k!Γ(k + ν + 1)

.

For the special case ν = n ∈ N, the Bessel function is defined for good reason via

J−n(x) = (−1)nJn(x).

The Weber Bessel function is defined for ν 6∈ N to be

Yν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
.

The second linearly independent solution to Bessel’s equation is then defined for
n ∈ N to be

Yn(x) := lim
ν→n

Yν(x),

and this is well defined. If you are curious about Bessel functions, there are books
by Olver, Watson, and Lebedev to name a few. What is most important about Yn
is that it blows up when x→ 0. That’s okay. Since Jn(x)→ 0 as x→ 0, for n ≥ 1,
this shows that Yn and Jn are certainly linearly independent! Hence they indeed
form a basis of solutions to the Bessel equation.
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1.2.1. Solutions to: exercises for the week to be done oneself.

(1) (7.4.1.c) 2
(ξ2+1)2 .

(2) (7.4.1.d) 2ξ
(ξ2+1)2 .

(3) (7.3.1) u(x) = g ∗ e−|x| = e−x
∫ x
−∞ eyg(y)dy + ex

∫∞
x
e−yg(y)dy.

(4) (8.4.3.a) We hit the PDE with the Laplace transform in the t variable. We
get

L(ut)(x, z) = kL(uxx)(x, z).

By the properties of the Laplace transform, and the IC,

L(ut)(x, z) = zL(u)(x, z)− u(x, 0) = zL(u)(x, z).

So we have the equation:
z

k
Lu(x, z) = Lu(x, z)xx.

This is an ODE now for the Laplace transform of our solution. The solution
is of the form:

Lu(x, z) = A(z)e−x
√
z/k +B(z)ex

√
z/k.

We want this to be bounded for large z so we strike the second solution. The
boundary condition we have is that ux(0, t) = −c, so when we transform
this, we want

Lux(0, z) = −L(c)(z).

We can Laplace transform the constant function:∫ ∞
0

ce−tzdt =
c

z
.

On the other hand, taking the derivative of A(z)e−
√
z/kx with respect to x

and then setting x = 0 we get:

−
√
z

k
A(z) =⇒ −

√
z

k
A(z) = − c

z
.

So, we want

A(z) =
c
√
k

z3/2
.

Thus our Laplace transformed solution is:

Lu(x, z) =
c
√
k

z3/2
e−x
√
z/k = c

√
k

1

z

(
e−x
√
z/k

√
z

)
.

From here on out we can follow Folland’s hint and use Table 3 which says
that the Laplace transform of

L(

∫ t

0

f(s)ds)(z) = z−1L(f)(z).

So, we have

L

(∫ t

0

1√
πs
e−a

2/(4s)ds

)
(z) =

e−a
√
z

z
√
z
.

To get the correct right side, we choose

a =
x√
k
.



FOURIER ANALYSIS & METHODS 9

To get the constant factor of c
√
k as well, we multiply both sides of the

equation by c
√
k. So, we have

L

(
c
√
k

∫ t

0

1√
πs
e−x

2/(4
√
ks)ds

)
(z) = c

√
ke−x

√
z/k.

Hence, the solution to the problem before it was hit with the Laplace trans-
form is

c
√
k

∫ t

0

1√
πs
e−x

2/(4
√
ks)ds.

(5) (8.4.1) u(x, t) = x√
4πk

∫ t
0
f(t− s)e−ass−3/2e−s2/(4ks)ds.
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