
FOURIER ANALYSIS & METHODS
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Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.03.15

Check mic, one two one two. Today we shall continue with examples.

1.1. PDE on bounded interval with time dependent inhomogeneity in
PDE. Consider the problem:

utt − uxx = tf(x), t > 0, x ∈ [0, 1],

subject to the boundary conditions:

u(0, t) = 5, u(1, t) = 10,

and initial conditions:

u(x, 0) = g(x), ut(x, 0) = h(x).

The idea is to divide and conquer. First we deal with the most simple of these
inhomogeneities, which are the boundary conditions. The procedure which (sound-
checked) will work best is:

(1) use a steady-state solution to satisfy the boundary conditions and which
vanishes when we apply the PDE

(2) find a solution to the homogeneous PDE which has homogeneous boundary
conditions and satisfies the prescribed initial conditions minus the steady
state solution found in the first step

(3) find a solution to the inhomogeneous PDE where all the other conditions
(initial + boundary) are set to zero.

So we do this. We see first v(x) which is independent of t and satisfies:

−v′′(x) = 0, v(0) = 5, v(1) = 10.

The function v is therefore linear. The boundary conditions require:

v(x) = 5x+ 5.

Next we seek a solution to the problem

wtt − wxx = 0, w(0, t) = 0 = w(1, t),

with the initial conditions:

w(x, 0) = g(x)− v(x), wt(x, 0) = h(x).
1
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The reason we don’t need to clean up the steady state solution in the t derivative
is because when we apply ∂t to v it vanishes (since it doesn’t depend on t). For
this part, we can use our method of separation of variables! We write

w = XT =⇒ T ′′X −X ′′T = 0 =⇒ T ′′

T
=
X ′′

X
= constant.

We have the nice boundary conditions for X:

X(0) = X(1) = 0.

Exercise 1. Show that the only solutions to

X ′′ = constant times X, X(0) = X(1) = 0

are constant multiples of Xn(x) = sin(nπx). Hint: consider the cases in which the
constant is positive, zero, and negative separately.

So, we have found the Xn and the constant:

Xn(x) = sin(nπx),
X ′′n
Xn

= −n2π2.

This tells us that

T ′′n
Tn

= −n2π2 =⇒ Tn(t) = an cos(nπt) + bn sin(nπt).

Since we are solving a homogeneous PDE, we can use superposition to smash all
these together into a super solution:

w(x, t) =
∑
n≥1

Xn(x) (an cos(nπt) + bn sin(nπt)) .

We use the IC to determine the constants. We wish for

w(x, 0) = g(x)− v(x) =
∑
n≥1

Xn(x)an =⇒ an =

∫ 1

0
(g(x)− v(x))Xn(x)dx∫ 1

0
|Xn(x)|2dx

.

The other initial condition demands that

wt(x, 0) = h(x) =
∑
n≥1

nπbnXn(x) =⇒ bn =

∫ 1

0
h(x)Xn(x)dx

nπ
∫ 1

0
|Xn(x)|2dx

.

Finally we deal with that inhomogeneous PDE, but set every other condition in
the problem equal to zero. Hence we seek a solution to the problem:

φtt − φxx = tf(x), t > 0, x ∈ [0, 1],

subject to the boundary conditions:

u(0, t) = 0, u(1, t) = 0,

and initial conditions:
u(x, 0) = 0, ut(x, 0) = 0.

To solve this we use a series, writing

φ(x, t) =
∑
n≥1

Xn(x)cn(t).

The functions Xn will guarantee that the nice homogeneous boundary conditions
are satisfied. On the other side, we expand tf(x) in a Fourier series with respect to
the basis {Xn}. Here we note that the regular SLP theory guarantees that these
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are indeed a basis (we have already implicitly used this fact before when we solved
for the coefficients in the function w above).

Let

f̂n :=

∫ 1

0
f(x)Xn(x)dx∫ 1

0
|Xn(x)|2dx

.

Then we are solving the PDE:∑
n≥1

c′′n(t)Xn(x)− cn(t)X ′′n(x) =
∑
n≥1

tf̂nXn(x).

Note that

X ′′n(x) = −n2π2Xn(x).

So our PDE is: ∑
n≥1

Xn(x)
(
c′′n(t) + n2π2cn(t)

)
=
∑
n≥1

tf̂nXn(x).

We equate the coefficients of Xn(x) on both sides:

c′′n(t) + n2π2cn(t) = tf̂n.

This is a linear second order ODE. A particular solution is a linear function, namely

tf̂n
n2π2

.

A solution to the homogeneous ODE is a linear combination of cos(nπt) and
sin(nπt). Hence a general solution is of the form

cn(t) = αn cos(nπt) + βn sin(nπt) +
tf̂n
n2π2

.

To satisfy the zero initial conditions we wish that

cn(0) = 0 =⇒ αn = 0.

We also wish for

c′n(0) = 0 =⇒ nπβn +
f̂n
n2π2

= 0 =⇒ βn = − f̂n
n3π3

.

Hence

cn(t) = − f̂n
n3π3

sin(nπt) +
tf̂n
n2π2

.

The full solution is therefore given by

u(x, t) = φ(x, t) + w(x, t) + v(x).

1.2. PDE on bounded interval with time-dependent BC. Next we wish to
solve the problem:

ut − uxx = 0, u(0, t) = t+ 1, u(1, t) = 0, u(x, 0) = 1− x.

Well that’s just dandy, the boundary condition depends on t.

Exercise 2. Try to solve this equation using the Laplace transform in the t variable.
(Hint: It’s not going to be pretty nor is it going to work...) Still, it is good experience
to do this in order to recognize the hallmarks of when one is going down the wrong
path.
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Instead, let us seek to solve the boundary conditions by looking for a function
of the form:

w(x, t) = f(t)g(x),

which satisfies
w(0, t) = 1 + t, w(1, t) = 0.

For the first condition, assuming w(x, t) = f(t)g(x), we get that we need:

f(t)g(0) = 1 + t =⇒ g(0) is constant, and f(t) is equal to (1 + t)/g(0).

So, for the sake of simplicity, let us assume that

g(0) = 1 =⇒ f(t) = 1 + t.

The second condition requires

w(1, t) = g(1)f(t) = g(1)(1 + t) = 0 =⇒ g(1) = 0.

So, we have completely specified f(t), and we have determined that we would like
g(0) = 1 and g(1) = 0. We have not yet specified g. To see what g should be, let
us turn to the PDE.

Ideally we would like the PDE to be zero, but let’s see what happens when we
apply the PDE to such a function:

f ′(t)g(x)− g′′(x)f(t) = g(x)− g′′(x)(1 + t).

The only way to get this to vanish, since g does not depend on t, is to demand
that both g(x) and g′′(x) vanish. This would ruin the condition that g(0) = 1. So
we don’t want that. The next best thing we can do is make the PDE as simple as
possible. So, let’s request that g′′(x) = 0. Then g is a linear function. Since we
wish for g(0) = 1 and g(1) = 0, the function which does this is

g(x) = 1− x.
Hence

w(x, t) = (1− x)(1 + t)

solves:
w(0, t) = 1 + t, w(1, t) = 0, wt − wxx = 1− x.

Moreover, we have
w(x, 0) = 1− x.

So, now we have something we can deal with using a steady state solution. In
particular we seek a function v which only depends on x and which satisfies:

−v′′(x) = −(1− x), v(0) = 0 = v(1).

Then when we add them together, we get that w + v satisfies:

w(0, t)+v(0) = 1+t, w(1, t)+v(1) = 0, wt−wxx−vxx = 0, w(x, 0)+v(x) = 1−x+v(x).

So, we have the ODE for v, which is

v′′(x) = x− 1, v(0) = 0 = v(1) =⇒ v(x) =
x3

6
− x2

2
+

(
1

2
− 1

6

)
x.

The final piece in our puzzle shall be solved by seeking a solution to

φt − φxx = 0, φ(0, t) = φ(1, t) = 0, φ(x, 0) = −v(x).

Then our solution will be

u(x, t) = w(x, t) + v(x) + φ(x, t).
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When we add everything up we get:

u(0, t) = w(0, t) + v(0) + φ(0, t) = 1 + t,

u(1, t) = w(1, t) + v(1) + φ(1, t) = 0,

u(x, 0) = w(x, 0) + v(x) + φ(x, 0) = 1− x+ v(x)− v(x) = 1− x,
ut − uxx = wt − wxx − v′′(x) = 1− x− (1− x) = 0.

So, let us find φ. Due to the nice boundary conditions, we can separate variables
and recycle our previous calculations. To see how this works, put φ = TX into the
PDE. It becomes

T ′X −X ′′T = 0 =⇒ T ′

T
=
X ′′

X
=⇒ both sides are constant.

Starting with the X side (why do we do this?) we are solving

X ′′ = constant times X, X(0) = X(1) = 0.

We have solved this very problem. We found that the only solutions are (up to
constant factor)

Xn(x) = sin(nπx), X ′′n = −n2π2Xn.

Consequently
T ′n
Tn

= −n2π2 =⇒ Tn(t) = ane
−n2π2t.

We use superposition since the PDE and everything (except the initial condition)
is homogeneous to write

φ(x, t) =
∑
n≥1

Xn(x)ane
−n2π2t.

The initial condition demands that

φ(x, 0) =
∑
n≥1

Xn(x)an = −v(x) =⇒ an =

∫ 1

0
−v(x)Xn(x)dx∫ 1

0
|Xn(x)|2dx

.

1.3. Computing mysterious sums. Such an exercise is of the form: compute∑
n≥0

1

1 + n2
.

To make this feasible, we shall usually be given a hint. Here the hint would be to
determine the Fourier series of ex. So let us do this. The coefficients are

cn =
1

2π

∫ π

−π
exe−inxdx =

1

2π

ex(1−in)

1− in

∣∣∣∣π
−π

=
1

2π(1− in)

(
(−1)neπ − (−1)ne−π

)
=

(−1)n

π(1− in)
sinh(π).

The Fourier series is therefore:∑
n∈Z

cne
inx =

∑
n∈Z

(−1)n sinh(π)

π(1− in)
einx.

There are two methods we can use. One method is to pick a clever choice of x and
evaluate the series there.
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1.3.1. Method using pointwise convergence of Fourier series.

Exercise 3. Try using x = 0. See that it is not going to work.

The reason that x = 0 will not work is due to that pesky alternating factor,
(−1)n. We won’t be able to get rid of it. The sum we wish to compute does not
have it. So, we simply won’t be able to compute using x = 0. From whence did
that factor of (−1)n come? This came from evaluating e±inπ. So, if we put in
x = ±π then the series:∑

n∈Z

(−1)n sinh(π)

π(1− in)
e±inπ =

∑
n∈Z

(−1)n sinh(π)

π(1− in)
(−1)n

=
∑
n∈Z

sinh(π)

π(1− in)
=

sinh(π)

π

∑
n∈Z

1

1− in
.

That is because (−1)n(−1)n = 1 for all n. This is still not quite what we need.
However we are closer. Notice that all integers, save zero, come in pairs. 1 and −1.
2 and −2. And so forth. Let us split up our series into the loner term and the rest
of the pairs:

sinh(π)

π

1 +
∑
n≥1

1

1− in
+

1

1 + in

 .

Something fantastic happens:

1

1− in
+

1

1 + in
=

1 + in+ 1− in
1 + n2

=
2

1 + n2
.

So our series is:

sinh(π)

π

1 +
∑
n≥1

2

1 + n2

 .

To what does this series converge? The theorem says it converges to the average of
the left and right limits of a certain function. Which function? It is the function
which is equal to ex in (−π, π) and is defined on R to be 2π periodic, at the point
π. Well, when we extend the function to be 2π periodic, it has jumps at the points
π (and −π). Let’s take the point π. Approaching it from the left, the function will
tend to eπ. Approach the point π from the right, we are outside the interval where
the function coincides with ex. By 2π periodicity, for x > π, but close to π, the
function is equal to f(x − 2π) = ex−2π. As x → π this goes to e−π. Hence the
Fourier series converges to

eπ + e−π

2
= cosh(π).

We therefore have that our series sums to cosh(π). Hence:

sinh(π)

π

1 +
∑
n≥1

2

1 + n2

 = cosh(π).

We re-arrange, obtaining

π cosh(π)

sinh(π)
= 1 + 2

∑
n≥1

1

1 + n2
=⇒ π cosh(π)

2 sinh(π)
− 1

2
=
∑
n≥1

1

1 + n2
.
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This is not quite what we want, because the sum starts at one rather than zero.
However, note that ∑

n≥0

1

1 + n2
= 1 +

∑
n≥1

1

1 + n2
.

So, we can easily fix this by adding one to both sides of our equality:

π cosh(π)

2 sinh(π)
− 1

2
+ 1 = 1 +

∑
n≥1

1

1 + n2
=
∑
n≥0

1

1 + n2
.

1.3.2. Method using Parseval’s equality. Parseval’s equality may also be used. It
says that ∑

n∈Z
|cn|2||einx||2 =

∫ π

−π
|ex|2dx.

So, we just compute both sides:

|cn|2 =
sinh2(π)

π2(1 + n2)
, ||einx||2 = 2π,

∫ π

−π
|ex|2dx =

e2x

2

∣∣∣∣π
−π

so ∑
n∈Z

sinh2(π)

π2(1 + n2)
2π =

e2x

2

∣∣∣∣π
−π

= sinh(2π).

Let us simplify and re-arrange a bit:

2 sinh2(π)

π

∑
n∈Z

1

(1 + n2)
= sinh(2π) = 2 sinh(π) cosh(π).

Above we used the double angle formula for the hyperbolic sine. This allows us to
cancel the factors of 2 sinh(π) from both sides, obtaining

sinh(π)

π

∑
n∈Z

1

(1 + n2)
= cosh(π).

Re-arranging we obtain:

π cosh(π)

sinh(π)
= 1 + 2

∑
n≥1

1

1 + n2
.

Consequently,

π cosh(π)

2 sinh(π)
− 1

2
=
∑
n≥1

1

1 + n2

so adding one to both sides again,

π cosh(π)

2 sinh(π)
− 1

2
+ 1 = 1 +

∑
n≥1

1

1 + n2
=
∑
n≥0

1

1 + n2
.
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1.4. Per request a certain SLP. This was skipped in lecture because it is not
super relevant for the most pressing matter at hand... The problem was to solve:

u′′ + λu = 0, u′(0) = u(0), u(1) = 0.

Moreover, we should determine how many lambdas are in the interval [−16, 16].
We check for the different cases of λ first. Let us try λ = 0. This would give us
a linear function. The condition that u(1) = 0 means the function is of the form
ax−a, for some constant a. The condition u′(0) = u(0) then requires a = −a. The
only constant which satisfies this is a = 0. That means that u = 0 but the zero
function is not an eigenfunction.

So let us proceed to checking positive lambdas. In this case we have

u(x) = a cos(
√
λx) + b sin(

√
λx).

The first boundary condition requires:

u′(0) = b
√
λ = u(0) = a =⇒ u(x) = b

(√
λ cos(

√
λx) + sin(

√
λx)
)
.

The next boundary condition requires:

u(1) = b
(√

λ cos(
√
λ) + sin(

√
λ)
)

= 0.

We do not wish for b = 0 because that would tear down our whole solution and
make it all vanish. So we wish to find λ > 0 such that

√
λ = − tan(

√
λ).

Equivalently we look for solutions to the equation

−µ = tan(µ), µ > 0, µ =
√
λ.

If we draw a picture, we see that the graphs of the functions −µ and tan(µ) will
intersect at zero, then they will intersect precisely once in the interval (π/2, 3π/2),
and again once in each interval of the form ((2n − 1)π/2, (2n + 1)π/2). Keep in

mind that µ =
√
λ.

Now let us check the case λ < 0. This will look almost the exact same, with just
hyperbolic trig functions instead.

Exercise 4. Show that the solutions in this case are of the form

B
(√
|λ| cosh(

√
|λ|x) + sinh(

√
|λ|x)

)
.

Show that the boundary condition at one requires that there exists a solution to

tanh(µ) = −µ, µ =
√
|λ| > 0.

Show that for all µ > 0 the function

tanh(µ) > 0.

Together with your teamwork computing the preceding exercise, we see that the
case λ < 0 yields no solutions.

So we have found them all.
The question as to how many solutions are in the interval [−16, 16] can be an-

swered by considering a picture. First, there are no solutions in [−16, 0]. The first
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positive solution occurs in the interval µ =
√
λ ∈ (π/2, 3π/2). The next positive so-

lution occurs in the interval (3π/2, 5π/2). Note that this corresponds to the square
root of lambda, and that

3π

2
>

9

2
> 4.

So, if
√
λ ∈ (3π/2, 5π/2) then λ > 16. However, the solution in the interval

(π/2, 3π/2) occurs in the part where the tangent is negative, and that is between

(π/2, π). When the square root of lambda is in here, then
√
λ < π =⇒ λ < π2 <

16. So there is precisely one solution λ in the interval [−16, 16].
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