
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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Theorem 1. The Legendre polynomials are orthogonal in L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Proof: We first prove the orthogonality. Assume that n > m. Then, since they
have this constant stuff out front, we compute

2nn!2mm!〈Pn, Pm〉 =

∫ 1

−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)mdx.

Let us integrate by parts once:

=
dn−1

dxn−1
(x2 − 1)n

dm

dxm
(x2 − 1)m

∣∣∣∣1
−1
−
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

Consider the boundary term:

dn−1

dxn−1
(x2 − 1)n =

dn−1

dxn−1
(x− 1)n(x+ 1)n.

This vanishes at x = ±1, because the polynomial vanishes to order n whereas we
only differentiate n− 1 times. So, we have shown that

2nn!2mm!〈Pn, Pm〉 = −
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

We repeat this n− 1 more times. We note that for all j < n,

dj

dxj
(x2 − 1)n vanishes at x = ±1.

For this reason, all of the boundary terms from integrating by parts vanish. So, we
just get

(−1)n
∫ 1

−1
(x2 − 1)

dm+n

dxm+n
(x2 − 1)mdx = (−1)n

∫ 1

−1
(x2 − 1)

dn

dxn
dm

dxm
(x2 − 1)mdx

Remember that n > m. We computed that dm

dxm (x2−1)m is a polynomial of degree
m. So, if we differentiate it more than m times we get zero. So, we’re integrating
zero! Hence it is zero.
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For the second part, we use the formula we computed for

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

Differentiating n times gives us just the term with the highest power of x, so we
have

dn

dxn
Pn(x) =

1

2nn!
n!

n−1∏
j=0

(2n− j) =
(2n)!

2nn!
.

Consequently,

〈Pn, Pn〉 = (−1)n
1

2nn!

(2n)!

2nn!

∫ 1

−1
(x2 − 1)ndx = (−1)n

2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx

= (−1)n
2(2n)!

22n(n!)2

∫ 1

0

n∑
k=0

(−1)n−k
(
n

k

)
x2kdx

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
x2k+1

2k + 1

(
n

k

)∣∣∣∣∣
1

0

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
(
n

k

)
1

2k + 1

=
2(2n)!

22n(n!)2

n∑
k=0

(−1)k
(
n

k

)
1

2k + 1
.

This looks super complicated. Apparently by some miracle of life∫ 1

0

(1− x2)ndx =
Γ(n+ 1)Γ(1/2)

Γ(n+ 3/2)
.

Since

〈Pn, Pn〉 = (−1)n
2(2n)!

22n(n!)2

∫ 1

0

(x2 − 1)ndx =
2(2n)!

22n(n!)2

∫ 1

0

(1− x2)ndx,

we get
Γ(n+ 1)Γ(1/2)2(2n)!

22n(n!)2Γ(n+ 3/2)
.

We use the properties of the Γ function together with the fact that Γ(1/2) =
√
π

to obtain √
π2(2n)!

22nn!(n+ 1/2)Γ(n+ 1/2)
.

Let us consider

2(n+ 1/2)Γ(n+ 1/2) = (2n+ 1)Γ(n+ 1/2).

Next consider
2(n− 1/2)Γ(n− 1/2) = (2n− 1)Γ(n− 1/2).

Proceeding this way, the denominator becomes

2nn!(2n+ 1)(2n− 1) . . . 1
√
π.

However, now looking at the first part

2nn! = 2n(2n− 2)(2n− 4) . . . 2.
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So together we get

(2n+ 1)!
√
π.

Hence putting this in the denominator of the expression we had above, we have
√
π2(2n)!

(2n+ 1)!
√
π

=
2

2n+ 1
.

Corollary 2. The Legendre polynomials are an orthogonal basis for L2 on the
interval [−1, 1].

Theorem 3. The even degree Legendre polynomials {P2n}n∈N are an orthogonal
basis for L2(0, 1). The odd degree Legendre polynomials {P2n+1}n∈N are an orthog-
onal basis for L2(0, 1).

Proof: Let f be defined on [0, 1]. We can extend f to [−1, 1] either evenly or
oddly. First, assume we have extended f evenly. Then, since f ∈ L2 on [0, 1],∫ 1

−1
|fe(x)|2dx = 2

∫ 1

0

|f(x)|2dx <∞.

Therefore fe is in L2 on the interval [−1, 1]. We have proven that the Legendre
polynomials are an orthogonal basis. So, we can expand fe in a Legendre polynomial
series, as ∑

n≥0

f̂e(n)Pn,

where

f̂e(n) =
〈fe, Pn〉
||Pn||2.

By definition,

〈fe, Pn〉 =

∫ 1

−1
fe(x)Pn(x)dx.

Since fe is even, the product fe(x)Pn(x) is an odd function whenever n is odd.
Hence all of the odd coefficients vanish. Moreover,

〈fe, P2n〉 = 2

∫ 1

0

f(x)P2n(x))dx.

We also have

||P2n||2 = 2

∫ 1

0

|P2n(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n(x)dx∫ 1

0
|P2n(x)|2dx

)
P2n.

We can also extend f oddly. This odd extension satisfies∫ 1

−1
|fo(x)|2dx =

∫ 0

−1
|fo(x)|2dx+

∫ 1

0

|fo(x)|2dx = 2

∫ 1

0

|fo(x)|2dx <∞.
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So, the odd extension is also in L2 on the interval [−1, 1]. We can expand fo in a
Legendre polynomial series, as ∑

n≥0

f̂o(n)Pn,

where

f̂o(n) =
〈fo, Pn〉
||Pn||2.

By definition,

〈fo, Pn〉 =

∫ 1

−1
fo(x)Pn(x)dx.

Since fo is odd, the product fo(x)Pn(x) is an odd function whenever n is even.
Hence all of the even coefficients vanish. Moreover,

〈fo, P2n+1〉 = 2

∫ 1

0

f(x)P2n+1(x))dx,

because the product of two odd functions is an even function. We also have

||P2n+1||2 =

∫ 0

−1
|P2n+1(x)|2dx+

∫ 1

0

|P2n+1(x)|2dx = 2

∫ 1

0

|P2n+1(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n+1(x)dx∫ 1

0
|P2n+1(x)|2dx

)
P2n+1.

1.1. Hermite polynomials.

Definition 4. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proposition 5. The Hermite polynomials are polynomials with the degree of Hn

equal to n.

Proof: The proof is by induction. For n = 0, this is certainly true, as H0 = 1.
Next, let us assume that

dn

dxn
e−x

2

= pn(x)e−x
2

,

is true for a polynomial, pn which is of degree n. Then,

dn+1

dxn+1
e−x

2

=
d

dx

(
pn(x)e−x

2
)

= p′n(x)e−x
2

−2xpn(x)e−x
2

= (p′n(x)− 2xpn(x)) e−x
2

.

Let
pn+1 = p′n(x)− 2xpn(x).

Then we see that since pn is of degree n, pn+1 is of degree n+ 1. Moreover

dn+1

dxn+1
e−x

2

= pn+1(x)e−x
2

.

So, in fact, the Hermite polynomials satisfy:

H0 = 1, Hn+1 = − (H ′n(x)− 2xHn(x)) .
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Proposition 6. The Hermite polynomials are orthogonal on R with respect to the

weight function e−x
2

. Moreover, with respect to this weight function ||Hn||2 =
2nn!
√
π.

Proof: Assume n > m ≥ 0. We compute∫
R
Hn(x)Hm(x)e−x

2

dx =

∫
R

(−1)n
dn

dxn
e−x

2

Hm(x)dx.

We use integration by parts n times, noting that the rapid decay of e−x
2

kills all
boundary terms. We therefore get∫

R
e−x

2 dn

dxn
Hm(x)dx = 0.

This is because the polyhomial, Hm, is of degree m < n. Therefore differentiating
it n times results in zero. Finally, for n = m, we have by the same integration by
parts, ∫

R
H2
n(x)e−x

2

dx =

∫
R
e−x

2 dn

dxn
Hn(x)dx.

The nth derivative of Hn is just the nth derivative of the highest order term. By
our preceding calculation, the highest order term in Hn is

(2x)n.

Differentiating n times gives

2nn!.

Thus ∫
R
H2
n(x)e−x

2

dx = 2nn!

∫
R
e−x

2

dx = 2nn!
√
π.

We may wish to use the following lovely fact, but we shall not prove it.

Theorem 7. The Hermite polynomials are an orthogonal basis for L2 on R with

respect to the weight function e−x
2

.

What we shall prove, however, is a theory item concerning the Hermite polyno-
mials.

1.1.1. The generating function for the Hermite polynomials. This is similar to the
analogous result for the Bessel functions, but with a bit of a twist.

Theorem 8. For any x ∈ R and z ∈ C, the Hermite polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2

.
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Proof: The key idea with which to begin is to consider instead

e−(x−z)
2

= e−x
2+2xz−z2 .

We consider the Taylor series expansion of this guy, with respect to z, viewing x
as a parameter. By definition, the Taylor series expansion for

e−(x−z)
2

=
∑
n≥0

anz
n,

where

an =
1

n!

dn

dzn
e−(x−z)

2

, evaluated at z = 0.

To compute these coefficients, we use the chain rule, introducing a new variable
u = x− z. Then,

d

dz
e−(x−z)

2

= − d

du
e−u

2

,

and more generally, each time we differentiate, we get a −1 popping out, so

dn

dzn
e−(x−z)

2

= (−1)n
dn

dun
e−u

2

,

Hence, evaluating with z = 0, we have

an =
1

n!
(−1)n

dn

dun
e−u

2

, evaluated at u = x.

The reason it’s evaluated at u = x is because in our original expression we’re
expanding in a Taylor series around z = 0 and z = 0 ⇐⇒ u = x since u = x− z.
Now, of course, we have

dn

dun
e−u

2

, evaluated at u = x =
dn

dxn
e−x

2

.

Hence, we have the Taylor series expansion

e−(x−z)
2

= e−x
2+2xz−z2 =

∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

Now, we multiply both sides by ex
2

to obtain

e2xz−z
2

= ex
2 ∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

We can bring ex
2

inside because everything converges beautifully. Then, we have

e2xz−z
2

=
∑
n≥0

zn

n!
ex

2

(−1)n
dn

dxn
e−x

2

.

Voilà! The definition of the Hermite polynomials is staring us straight in the face!
Hence, we have computed

e2xz−z
2

=
∑
n≥0

zn

n!
Hn(x).

The Hermite polynomials come from solving PDEs in parabolic shaped regions
of R2.
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1.2. The Laguerre polynomials. The Laguerre polynomials come from under-
standing the quantum mechanics of the hydrogen atom. We shall not get into
this1

Definition 9. The Laguerre polynomials,

Lαn(x) =
x−αex

n!

dn

dxn
(xα+ne−x).

We summarize their properties in the following

Theorem 10 (Properties of Laguerre polynomials). The Laguerre polynomials are
an orthogonal basis for L2 on (0,∞) with the weight function xαe−x. Their norms
squared,

||Lαn||2 =
Γ(n+ α+ 1)

n!
.

They satisfy the Laguerre equation

[xα+1e−x(Lαn)′]′ + nxαe−xLαn = 0.

For x > 0 and |z| < 1,
∞∑
n=0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

1.3. Answers to the exercises to be done oneself.

(1) (5.5.5) Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}

u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

Answer:

u(r, θ, z) =
∑
n≥0

∑
k≥1

(ank cos(nθ) + bnk sin(nθ))Jn(λnkr/b) sinh(λnkz/b),

where λnk is the kth positive zero of Jn, and

bnk =
2

b2π sinhλnk

∫ π

−π

∫ b

0

g(r, θ)
Jn(λnkr)

Jn+1(λnk)2
sin(nθ)rdrdθ,

and

ank = frac2b2π sinhλnk

∫ π

−π

∫ b

0

g(r, θ)
Jn(λnkr)

Jn+1(λnk)2
cos(nθ)rdrdθ.

(2) (5.2.4) Demonstrate the identity:∫ x

0

sJ0(s)ds = xJ1(x),

∫ x

0

J1(s)ds = 1− J0(x).

Hint: Use the recurrence formulas. Integrating by parts is a reasonable
idea as well.

1Alex Jones does get into it: https://www.youtube.com/watch?v=i91XV07Vsc0. Check out the

Alex Jones Prison Planet https://www.youtube.com/watch?v=kn_dHspHd8M. Turns out that Alex
Jones’s crazy ranting makes for decent death metal vocals. The gay frogs and America first remix

are pretty decent too.

https://www.youtube.com/watch?v=i91XV07Vsc0
https://www.youtube.com/watch?v=kn_dHspHd8M
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(3) (5.2.8) Prove the reduction formula:∫ x

0

snJ0(s)ds = xnJ1(x) + (n− 1)xn−1J0(x)− (n− 1)2
∫ x

0

sn−2J0(s)ds.

Hint: Integrate by parts, using the facts that (xJ1)′ = xJ0 and J ′0 = −J1.
(4) (5.4.2) Expand the function f(x) = b2−x2 in a Fourier-Bessel series of the

form ∑
k≥1

ckJ0(λkx/b),

where λk is the kth positive zero of the Bessel function J0. OBS! Remember
to integrate with respect to xdx, polar coordinate style.

Answer:

8b2
∑ J0(λkx/b)

λ3kJ1(λk)
.

(5) (6.4.6) Let f(x) = 1 for x > 0 and 0 for x < 0. (Heavyside function
basically). Expand f in a series of Hermite polynomials.

Answer:

1

2
H0 +

1

2
√
π

∞∑
0

(−1)k

22k(2k + 1)k!
H2k+1.
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