FOURIER ANALYSIS & METHODS

JULIE ROWLETT

ABSTRACT. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute
for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing
this? Good question...

1. 2019.02.4

1.1. Why bother with Hilbert spaces? Hilbert space theory is important be-
cause we can use it to rigorously justify using Fourier series to solve PDEs. Here is
the main idea:

(1)
(2)

Start with a PDE where the x variable is in a finite (bounded) interval.
Separate variables by writing u, (the unsub) as a product like u(z,t) =
X (z)T'(t). Plug it into the PDE.

Solve for X using the boundary conditions. This will probably give lots of
Xs which can be indexed by N.

Each X, has a partner 7;,. Solve for these. Probably, you've got some
unknown constants.

Is the PDE homogeneous? If so, X177 + X515 + ... also solves the PDE so
you can smash them together into a big party series. If *not* then you may
need to do something else (i.e. steady state solution). In the homogeneous
case, you will then use the IC and the collection { X, } to find the coefficients
in T},, and end up with a solution of the form

> Xn(2)To(t).
neN

It’s precisely in this last step where the Hilbert space theory is being used
to say that you can use the X, obtain the IC, because the Hilbert space
theory tells us when certain functions are basis functions for £2!

1.2. Cauchy-Schwarz Inequality, Triangle Inequality, and Pythagorean
Theorem.

Proposition 1. For any Hilbert space, H, for any u and v in H,

[(w, 0)[ < [Jf[[[o]]-

Proof: Assume that at least one of the two is non-zero. Let’s assume v # 0,
because otherwise we can just swap their names. We begin by considering the
length of the vector u plus v scaled by a factor of t. If ¢ — 0, the length tends to
||u|[?. What happens for other values of t? We compute it:

||u+tv||2 = |\u||2 + 2tR(u, v) +t2||v|\2, teR.
1
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This is a real valued function of ¢. It’s a quadratic function of ¢ in fact. The
derivative is

2t|[v|[? + 2R (u, v).
It’s an upwards shaped quadratic function, so its unique minimum is when
R(u,v)
el

If we then check out what happens at this value of ¢,

t =

R(u, v) o ||v][? 2 R(u,v)?
|u+ to]|* = [Jul|* — 2 R(u, v) + R{u, v) = |[ul|* = ——%—-
[[v][? o] |* [[v]|?
We know that
0 < ||u+ to||?
so we get
§R 2
0 < Jfulf - B0 o <l Pl 2 — R )2,
[[v]|?

This gives us
Rlu, 0)? < ful o] |*.

Well, this is annoying because of that silly . I wonder how we could make it turn
into |(u,v)|? Also, we don’t want to screw up the ||u||?||v||* part. Well, we know
how the scalar product interacts with complex numbers, for A € C,

(Au,v) = M u,v).
So, if for example
(u,v) = re?? r = |(u,v)| and 6 € R.
We can modify u, without changing ||u/|,
—if

e ul] = |ul.

Moreover
(e7u,v) = e (u,v) = e re = |(u,v)].
So, if we repeat everything above replacing u with e=*u we get
Rie™Pu,0)? < le™ul?|[v]|* = [|ul*[o]?,
and by the above calculation
(e u,v0) = |(u,0)| € R = R(e™*u,v)* = [(u,v)|".

So, we have
2
[{u, )7 < ful Plv] .

Taking the square root of both sides completes the proof of the Cauchy-Schwarz

inequality.

We also have a triangle inequality.
Proposition 2. For any u and v in a Hilbert space H,

[lu +ol| < [Jul] + [[v]].
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Proof: We just use the previous two results:
[l +l* = [Jul* + 2R(u, v) + [[v]|* < [Jul]* + 2l |ull]]o]| +[[o]|* = (||ul] + [[o]])*

so rooting we get the triangle inequality.

0c

We have the Pythagorean theorem.
Proposition 3. If u and v are orthogonal, then
[lu+ol* = [ul|* + [Jo] %

Moreover, if {u,}\_, are orthogonal, then

N N
n=1 n=1

Proof: The first statement follows from
[+ []* = [|ull® + 2R(u, v) + [Jo]|* = [Ju||* +||v]?,

if v and v are orthogonal, because in that case their scalar product is zero. More-
over, for any collection of orthogonal vectors {u, ..., u,} we proceed by induction.
Assume that

n—1
llur + ...+ up_a||* = Z [|ur|]?.
k=1

Then, if u,, is orthogonal to all of wq,...,u,_1 we also have
(U, + oo FUp—1) = (Up,u1) + ...+ (Up,Up—1) =0+ ... +0.

Hence u,, is also orthogonal to the sum,
n—1
S
k=1
By the Pythagorean theorem,

n—1 n—1
et + Y wkl® = [unl* + (1Y wl*.
k=1 k=1

By the induction assumption

n—1 n
= {JunlI* + D sl > =D [l .
k=1 k=1
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1.3. Continuity of the scalar product.

Proposition 4. Using only the assumptions that the scalar product satisfies:

(u,v) = (v, u)
(au,v) = alu,v)
(u 4+ v, w) = (u,w) + (v,w)
(uyuy >0, (u,u) =0 < u=0,

then the scalar product is a continuous function from H x H — C.

Proof: It suffices to estimate
[{u, 0) = (u', )]
I would like to somehow get
u—u and v —v'.
So, well, just throw them in the first and last
(u— ', v) = (u,v) — (u',v).
That shows that
(u—u',v) + (U, v) = (u,v).
So, we see that
(u,v) — (U, 0"y = (u —u',v) + (W, v) — (W, v)
We can smash the last two terms together because —1 € R so
—( ) =W, =) = (W,v) — @) = (W v =),
Hence,
[(u,v) = (u', )] = [{u — v’ ,v) + (u, v = V)]
By the triangle inequality
(= v, 0) + (W', 0 = )| < [{u— v, v)] + (w0 = )]
By the Cauchy-Schwarz inequality
(=, v)| + [(u, v = o) < [Ju =[] [o]] + [[v/][[]o =]

We therefore see that for any fixed pair (u,v) € H x H, given € > 0, we can define

. € £
0= mm{2<||v| 1) 2] +1>’1}'

Then we estimate

lu—v'|l <6 = [l/|| < ull + 0 < [|ul| + 1,

e||v] £
[lu —o[|[Jv]] < S
2(|fo[l+1) 2
and
T 2(|fuf[ +1) T2

so we obtain
[(u,v) — (u,0")] <e.
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Remark 1. This fact is useful because it allows us to bring limits inside the scalar
product. You will see that we do this many times!

1.4. Bessel’s inequality and the three equivalent conditions to be an
ONB. We prove a very useful inequality.

Theorem 5 (Bessel’s Inequality for general Hilbert spaces). Let {¢p}nen be an
orthonormal set in a Hilbert space H. Then if f € H,

2
SO en)l* <P
neN

Moreover, the element

D (fi6n)bn € H.

neN
Proof: By the Pythagorean theorem, for each N € N,
N N
n=1 n=1

Above, we have used the convenient notation

fn = <fa¢n>~

In words, this is called the Fourier coefficient of f with respect to the orthonormal
set (ONS) {¢n}. We compute that the square of the distance between f and its
partial Fourier series

N N N
0< 1 =5 Fudall® = 1712 = 2R(E S Futn) + 1S a2
1 1

Let’s look at the middle bit:

N ) N — N n )
S Fubn) =S Falfibn) = Fudu = Y1l
1 1 1 1

Hence,

N ) N R N )
0< ||f”2 _2Z|fn‘2+z |fn|2 = ||f‘|2 - Z|fn|2
1 n=1 1

SO re-arranging
N
SO <P
1

Letting N — oo completes the proof of Bessel’s Inequality.
For the last part of the theorem, we will show that the sequence

N
{Fnin>1, Fni= Z fn®n
n=1
is a Cauchy sequence in H. Since Hilbert spaces are complete, it follows that this
Cauchy sequence converges to a limit ' € H. So, let ¢ > 0 be given. Then, by

Bessel’s inequality, since
o0
D 1fal? < o0,
1
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there exists N € N such that

o0

DIl <€
N
This is because the tail of any convergent series can be made as small as we like.

So, now if we have N7 > Ny > N, we estimate

Ny N,
||FN1 _FN2H2 = || Z fn¢n||2 = Z |fn|2

No+1 No+1

<Y RPD hP <e
No+1 N
Consequently we have that for all Ny > Ny > N,

HFN1 _FN2|| <eé.

This is the definition of being a Cauchy sequence.

0c

Now, it turns out that the version of Bessel’s inequality for the Fourier coefficients
will actually be an equality, because {e"*}, ¢z is a basis for £2 on [—m,7]. In
general, Bessel’s inequality on a Hilbert space becomes an equality if and only if
the orthonormal set {¢,} is a basis.

1.5. Proof of the 3 equivalent conditions to be an ONB in a Hilbert space.
This seems to be a fun one for some reason. It is rather nicely straightforward.
Perhaps what makes it so nice is the pleasant setting of a Hilbert space, or translated
directly from German, a Hilbert room. Hilbert rooms are cozy.

Theorem 6. Let {¢p, tnen be orthonormal in a Hilbert space, H. TFAE (the fol-
lowing are equivalent):

(1) feHand (f,¢n)=0neN = f=0.
(2) feH = [=> (fdn)bn.

neN
@) AP =D 1S dn)l”

neN
The last of these is known as Parseval’s equation.

Proof: We shall proceed in order prove (1) = (2), then (2) = (3), and
finally (3) == (1). Just stay calm and carry on. So we begin by assuming (1)
holds, and then we shall show that (2) must hold as well. First, we note that by
Bessel’s inequality, the series

ST o2 < [P < co.
neN

Hence, if we know anything about convergent series, then we sure better know that
the tail of the series tends to zero. The tail of the series is

Z I(f, dn)]*> = 0 as N — oo.

n>N
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Now, let us define some elements in our Hilbert space, which we shall show comprise

a Cauchy sequence. Let
N

gn = > _(f+dn)Pn-

n=1
For M > N, we have, using the Pythagorean Theorem and the orthonormality of
the {¢n},

M M 0o
lgs—gnIE =11 S (FowoalP= 3 1A6ES S {fidu? > 0as N > ox.
n=N+1 n=N+1 n=N+1

Hence, by definition of Cauchy sequence (which one really should know at this
point!), {gn } n>1 is a Cauchy sequence in our Hilbert space. By definition of Hilbert
space, every Hilbert space is complete. Thus every Cauchy sequence converges to
a unique limit. Let us now call the limit of our Cauchy sequence, which is by
definition,

N
lim gy = lim Y (f.6n)dn =D (f.dn)dn =g.
n=1

N —o00
neN
We will now show that f — g satisfies

(f —9,0n) =0Vn e N.
Then, because we are assuming (1) holds, this implies that f — g =0, ergo f = g.
So, we compute this inner product,
<f -9, ¢n> = <f7 ¢n> - <g7 ¢n>
We insert the definition of g as the series,
(9:0n) = (D (s bm)bms bn) = D (f26m) (b, bn) = (f, bn)-
m>1 m>1

Above, we have used in the second equality the linearity of the inner product and the
continuity of the inner product. In the third equality, we have used that (¢, dn)
is 0 if m # n, and is 1 if m = n. Hence, only the term with m = n survives in the
sum. Thus,

<f_ga¢n> = <f7¢n>_<gv¢n> = <f7¢n>_<fa¢n> =0, Vnel

By (1), this shows that f —g=0 = f=g.
Next, we shall assume that (2) holds, and we shall use this to demonstrate (3).
Well, note that

f=lim gy = ||f—gn|?—0, asN — .
N—o00
Then, by the triangle inequality,

N
AP = 11 —gn+an|® < [1F—gn|P+Hgnl1? = 1F=gn P+ D 1F: 0)> < 1f—gn P+ D 1F: dn)l*.

n=1 neN
On the other hand, by Bessel’s Inequality,

ST e < P

neN
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So, we have a little sandwich, en smérgas, if you will, with || f||? right in the middle
of our sandwich,

DK on) P < AP < I1f =gl + D [F om)l®
neN neN
Letting N — oo on the right side, the term ||f — gn]|| — 0, and so we indeed have
Do) < AP < D KF én)l
neN neN

This of course means that all three terms are equal, because the terms all the way
on the left and right side are the same!

Finally, we assume (3) holds and use it to show that (1) must also hold. This
is pleasantly straightforward. We assume that for some f in our Hilbert space,
(f, dn) = 0 for all n. Using (3), we compute

AP =D o) =D 0=0.

neN neN

The only element in a Hilbert space with norm equal to zero is the 0 element. Thus

F=0.
0c

1.6. The Hilbert space £L?(—m, 7). It was a theorem that with the scalar product,
= [ s@aada
the set of functions defined on (—, ) such that
| @par <o
is a Hilbert spaceﬂ We also proved that the functions

n
e

On(z) == VT are an ONS.

It turns out that they are in fact a basis. Note that they are not the only basis,
because the functions

{ sln(na:) cos(nx)
/ \/> ) \/>
and in fact they are an ONB. We will also see a bit later that we can build an ONB
using polynomials.

}n>1 are also an ONS,

IThis is the workable definition, not the real one. We are sweeping measurability and equiva-
lence up to sets of measure zero under the rug here.
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1.7. How to use Parseval’s equation to compute sums. We wish to compute

the sum:
>
= (2n —1)6°

Often one would be given a hint, for example here, to use the Fourier series for
f(x) =x(m —|z|) on (—=, ), extended to be 27 periodic. The Fourier series of this
function is

8 1 :
- T; =17 sin((2n — 1)x).

Let’s express this in terms of the functions ¢, (z) as above. So, we unravel the sine

as

ei(Zn—l)x —i(2n—1)x

—e
in((2n — z) =
sin((2n — 1)x) %
Hence the Fourier series is
8 ei(Qn—l)x e—i(2n—1)a:
T D (2n —1)3(20)  (2n—1)3(20)

n>1
‘We therefore see that the coefficients
cm =0 VYm e 2Z,

because there are no terms with ¢™* for m even. We also see that the coefficients
c = ; neN, ¢ = —#
@n=1) ™ 7(2i)(2n — 1)3 r e T T2 (2n — 1)

Hence

n € N.

4

ezl = le-non | = T =5

Parseval’s equation in this case says that:

[ rpe=2 3 (s ) Cn)

i(2n—1)z

The reason for the 27 on the right is because the functions e have £2 norm

squared equal to 27. So, to compute the sum we simply re-arrange:

T [T 1
674 . |f(x)|2d‘]j = Z (2n _ 1)6

n>1

Finally, we compute the integral:

/ |f(2)Pdx = / 2?(m? = 27|z| + |z|*)dx = 2/0 2?2237 + 2t

—T —T

5 5 5 5
:21_42_’_21:*.
3 4 ) 15

Thus
] 1
(64) * (15) 2 (2n —1)6°

n>1
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folland
1.8. Exercises for the week. Those exercises from [I] which shall be demon-
strated are:

(1) (3.3.10.a) Evaluate the following series by applying Parseval’s equation to
certain Fourier expansions:
1
> o

n>1

(2) (3.3.10.b) Evaluate the following series by applying Parseval’s equation to
certain Fourier expansions:

Z 1

= (2n—1)8

(3) (3.4.7.a) What is the best approximation in £2 to the function
flx)=2z =x€]0,7]

among all functions of the form ag + a1 cos x + ag cos(2x)?
(4) (3.5.4) Find all A so that there exists a solution f(z) defined on [0, ¢] to the
equation

f"+Af=0, f(0)=0, f(¢)=0.
(5) (3.5.5) Find all solutions f on [0, ¢] and all corresponding A to the equation
fTHAf =0, f1(0)=af(0), f'(6)=pf0).
(6) (EO 23) Find all solutions f on [0,a] and corresponding A to the equation:
f"+Af=0, f(0)=f(0), fla)=-2f"a)

(7) (EO 24) Find all solutions f on [0,1] and all corresponding A to the equa-
tion:

dx

) folland
Those exercises from [I] which one should solve are:

(1) (3.3.1) Show that if {f,},>1 are elements of a Hilbert space, H, and we
have for some f € H that

. d d
el (e““) =, u(0)=0, w/(1)=0.

lim fn:f7

n—oo

then for all g € H we have
Jim (fn, 9) = (/,9)-
(2) (3.3.2) Show that for all f, g in a Hilbert space one has

AT =gl < 11f = gll-

(3) (3.3.10.c) Use Parseval’s equation to compute

>

G

(4) (3.4.7.b) What is the best approximation in £2(0,7) to the function f(z) =
2 amongst all functions of the form by sinx + by sin(2z)?

(5) (3.4.7.c) What is the best approximation in £2(0, ) to the function f(x) =
2 amongst all functions of the form a cos(z) + bsin(z)?
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(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding A to the equation:

ffHXf =0, f(0)=0, f(1)=-f(1).

(7) (3.4.2) Find constants a,b, A, B,C such that fo(z) = 1, fi(z) = axz + b,
and fa(x) = Ax? + Bz + C are an orthonormal set in L2 (0,00) where
w(x) =e*.

(8) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
¢, mathematicized as the interval [0,¢]. Assume that heat is supplied at
a constant rate at the right end, in particular u,(¢,t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so
that u(0,¢) = 0. Find a series expansion for the temperature u(z,t) such
that the initial temperature is given by f(x).
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