
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.01.23

Let’s look at another example. Consider a circular shaped rod. Let’s mathe-
maticize it! To specify points on the rod, we just need to know the angle at the
point. For this reason, we use x ∈ R for the position, where x gives us the angle at
the point on the rod. We use the variable t ≥ 0 for time. The function u(x, t) is
the temperature on the rod at position x at time t.

The heat equation (with no sources or sinks) tells us that:

ut = kuxx,

for some constant k > 0. By the same little time-units-trick, we can assume that
k = 1. So, we use the “mathematician’s heat equation,”

ut = uxx.

Let’s see what happens when we try Separation of Variables. We write

u(x, t) = f(x)g(t).

Plug it into the heat equation:

g′(t)f(x) = f ′′(x)g(t).

We want to separate variables, so we want all the t-dependent bits on the left say,
and all the x-dependent bits on the right. This can be achieved by dividing both
sides by f(x)g(t),

g′(t)

g(t)
=
f ′′(x)

f(x)
.

We now know that both sides must be constant.

Exercise 1. In your own words, explain why both sides of the equation must be
constant.

Now, we need to pick a side to begin... We actually have some information which
is hiding inside the geometry of the problem. The geometry is referring to the x
variable. What can you say about the angle x on the rod and the angle x+ 2π on

1



2 JULIE ROWLETT

the rod? They are the same. This means that our temperature function must be
the same at x and at x+ 2π. So, we must have also

f(x+ 2π) = f(x).

We can repeat this, obtaining

f(x+ 2πn) = f(x) ∀n ∈ Z.

This means that f is a periodic function with period equal to 2π. So, we have a
bit of extra information about it. The equation for f is:

f ′′(x) = λf(x)

for a constant λ.

Exercise 2. Case 1: Show that if λ = 0, there is no solution to f ′′(x) = 0 which
is 2π periodic, other than the constant solutions.

Case 2: If λ > 0, then a basis of solutions is,

{e
√
λx, e−

√
λx}.

So, we can write

f(x) = ae
√
λx + be−

√
λx.

For the 2π periodicity to hold, we need for example

f(0) = f(2π) =⇒ a+ b = ae
√
λ2π + be−

√
λ2π =⇒ a(e

√
λ2π − 1) = b(1− e−

√
λ2π)

=⇒ a = b
(1− e−

√
λ2π)

e
√
λ2π − 1

.

We also need

f(−2π) = f(0) =⇒ a+ b = ae−
√
λ2π + be

√
λ2π =⇒ a(e−

√
λ2π − 1) = b(1− e

√
λ2π)

=⇒ a = b
1− e

√
λ2π

e−
√
λ2π − 1

.

So, we got two equations for a, the should be equal:

a = b
1− e−

√
λ2π

e
√
λ2π − 1

= b
1− e

√
λ2π

e−
√
λ2π − 1

.

If b = 0 then a = 0 so the whole solution is the zero solution. If b 6= 0 then we must
have

1− e−
√
λ2π

e
√
λ2π − 1

=
1− e

√
λ2π

e−
√
λ2π − 1

.

Re-arranging this a bit:

1− e−
√
λ2π

e
√
λ2π − 1

=
e
√
λ2π − 1

1− e−
√
λ2π

.

Call the left side ?. Then the right side is 1
? . So the equation is

? =
1

?
=⇒ ?2 = 1 =⇒ ? = ±1.

Exercise 3. Show that ? > 0.
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If

? = 1 =⇒ 1− e−
√
λ2π = e

√
λ2π − 1 =⇒ 2 = e

√
λ2π + e−

√
λ2π.

I don’t like the negative exponent thing (it is really a fraction), so I am going to

multiply by e
√
λ2π. Also, doing this turns it into a quadratic equation:

2e
√
λ2π = e4π

√
λ + 1 ⇐⇒ e4π

√
λ − 2e2π

√
λ + 1.

This is a quadratic equation in ξ = e2π
√
λ. It is of the form

ξ2 − 2ξ + 1 = 0,

and we know how to factor it

(ξ − 1)2 = 0 =⇒ ξ = 1.

Since

ξ = e2π
√
λ = 1 ⇐⇒ 2π

√
λ = 0 .

Therefore, in the case where λ > 0, the only solution which is 2π periodic is the
zero solution.

Hence, we are left with Case 3: λ < 0. Then, a basis of solutions is

{sin(
√
|λ|x), cos(

√
|λ|x).

We need these solutions to be 2π periodic. They will be as long as
√
|λ| is an

integer. Hence, our solution

fn(x) = an cos(nx) + bn sin(nx), n ∈ N0.

Exercise 4. Show that allowing complex coefficients, it is equivalent to use a basis
of solutions

{eπinx}n∈Z.
Find An and Bn so that

fn(x) = Ane
inx +Bne

−inx.

Now, we can solve for the partner function, gn(t). Since

f ′′n (x)

fn(x)
= −n2 =

g′n(t)

gn(t)

we get

gn(t) = e−n
2t up to constant factor.

So, we now have

un(x, t) = fn(x)gn(t) = e−n
2t(an cos(nx) + bn sin(nx)).

It satisfies the heat equation,

∂tun − ∂xxun = 0.

Since this equation is (1) linear and (2) homogeneous, the superposition principle
allows us to smash all the solutions together into a super solution,

u(x, t) =
∑
n≥0

un(x, t) =
∑
n≥0

e−n
2t(an cos(nx) + bn sin(nx)).

We do this because we do not know how many of the un functions we will need. In
case we don’t end up needing them all, then their coefficients will be zero, so they
will just disappear on their own anyways. Let’s think about the physics. The rod



4 JULIE ROWLETT

has some temperature function at time t = 0, which we call u0(x). Then u0(x) is
also a 2π periodic function. We would like

u(x, 0) = u0(x) ⇐⇒
∑
n≥0

an cos(nx) + bn sin(nx) = u0(x).

So, given u0(x), can we find an and bn so that this is true?
Fourier made the bold statement that we can do this. It took a long time to

rigorously prove him right (like 100 years, because this whole theory about Hilbert
spaces, measure theory, and functional analysis needed to get developed by Hilbert
& his contemporaries).

1.1. Introduction to Fourier Series of periodic functions. If we have a finite
one dimensional, connected set, then we can always mathematicize it as either (1)
a bounded interval or (2) a circle. When we take a bounded interval of length 2`,
and we take any function whatsoever on that interval, we can always extend it to
the rest of R to be 2` periodic, by simply repeating its values from the interval.
Hence, for both of these contexts we are working with periodic functions.

Definition 1. A function f : R → R is periodic with period p iff for all x ∈ R,
f(x+ p) = f(x).

For example, sin(x) is periodic with period 2π. Our heat equation examples,
fn(x) = an cos(nx)+bn sin(nx) are periodic with period 2π/n. A small observation:
I did not say the minimal period is p. For example, sin(x) also satisfies sin(x+4π) =
sin(x) for all x ∈ R. So, sin(x) is also 4π periodic. In general, if a function is periodic
with period p, then it’s also periodic with period 2p, 3p, . . .np for any n ∈ N with
n ≥ 1.

Exercise 5. Prove that any function which is p periodic (that means periodic with
period p) is also np periodic for any n ∈ N≥1.

We shall prove a super useful little lemma about periodic functions and their
integrals.

Lemma 2 (Integration of periodic functions lemma). If f is periodic with period
p then for any a ∈ R ∫ a+p

a

f(x)dx

is the same.

Proof: If we think about it, we want to show that the function

g(a) :=

∫ a+p

a

f(x)dx

is a constant function. This looks awfully similar to the fundamental theorem of
calculus. In any decent proof, we need to use the hypotheses of the lemma. So,
we’re going to need to use the assumption that f is periodic with period p, which
tells us that

f(a+ p)− f(a) = 0.

Now, since we want to consider a as a variable, we don’t want it at both the top and
the bottom of the integral defining g. Instead, we can use linearity of integration
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to write

g(a) =

∫ a+p

0

f(x)dx−
∫ a

0

f(x)dx.

Then, using the fundamental theorem on each of the two terms on the right,

g′(a) = f(a+ p)− f(a) = 0.

Above, we use the fact that f is periodic with period p. Hence, g′(a) ≡ 0 for all
a ∈ R. This tells us that g is a constant function, so its value is the same for all
a ∈ R.

So you survived a bit of theory, now let’s return to our physical motivation!
We wanted to find coefficients so that the u(x, t) we found to solve the heat equa-
tion would match up with the initial data, u0(x). If it does, then (using some
advanced PDE theory beyond the scope of this humble course), u(x, t) is indeed
THE UNIQUE solution to the heat equation with initial data u0(x). Hence, u(x, t)
actually tells us the temperature on the rod at position x at time t. Cool. So,
setting t = 0 in the definition of u(x, t) we want

vxvx (1.1) u0(x) =
∑
n≥0

an cos(nx) + bn sin(nx).

It is totally equivalent to work with complex exponentials, because

cos(nx) =
einx + e−inx

2
, sin(nx) =

einx − e−inx

2i
.

Exercise 6. Show that we can write u0(x) as a series above in (
vxvx
1.1) if and only if

we can write
u0(x) =

∑
n∈Z

cne
inx.

Moreover, show that

c0 =
a0
2
, cn =

1

2
(an − ibn), n ≥ 1, cn =

1

2
(an + ibn), n ≤ −1.

Finally, use this to show that

a0 = 2c0, an = cn + c−n, n ≥ 0, bn = i(cn − c−n), n ≥ 0.

It is slightly more convenient for these purposes to do the calculation using the
{einx}n∈Z basis. This will be elucidated in a moment. The equation we want to
obtain is:

u0(x) =
∑
n∈Z

cne
inx.

The object on the right is a sum of coefficients cn ∈ C times functions einx. It is
simply a linear combination of the functions einx. If we could show that in a suitable
sense these functions for a sort of “basis” then we should be able to expand our
function u0 in terms of this basis. Sure, the basis is infinite, so, you’ve graduated
to “linear algebra for adults,” in which your vectors are now infinite dimensional.
1 To continue with the linear algebra concept, we need a notion of orthogonality.

1Grigori Rozenblioum, who taught this class for many years, and is in general an awesome
mathematician, used to say “If you can pass this course, then you’ve earned the right to buy

Vodka at Systembolaget, regardless of your actual age.”
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This is obtained using something called a scalar product, or dot product, or inner
product: they all mean the same thing.

Since we are doing this for functions, we want to be able to say when functions
are orthogonal to each other, to define norms of functions, and to project arbitrary
functions onto “basis functions.” The scalar product which will allow us to do this
is:

Definition 3. For two functions, f and g, which are real or complex valued func-
tions defined on [a, b] ⊂ R, we define their scalar product to be

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

We say that f and g are orthogonal if 〈f, g〉 = 0. We define the L2([a, b]) norm of
a function to be

||f ||L2([a,b]) =
√
〈f, f〉.

OBS! Learn this definition right now!!!! It is really important. Every detail:

〈f, g〉 =

∫ b

a

f(x)g(x)dx, ||f ||2 = 〈f, f〉.

Now, if you wonder why it is defined this way, that is because defining things this
way has the very pleasant consequence that it works. Meaning, when we define
things this way, we are able to use the separation of variables technique to solve
the PDEs.

2. Exercises for this week

These exercises are found in [
folland
1].

2.1. Exercises to be demonstrated.

(1) Derive pairs of ordinary differential equations from the following partial
differential equations by separation of variables, or show that it is not pos-
sible:

yuxx + uy = 0

x2uxx + xux + uyy + u = 0

uxx + uxy + uyy = 0

uxx + uxy + uy = 0

(2) Derive sets of three ordinary differential equations from the following partial
differential equations by separation of variables:

yuxx + xuyy + yxuzz = 0

x2uxx + xux + uyy + x2uzz = 0

(3) Solve:

ut =
1

10
uxx, ux(0, t) = ux(π, t) = 0

u(x, 0) = 3− 4 cos(2x), 0 < x < π.

OBS! If you are trying to do this yourself, it’s going to be hard to get the
initial condition as of now, because we have not finished learning how to
create Fourier series. So, as of Wednesday, it is sufficient if you understand
how to solve the equation using the techniques we have so far (separation of
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variables + superposition). How to obtain the coefficients will be explained
in the exercises, and we will also do this on Friday.

(4) By separation of variables, derive the family of solutions

u±mn(x, y, z) = sin(mπx) cos(nπy) exp
(
±
√
m2 + n2πz

)
to the equation

uxx + uyy + uzz = 0, u(0, y, z) = u(1, y, z) = uy(x, 0, z) = uy(x, 1, z) = 0.

2.2. Exercises to do yourself.

(1) The object of this exercise is to derive d’Alembert’s formula for the general
solution of the one-dimensional wave equation utt = c2uxx.
(a) Show that if u(y, z) = f(y) + g(z) where f and g are C2 functions of

one variable, the u satisfies

uyz = 0.

Conversely, show that every C2 solution of this equation is of this form.
(Hint: If vy = 0 then v is independent of y).

(b) Let y = x− ct and z = x+ ct. Use the chain rule to show that

utt − c2uxx = −4c2uyz.

(c) Explain why the general C2 solution of the wave equation is

u(x, t) = φ(x− ct) + ψ(x+ ct)

where φ and ψ (the Greek functions) are C2 functions of one variable.
Explain why physically φ(x − ct) represents a wave traveling to the
right with speed c and ψ(x+ ct) represents a wave traveling to the left
with speed c.

(d) Show that the solution of the initial value problem for the wave equa-
tion,

utt = c2uxx, u(x, 0) = f(x), ut(x, 0) = g(x)

is

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(y)dy.

(2) Solve:

utt = 9uxx, u(0, t) = u(1, t) = 0,

u(x, 0) = 2 sin(πx)− 3 sin(4πx), ut(x, 0) = 0, (0 < x < 1).

OBS! It is going to be hard to get the initial condition as of now, because we
have not finished learning how to create Fourier series. So, as of Wednes-
day, it is sufficient if you understand how to solve the equation using the
techniques we have so far (separation of variables + superposition). How
to obtain the coefficients will be explained in the exercises, and we will also
do this on Friday.

(3) By separation of variables, derive the solutions

un(x, y) = sin(nπx) sinh(nπy)

to:

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.
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(4) Use separation of variables to find an infinite family of independent solu-
tions of

ut = kuxx, u(0, t) = 0, ux(l, t) = 0.

This represents heat flow in a rod with one end held at temperature zero
and the other end insulated.
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