
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.03.11

Now for what we’ve all been waiting for: applications to best approximations!

1.1. Applications to best approximations. Here is a typical problem: find the
polynomial, P (x), of at most degree 5 which minimizes∫ b

a

|f(x)− P (x)|2dx.

Here you would be explicitly given the function f as well as the interval from a to b.
Since it works the same way, it seems wise to show the general principle. Then, you
can use this for your particular problems. We know that the Legendre polynomials
are an orthogonal basis for L2 on (−1, 1). Let’s first assume

a = −1, b = 1.

Then, we compute

cn =

∫ 1

−1 f(x)Pn(x)dx

||Pn||2
, n = 0, 1, 2, 3, 4, 5.

The polynomial is, by the best approximation theorem(s),

P (x) =

5∑
n=0

cnPn(x).

So, suppose we don’t have a = −1 and b = 1, but instead we’ve got some other
interval. Let

m =
a+ b

2
.

This is the midpoint of the interval. Let

` =
b− a

2
.

Then the interval

(a, b) = (m− `,m+ `).
1
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So, if we want to move this interval to (−1, 1), we take t ∈ (m− `,m+ `) and map
it to

t 7→ t−m
`

= x.

We see that m 7→ 0 and the endpoints

m− ` 7→ m− `−m
`

= −1, m+ ` 7→ m+ `−m
`

= 1.

It is a linear map, so everything in between maps to everything in between −1 and
1. So we have a bijection between (a, b) and (−1, 1). If we want to go from (−1, 1)
to (a, b) then we send

x ∈ (−1, 1) 7→ `x+m = t.

Since we know about the Legendre polynomials, Pn, on (−1, 1) since t 7→ t−m
` = x

sends (a, b) to (−1, 1),

Pn

(
t−m
`

)
are orthogonal on (a, b).

To see this, just compute∫ b

a

Pn

(
t−m
`

)
Pk

(
t−m
`

)
dt =

∫ 1

−1
`Pn(x)Pk(x)dx = 0 if n 6= k.

We have simply used substitution in the integral with x = t−m
` . So, these modified

Legendre polynomials are orthogonal on (a, b). Moreover∫ b

a

P 2
n

(
t−m
`

)
dt =

∫ 1

−1
`P 2

n(x)dx = `||Pn||2 =
2`

2n+ 1
.

So, we simply expand the function f using this version of the Legendre polynomials.
Let

cn =

∫ b
a
f(t)Pn

(
t−m
`

)
dt∫ b

a
[Pn((t−m)/`)]2dt

.

The polynomial we seek is

P (t) =

5∑
n=0

cnPn

(
t−m
`

)
.

1.1.1. Weighted L2 on R with weight e−x
2

. Find the polynomial of at most degree
4 which minimizes ∫

R
|f(x)− P (x)|2e−x

2

dx.

We know that the Hermite polynomials are an orthogonal basis for L2 on R with the

weight function e−x
2

. We see that same weight function in the integral. Therefore,
we can rely on the theory of the Hermite polynomials! Consequently, we define

cn =

∫
R f(x)Hn(x)e−x

2

dx

||Hn||2
,

where

||Hn||2 =

∫
R
H2
n(x)e−x

2

dx = 2nn!
√
π.
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The polynomial we seek is:

P (x) =

4∑
n=0

cnHn(x).

Some variations on this theme are created by changing the weight function. For
example, consider the problem: find the polynomial of at most degree 6 which
minimizes ∫

R
|f(x)− P (x)|2e−2x

2

dx.

This is not the correct weight function for Hn. However, we can make it so. The

correct weight function for Hn(x) is e−x
2

. So, if the exponential has 2x2 = (
√

2x)2,
then we should change the variable in Hn as well. We will then have, via the
substitution t =

√
2x,∫

R
Hn(
√

2x)Hm(
√

2x)e−2x
2

dx =

∫
R
Hn(t)Hm(t)e−t

2 dt√
2

= 0, n 6= m.

Moreover, the norm squared is now∫
R
H2
n(t)e−t

2 dt√
2

=
||Hn||2√

2
=

2nn!
√
π√

2
.

Consequently, the function Hn(
√

2x) are an orthogonal basis for L2 on R with

respect to the weight function e−2x
2

. We have computed the norms squared above.
The coefficients are therefore

cn =

∫
R f(x)Hn(

√
2x)e−2x

2

dx

2nn!
√
π/
√

2
.

The polynomial is

P (x) =

6∑
n=0

cnHn(
√

2x).

1.1.2. Weighted L2 on (0,∞) with weight xαe−x. This is rather unlikely to occur,
because the Laguerre polynomials are rather scary, but it is possible. So, best that
you are prepared for this eventuality. In this case, we know that the Laguerre
polynomials are an orthogonal basis for this Hilbert space. So, if we are asked, for
example, find the polynomial of at most degree 7 which minimizes∫ ∞

0

|f(x)− P (x)|2xαe−xdx,

then we should define

cn =

∫∞
0
f(x)Lαn(x)xαe−xdx

||Lαn||2
.

The polynomial we seek is:

P (x) =

7∑
n=0

cnL
α
n(x).

Variations on this theme? That is virtually unimaginable.
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1.1.3. Other functions and considerations. We could ask the same type of question
looking for coefficients of sin(nx) or cos(nx), for say n = 0, 1, 2, 3, .., N . Here, one
uses the fact that those functions also yield orthogonal basis for L2 on bounded
intervals. That is the name of the game: using the first N elements of an orthogonal
basis for the L2 space under consideration.

You may wonder why when it says at most degree N we always find all the
coefficients, c0, c1, . . . cN . That is because this is better then stopping at say cN−1.
Find them all. It could turn out that some of these end up being zero, so the
polynomial has degree lower than N . The only way to know that is to check the
calculation of all the c’s, OR to know that certain coefficients will vanish due to
evenness or oddness of functions, things of that nature. So, don’t toss out any of
the coefficients unless you are sure they vanish. Collect them all, like Pokemon!

1.2. When to use what method? This course could be renamed to “an intro-
duction to geometric analysis,” because in fact, it is. In geometric analysis, we do
analysis in different geometric settings. We need to understand how the geometric
setting and analysis interact. A real world example of this is a sound check at a
heavy metal concert. The particular geometric features of the concert venue and
the crowd will affect the way the band sounds. It is quite subtle and difficult, so
there is not really a “one setting fits all” solution. That’s why a band who has
played hundreds of concerts still needs to do a sound check at every concert.

We are fortunately not dealing with a problem as difficult as solving the wave
equation in a concert venue. Nonetheless, we still have pretty difficult problems.
The way we try to solve them is initially by trying different methods and seeing
what works, and what does not. Then, we try to collect the problems into different
general types, and explain to students which method will have a reasonable chance
of success for which types of problems. However, this is not an exact science. We
will only know for sure if we try and see what happens... Much like trying the
different sound configurations as we set up our metal concert.

To gain some intuition about Fourier transform methods, the following two the-
orems are useful.

Theorem 1 (Heat propagates with infinite speed). Let f ∈ L2(R), and assume f
is also continuous. Assume that f(x) ≥ 0 for all x ∈ R and that for some a ∈ R
we have f(a) > 0. Let u(x, t) be the solution to the homogeneous heat equation
with initial data given by f . Then for every x ∈ R and for every t > 0 we have
u(x, t) > 0.

Proof: We use the heat kernel to obtain the solution to the heat equation is

u(x, t) =

∫
R
f(y)e−(x−y)

2/(4t)(4πt)−1/2dy.

By the continuity of f there exists δ > 0 such that

|y − a| < δ =⇒ f(y) >
f(a)

2
.

Then since f(y) ≥ 0 for all y ∈ R and we also have

e−(x−y)
2/(4t)(4πt)−1/2 > 0 ∀y ∈ R,
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we obtain the estimate

u(x, t) ≥
∫ a+δ

a−δ

f(a)

2
e−(x−y)

2/(4t)(4πt)−1/2dy > 0.

This shows that as long as our initial data has some heat, somewhere, at time
t = 0, then for every time positive, that heat has spread across the entire real line.
The only way this is possible is if the heat travels infinitely fast. Pretty cool.

Theorem 2 (Fourier transform spreads like peanut butter). Let f ∈ L1(R)∩L2(R).

Assume that f has compact support. Then f̂(ξ) has compact support if and only if
f ≡ 0.

Proof: By the Lebesgue dominated convergence theorem from measure theory

(apologies that we cannot cover that here...) the function f̂(ξ) is entire. That
means it is holomorphic (synonym for that is analytic) in the entire complex plane.

Assume that f̂(ξ) restricted to the real axis has compact support. This means that

f̂(ξ) = 0 for all real ξ outside of a bounded interval. By the identity theorem from

complex analysis, this means that the function f̂ ≡ 0. By the Fourier Inversion
Theorem, that in turn means that f ≡ 0.

This shows that the Fourier transform smears the values of a function over the
entire real line. For example, let us compute the Fourier transform of the function
which is equal to one on the interval [0, 1] and zero everywhere else:

f̂(ξ) =

∫ 1

0

e−ixξdx =

{
− e

−iξ

iξ + 1
iξ ξ 6= 0

1 ξ = 0
.

This simplifies to

f̂(ξ) =

{
i
ξ (cos(ξ)− 1) + sin(ξ)

ξ ξ 6= 0

1 ξ = 0
.

When is this function zero? It is zero precisely when

ξ = 2kπ, k ∈ Z \ {0}.

For all other values of ξ the function f̂(ξ) is not zero. This shows that there is no

bounded interval such that f̂ vanishes outside that interval. Indeed even though

f is zero outside the interval [0, 1] the same is simply not true for f̂ . The Fourier
transform has smeared the positive values of f within the interval [0, 1] onto the
real axis. Like peanut butter.

1.2.1. Applications to PDEs. To solve a PDE on the entire real line, a good tech-
nique to try is the Fourier transform. We have two examples of this: the homoge-
neous heat equation and the inhomogeneous heat equation. For the homogeneous
heat equation with initial data u(x, 0) = v(x) the solution is

u(x, t) =

∫
R
v(y)e−(x−y)

2/(4t)(4πt)−1/2dy.
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For the inhomogeneous heat equation with the same initial data

∂tU(x, t)− ∂xxU(x, t) = G(x, t)

the Fourier transform method leads to the solution

U(x, t) =

∫
R
v(y)e−(x−y)

2/(4t)(4πt)−1/2dy+

∫ t

0

∫
R
G(y, s)e−(x−y)

2/(4(t−s))(4π(t−s))−1/2dyds.

Let us now consider the initial value problem for the homogeneous wave equation:
u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R
�u = 0 x ∈ R, t > 0

.

We hit the PDE with the Fourier transform in the x variable:

ûtt(ξ, t)− ûxx(ξ, t) = 0.

We use the fact that the Fourier transform turns the x derivatives into multiplication
by iξ to obtain:

ûtt(ξ, t) + ξ2û(ξ, t) = 0.

We re-arrange to see:

ûtt(ξ, t) = −ξ2û(ξ, t).

Consequently

û(ξ, t) = a(ξ) cos(ξt) + b(ξ) sin(ξt).

To determine the coefficient functions we use the IC. First

û(ξ, 0) = a(ξ) = f̂(ξ).

Second,

ût(ξ, 0) = ξb(ξ) = ĝ(ξ) =⇒ b(ξ) =
ĝ(ξ)

ξ
.

So, we have obtained

û(ξ, t) = f̂(ξ) cos(ξt) + ĝ(ξ)
sin(ξt)

ξ
.

We see from our handy table that Fourier transform of 1
2χt(x) is equal to sin(ξt)

ξ .

Here the function

χt(x) =

{
1 |x| ≤ t
0 |x| > t

.

I am a little worried about the cosine term because the cosine is very much not an
element of L2. However, we can write it using complex exponentials and then use
properties of the Fourier transform.

f̂(ξ) cos(ξt) =
1

2

(
f̂(ξ)eiξt + f̂(ξ)e−iξt

)
.

The handy table of properties of the Fourier transform says that the Fourier trans-

form of f(x± t) is f̂(ξ)e±iξt. So going backwards, our solution

u(x, t) =
1

2
(f(x+ t) + f(x− t)) +

1

2

∫
R
g(y)χt(x− y)dy.
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If we feel like it, we can simplify the second term a bit,

1

2

∫
R
g(y)χt(x− y)dy =

1

2

∫ x+t

x−t
g(y)dy,

so that

u(x, t) =
1

2

(
f(x+ t) + f(x− t) +

∫ x+t

x−t
g(y)dy

)
.

1.3. Legendre polynomials origins story. We consider spherical coordinates
in R3. These coordinates are useful for solving PDEs inside spheres or pieces of
spheres. The spherical coordinates are (r, θ, φ). The first coordinate, r tells us the
distance of the point in R3 to the origin. The second coordinate, θ, tells us the
angle of the point in the x − y plane. The third coordinate, φ, tells the angle of
the point in the z direction. So, if φ = 0, the point is along the positive z-axis. If
φ = π

2 , the point has z-coordinate equal to zero. If φ = π, the point is along the
negative z-axis. The standard coordinate are therefore

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ.

To see how this work, draw some right triangles from different perspectives (will
do in lecture!). By the chain rule, the Laplace operator

∆ = −∂2x − ∂2y − ∂2z = −∂2r −
2

r
∂r −

sinφ∂2φ + cosφ∂φ)

r2 sinφ
− ∂2θ
r2 sin2 φ

.

Consider solving the Dirichlet problem inside a sphere. We would like ∆u = 0.
Since the natural coordinates on a sphere are the spherical coordinates, we write u
as a product of three functions depending on the three spherical coordinates,

R(r)Θ(θ)Φ(φ).

Then, the PDE becomes

∆(RΘΦ) = 0 =⇒ R′′

R
+

2R′

rR
+

Φ′′ sinφ+ Φ′ cosφ

r2 sinφΦ
+

Θ′′

r2 sin2 φΘ
= 0.

Let us use ϕ for the variable, φ, and continue to use Φ for the function. We multiply
by r2 sin2 ϕ:

R′′r2 sin2 ϕ

R
+
r sin2 ϕ2R′

R
+

sinϕ(Φ′′ sinϕ+ Φ′ cosϕ

Φ
+

Θ′′

Θ
= 0.

Since it is the most simple, we move Θ to the other side:

R′′r2 sin2 ϕ

R
+
r sin2 ϕ2R′

R
+

sinϕ(Φ′′ sinϕ+ Φ′ cosϕ

Φ
= −Θ′′

Θ
.

Therefore both sides are constant. We deal with Θ first. Conquer the weakest
opponents first, so that they are not trying to attack from behind whilst one deals
with the more significant threats. The equation for Θ is by far the simplest. For
geometric reasons, Θ must be a 2π periodic function. Therefore

−Θ′′

Θ
= m2, m ∈ Z, Θm(θ) = eimθ.

We therefore can use this in the equation for the right side:

R′′r2 sin2 ϕ

R
+
r sin2 ϕ2R′

R
+

sinϕ(Φ′′ sinϕ+ Φ′ cosϕ

Φ
= m2.
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We divide by sin2 ϕ and move all the ϕ dependent terms to the right side, obtaining

R′′r2 + 2rR′

R
=

m2

sin2 ϕ
−
(

sinϕΦ′′ + cosϕΦ′

sinϕΦ

)
.

Similarly, as both sides depend on different variables, both sides must be constant.
So, we shall call the constant λ. We shall deal with the ϕ business first, doing a
clever transformation. Let

s = cosϕ.

Then we note that cos : [0, π]→ [−1, 1] bijectively. We also have ϕ = arccos s. Let

S(s) := S(cosϕ) = Φ(ϕ).

Then by the chain rule,

Φ′(ϕ) = − sinϕS′(s), Φ′′(ϕ) = − cosϕS′(s) + sin2 ϕS′′(s).

By definition of s, and the fact that sin2 + cos2 = 1,

Φ′′(ϕ) = −sS′(s) + (1− s2)S′′(s).

We therefore see that

Φ′′

Φ
=
−sS′ + (1− s2)S′′

Φ
,

Φ′ cosϕ

Φ sinϕ
=
− sinϕ cosϕS′

sinϕS
= −sS

′

S
.

The equation for the ϕ variable side is then

λ =
m2

1− s2
−
(
−sS′ + (1− s2)S′′

S
− sS′

S

)
= λ.

We multiply by S and obtain

Sm2

1− s2
−
(
−2sS′ + (1− s2)S′′

)
= λS.

Observe that

−2sS′ + (1− s2)S′′ =
[
(1− s2)S′

]′
.

So, the equation is

legmlegm (1.1)
Sm2

1− s2
−
[
(1− s2)S′

]′ − λS = 0.

If m = 0, this equation is

leg0leg0 (1.2) −
[
(1− s2)S′

]′ − λS = 0 ⇐⇒
[
(1− s2)S′

]′
+ λS = 0.

Since m ∈ Z, we would like to find solutions to this equation. The easiest case is the
case when m = 0. It turns out that the Legendre polynomials solve this equation.

Theorem 3. The Legendre polynomials solve[
(1− x2)P ′n(x)

]′
+ n(n+ 1)Pn(x) = 0.

In particular, they are eigenfunctions for the SLP [(1 − x2)′u′]′ + λu = 0 with
eigenvalues λ = n(n+ 1).
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Proof: By the product rule,

[(1− x2)P ′n]′ = −2xP ′n + (1− x2)P ′′n .

We compute the leading coefficient coming from

−2xP ′n − x2P ′′n .
We recall that

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

The highest order term comes from k = n, and it is

1

2nn!
xn

n−1∏
j=0

(2n− j) =
1

2nn!
xn

(2n)!

n!
.

We therefore compute that

−2xP ′n − x2P ′′n = −2n(2n)!xn

2n(n!)2
− n(n− 1)(2n)!xn

2n(n!)2
=

(2n)!xn(−2n− n(n− 1))

2n(n!)2

= − (2n)!xnn(n+ 1)

2n(n!)2
.

If we look back at the highest order term in Pn itself, this was

(2n)!xn

2n(n!)2
.

So we see that the highest order term in

[(1− x2)P ′n]′ is − n(n+ 1)
(2n)!xn

2n(n!)2
.

Consequently

[(1− x2)P ′n]′ + n(n− 1)Pn is a polynomial of degree n− 1 or lower.

We may therefore express this polynomial, call it q as a linear combination of the
Legendre polynomials of degree up to n− 1, that is

q =

n−1∑
j=0

cjPj .

Let us compute the coefficients:

cj =
〈q, Pj〉
||Pj ||2

.

We first compute using integration by parts and the vanishing of the boundary
terms:∫ 1

−1
[(1− x2)P ′n]′Pjdx = −

∫ 1

−1
(1− x2)P ′nP

′
jdx =

∫ 1

−1
[(1− x2)P ′j ]

′Pndx.

Observe that [(1 − x2)P ′j ]
′ is a polynomial of degree j < n. It can therefore be

written as a linear combination of P0, . . . , Pj . Each of these are orthogonal to Pn.
Hence this part vanishes. For the second part, we compute∫ 1

−1
n(n+ 1)Pn(x)Pj(x)dx = 0,
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since j < n. So in fact all together, cj = 0 for all j = 0, . . . , n − 1. We therefore
have computed that

[(1− x2)P ′n]′ + n(n− 1)Pn = 0.

For m = 0, the functions Pn(s) solves the equation (
leg0leg0
1.2), with λn = n(n + 1).

For the general case, I leave it as an exercise to verify that

Pmn (s) := (1− s2)|m|/2
d|m|

ds|m|
Pn(s)

solves (
leg0leg0
1.2). Recalling that s = cosϕ, we have therefore found functions

Θm(θ) = eimθ,

and

Pmn (ϕ) = (1− s2)|m|/2
d|m|

ds|m|
Pn(s) first compute the derivative, then set s = cosϕ.

Finally, we use the value of λ = n(n+ 1) to solve for the function R:

R′′r2 + 2rR′

R
= λn = n(n+ 1).

This becomes

R′′r2 + 2rR′ − λnR = 0.

This is an Euler equation. We look for solutions of the form R(r) = rα. Putting
such a function into the ODE,

α(α− 1)rα + 2αrα − λnrα = 0 ⇐⇒ α2 + α− λn = 0.

We solve the quadratic equation for

α =
−1±

√
1 + 4λn
2

= −1

2
±
√

1 + 4n(n+ 1)

2
.

We do not want R(r) → ∞ when r → 0, so we choose the solution with the plus.
We fiddle a little with this square root part:√

1 + 4n(n+ 1)

2
=

√
1

4
+ n(n+ 1) =

√
n2 + n+

1

4
=
√

(n+ 1/2)2 = n+ 1/2.

Consequently

−1

2
+

√
1 + 4n(n+ 1)

2
= n.

We have therefore found

Rn(r) = rn.

Up to constant factors, we have thus found the functions

um,n(r, θ, ϕ) = rneimθPmn (cosϕ),

which solve

∆um,n = 0

in the sphere. It just so happens that we can smash them all together and solve
the Dirichlet problem in a sphere.
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Theorem 4. The solution to the Dirichlet problem in the unit sphere in R3, that
is

∆u = 0, u(1, θ, ϕ) = f(θ, ϕ)

is
u(r, θ, ϕ) =

∑
n≥0,m∈Z

f̂n,mr
neimθPmn (cosϕ),

with

f̂n,m =

∫ π
0

∫ 2π

0
f(θ, ϕ)e−imθPmn (cosϕ)dθ sinϕdϕ

2π||Pmn ||2
=

∫ 1

−1
∫ 2π

0
f(θ, arccos(s))e−imθPmn (s)dθds

2π||Pmn ||2
.

The functions
Ym,n(θ, ϕ) = eimθPmn (ϕ)

are called spherical harmonics. One can show that

||Pmn ||2 =
(n+m)!2

(n−m)!(2n+ 1)
, n ≥ |m|,

and that
||Pmn ||2 = 0, n < |m|.

We have deserved some comic relief. This shall be provided by the French song,
Foux du Fa Fa, an exerpt from the series, Flight of the Conchords https://www.

youtube.com/watch?v=EuXdhow3uqQ. Parlez-vous le français?

References

[1] Gerald B. Folland, Fourier Analysis and Its Applications, Pure and Applied Undergraduate

Texts Volume 4, (1992).

https://www.youtube.com/watch?v=EuXdhow3uqQ
https://www.youtube.com/watch?v=EuXdhow3uqQ

	1. 2019.03.11
	1.1. Applications to best approximations
	1.2. When to use what method?
	1.3. Legendre polynomials origins story

	References

