
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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Proposition 1. On the interval [−π, π], the functions

φn(x) =
einx√

2π

are an orthonormal set with respect to the scalar product,

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

Proof: First, we show that these guys are orthogonal. To do that, we just take
m 6= n and compute ∫ π

−π
einxeimxdx.

Of course, the 2π factors don’t matter. They’re not going to make the inner product
vanish! We recall that

eimx = e−imx.

Exercise 1. Why is this true? Explain in your own words or prove it algebraically.

So, we compute,∫ π

−π
eix(n−m)dx = 2π m=n,

∫ π

−π
eix(n−m)dx =

eix(n−m)

n−m

∣∣∣∣π
x=−π

n 6= m.

Now, I claim that the function eix(n−m) is 2π-periodic. We compute

ei(x+2π)(n−m) = eix(n−m)e2πi(n−m).

Since n−m ∈ Z, e2πi(n−m) = 1. Consequently,

eiπ(n−m)

n−m
= e−iπ(n−m)n−m,

so
eix(n−m)

n−m

∣∣∣∣π
x=−π

= 0, n 6= m.

Consequently, we have proven that

〈φn, φm〉 = 0, n 6= m.
1
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We also computed

〈φn, φn〉 =
1

2π

∫ π

−π
einxe−inxdx = 1.

This is precisely what it means to be orthonormal.

So, now we know that {φn(x)}n∈Z are an orthonormal set. We want them to
actually be an orthonormal basis, so that we can write for any u0(x),

u0(x) =
∑
n∈Z

cnφn(x), φn(x) =
einx√

2π
.

In analogue to linear algebra, we should expect the coefficients to be the scalar
product of our function u0(x) with the basis functions (vectors), φn(x). More
generally, for a 2π periodic function v(x), we hope to be able to write it as

v(x) =
∑
n∈Z

cnφn(x), cn =

∫ π

−π
v(x)φn(x)dx =

1√
2π

∫ π

−π
v(x)e−inxdx,

so that

v(x) =
∑
n∈Z

(
1

2π

∫ π

−π
f(ξ)e−inξdξ

)
einx.

This motivates:

Definition 2. Assume f is periodic on [−π, π] with period 2π. Define

cn :=
1

2π
〈f, einx〉 =

1

2π

∫ π

−π
f(x)e−inxdx.

These are the Fourier coefficients of f . The Fourier series of f is∑
n∈Z

cne
inx.

So, the real question is, when does the Fourier series actually converge to equal
f(x)?

Exercise 2. If f is as in the definition and is also even, prove that bn = 0 for all
n. If f is as in the definition and is also odd, prove that an = 0 for all n. (Hint:
If you forgot what an and bn are, look at the previous exercise!).

1.0.1. Examples. Consider the function f(x) = |x|. It satisfies f(−π) = f(π). We
can just make it 2π-periodic by extending it to R to satisfy f(x + 2π) = f(x) for
all x. The graph then looks like a zig-zag or sawtooth. We compute the Fourier
coefficients:

cn =
1

2π

∫ π

−π
|x|e−inxdx, c0 =

1

2π

∫ π

−π
|x|dx =

2π2

2(2π)
=
π

2
.

Since

|x| =

{
−x x < 0

x x ≥ 0

we compute: ∫ 0

−π
−xe−inxdx,

∫ π

0

xe−inxdx.
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We do substitution in the first integral to change it:∫ 0

−π
−xe−inxdx =

∫ π

0

xeinxdx =
xeinx

in

∣∣∣∣π
0

−
∫ π

0

einx

in
dx

=
πeinπ

in
− einπ

(in)2
+

1

(in)2
.

Similarly we also use integration by parts to compute∫ π

0

xe−inxdx =
xe−inx

−in

∣∣∣∣π
0

−
∫ π

0

e−inx

(−in)
dx

=
πe−inπ

−in
− e−inπ

(−in)2
+

1

(−in)2
.

Adding them up and using the 2π periodicity, we get

2einπ

n2
− 2

n2
=

2(−1)n − 2

n2
.

OBS! We need to divide by 2π to get

cn =
(−1)n − 1

πn2
, n ∈ Z \ {0}.

The Fourier series is therefore

π

2
+

∑
n∈Z, odd

einx
(
− 2

πn2

)
.

Exercise 3. Use these calculations to compute the Fourier cosine series, that is
the series ∑

n≥0

an cos(nx).

Exercise 4. Next, consider the function f(x) = x initially on the interval ]−π, π[.
We extend it in a similar way to be 2π periodic, but it will then be discontinuous
with jump discontinuities at odd-integer multiples of π. Compute in the same way
the Fourier coefficients of this function, that is, compute

cn =
1

2π

∫ π

−π
xe−inxdx n ∈ Z.

Use that calculation to show that an = 0 for all n, and then compute the Fourier
sine series, ∑

n≥1

bn sin(nx).

Exercise 5. Look at these two examples. Do the series converge? Do they converge
absolutely? Compare and contrast them!
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1.1. Introducing Hilbert spaces. A Hilbert space is a complete normed vector
space whose norm is induced by a scalar product.

Definition 3. A Hilbert space, H, is a vector space. This means that H is a set
which contains elements. If f and g are elements of H, then for any a, b ∈ C we
have

af + bg ∈ H.
This is what it means to be a vector space. Moreover, Hilbert spaces have two
other nice features: a scalar product and a norm. Let us write the scalar product
as

〈f, g〉 : H ×H → C.
To be a scalar product it must satisfy:

〈af, g〉 = a〈f, g〉 ∀a ∈ C,

〈h+ f, g〉 = 〈h, g〉+ 〈f, g〉,
and

〈f, g〉 = 〈g, f〉.
The norm is defined through the scalar product via:

||f || :=
√
〈f, f〉.

Finally, what it means to be complete is that if a sequence {fn} ∈ H is Cauchy,
which means that for any ε > 0 there exists N ∈ N such that

||fn − fm|| < ε ∀n,m ≥ N,
then there exists f ∈ H such that

lim
n→∞

fn = f,

by which we mean that

lim
n→∞

||fn − f || = 0.

Exercise 6. As an example, we can take H = Cn. For z = (z1, z2, . . . , zn) ∈ Cn
and w = (w1, . . . , wn) ∈ Cn the scalar product

〈z, w〉 :=

n∑
j=1

zjwj .

Show that the scalar product defined in this way satisfies all the demands made upon
it in the definition above. Why is H = Cn complete?

Now, let us fix a finite (not infinite) interval [a, b]. We shall be particularly
interested in a Hilbert space known as L2([a, b]) or once we have specified a and b,
simply L2.

Definition 4 (The real one). L2([a, b]) is the set of equivalence of classes of func-
tions where f and g are equivalent if

f(x) = g(x) for almost every x ∈ [a, b] with respect to the one dimensional Lebesgue measure.

Moreover, for any f belonging to such an equivalence class, we require

l2finitel2finite (1.1)

∫ b

a

|f(x)|2dx <∞.
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If f and g are each members of equivalence classes satisfying (
l2finitel2finite
1.1) the scalar product

of f and g is then defined to be

l2spl2sp (1.2) 〈f, g〉 =

∫ b

a

f(x)g(x)dx.

One can prove that with this definition we obtain a Hilbert space.

Theorem 5. The space L2([a, b]) for any bounded interval [a, b] defined as above,
with the scalar product defined as above, is a Hilbert space.

This theorem is beyond the scope of this course. Moreover, the “real definition”
of L2 is also a bit much. This is why I offer you:

Definition 6 (The workable one). L2([a, b]) is the set of functions which satisfy
(
l2finitel2finite
1.1), and is equipped with the scalar product defined in (

l2spl2sp
1.2).

Although we don’t necessarily need it right now, you may be happy to know that
the L2 scalar product satisfies a Cauchy-Schwarz inequality,

|〈f, g〉| ≤ ||f ||||g||.

Exercise 7. Use the Cauchy-Schwarz inequality to prove that for any f ∈ L2 on
the interval [−π, π], the Fourier coefficients,

cn =
1

2π

∫ π

−π
f(x)e−inxdx,

satisfy

|cn| ≤
||f ||√

2π
.
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