
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.02.5

The Hilbert space theory is useful for solving PDEs. We will see this connection
through Sturm-Liouville problems. We’ve just got a little bit of theory to complete
before we get to the SLPs. Before we begin, we shall define another Hilbert space.

Definition 1. Let

`2(C) := {(zn)n∈Z, zn ∈ C∀n, and
∑
n∈Z
|zn|2 <∞}.

This is a Hilbert space with the scalar product

〈z, w〉 :=
∑
n∈Z

znwn, z = (zn)n∈Z , w = (wn)n∈Z.

1.1. The Best Approximation Theorem. This is another fun and cozy Hilbert
room theory item.

Theorem 2. Let {φn}n∈N be an orthonormal set in a Hilbert space, H. If f ∈ H,
then

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and equality holds ⇐⇒ cn = 〈f, φn〉 is true ∀n ∈ N.

Proof: We make a few definitions: let

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,

and
ϕ :=

∑
cnφn.

Exercise 1. Prove that ϕ ∈ H. Note that you are not required to do this as part
of the proof on an exam.

Then we compute

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2<〈f − g, g − ϕ〉.
I claim that

〈f − g, g − ϕ〉 = 0.
1
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Just write it out (stay calm and carry on):

〈f, g〉 − 〈f, ϕ〉 − 〈g, g〉+ 〈g, ϕ〉

=
∑

f̂n〈f, φn〉 −
∑

cn〈f, φn〉 −
∑

f̂n〈φn,
∑

f̂mφm〉+
∑

f̂n〈φn,
∑

cmφm〉

=
∑
|f̂n|2 −

∑
cnf̂n −

∑
|f̂n|2 +

∑
f̂ncn = 0,

where above we have used the fact that φn are an orthonormal set. Then, we have

||f − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≥ ||f − g||2,
with equality iff

||g − ϕ||2 = 0.

Let us now write out what this norm is, using the definitions of g and ϕ. By their
definitions,

g − ϕ =
∑

(f̂n − cn)φn.

By the Pythagorean theorem, due to the fact that the φn are an orthonormal set,

and hence multiplying them by the scalars, f̂n − cn, they remain orthogonal, we
have

||g − ϕ||2 =
∑∣∣∣f̂n − cn∣∣∣2 .

This is a sum of non-negative terms. Hence, the sum is only zero if all of the terms
in the sum are zero. The terms in the sum are all zero iff∣∣∣f̂n − cn∣∣∣ = 0∀n ⇐⇒ cn = f̂n∀n ∈ N.

Corollary 3. Assume that {φn} is an OS in a Hilbert space H such that{
φn
||φn||

}
is an ONB. Then the best approximation to f ∈ H of the form

N∑
n=1

cnφn

is given by taking

cn =
〈f, φn〉
||φn||2

.

Exercise 2. Prove this corollary using the best approximation theorem.

We shall use but do not need to prove the following theorem.

Theorem 4. The functions {
einx√

2π

}
n∈Z

are an orthonormal basis for the Hilbert space L2(−π, π). The functions{
1√
2π
,

sin(nx)√
π

,
cos(nx)√

π

}
n∈N

are also an ONB for this Hilbert space.
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The proof cannot be rigorously completed because we are lacking some funda-
mental results from more advanced analysis. However, we can at least explain how
the proof goes, up to the details which require measure theory. It is actually rather
simple. Let f be in L2. If f is continuous and piecewise C1 on (−π, π) then the
Theorem PCF

∑
says that

lim
N→∞

SN (x) = f(x) ∀x ∈ (−π, π),

where we note here that the Fourier series

SN (x) =

N∑
−N

cne
inx =

N∑
−N

f̂nφn(x), φn(x) :=
einx√

2π
, f̂n :=

∫ π

−π
f(x)φn(x)dx.

So, for all such f , we have the equality∑
n∈Z

f̂nφn(x) = f(x), ∀x ∈ (−π, π).

This is the second necessary and sufficient condition required for the functions {φn}
to be a basis for the Hilbert space. For general f , this is where we use a fact that
goes beyond the scope of the course. The fact says that continuous, piecewise C1
functions can be used to approximate all L2 functions. So, using this more advanced
mathematical fact, the result for continuous piecewise C1 functions implies the same
result for all L2 functions.

1.1.1. Application of the best approximation theorem. The type of problem one
might be asked here is to find the numbers {cj}3j=0 so that

||f −
3∑
j=0

cjφj ||2

is minimized, where φj is as above, and

f(x) =

{
0 −π < x < 0

1 0 ≤ x ≤ π

So, basically we compute the coefficients. One must only pay careful attention to
whether or not the functions (here φj) are normalized. In general, one computes

cj =
〈f, φj〉
||φj ||2

.

So if ||φj ||2 = 1, then dividing by this does no harm. Here, we therefore compute

cj =

∫ π

−π
f(x)

e−ijx√
2π

dx =

{
π√
2π

j = 0

− (−1)j

j
√
2π

+ 1
j
√
2π

j = 1, 2, 3

1.2. Spectral Theorem Motivation. Basically, a linear (partial or ordinary)
differential operator with constant coefficients will act on a certain Hilbert space.
For example, the operator

∆ = −∂2x
acts on the Hilbert space H2. Don’t worry about what it is precisely, because
what’s important is just that it’s a Hilbert space, and it happens to sit inside the
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Hilbert space L2. This operator takes elements of the Hilbert space H2 and sends
them to the Hilbert space L2. It is a linear operator because

∂2x(f(x) + g(x)) = f ′′(x) + g′′(x) = ∂2x(f(x)) + ∂2x(g(x)).

So if we think of the functions as vectors, then ∆ is like a linear map that takes
in vectors and spits out vectors. Just like linear maps on finite dimensional vector
spaces, which can be represented by a matrix, a linear operator on a Hilbert space
can be represented by a matrix. If it is a sufficiently “nice” operator, then there
will exist an orthonormal basis of eigenfunctions with corresponding eigenvalues.
Here it is useful to recall

Theorem 5 (Spectral Theorem for Cn). Assume that A is a Hermitian matrix.
Then there exists an orthonormal basis of Cn which consists of eigenvectors of A.
Moreover, each of the eigenvalues is real.

Proof: Remember what Hermitian means. It means that for any u, v ∈ Cn, we
have

〈Au, v〉 = 〈u,Av〉.
By the Fundamental Theorem of Algebra, the characteristic polynomial

p(x) := det(A− xI)

factors over C. The roots of p are {λk}nk=1. These are by definition the eigenvalues
of A. First, we consider the case when A has zero as an eigenvalue. If this is the
case, then we define

K0 := Ker(A) = {u ∈ Cn : Au = 0}.

We note that all nonzero u ∈ K0 are eigenvectors of A for the eigenvalue 0. Since
K0 is a k-dimensional subspace of Cn, it has an ONB {v1, . . . , vk}. If k = n, we
are done. So, assume that k < n. Then we consider

K⊥0 = {u ∈ Cn : 〈u, v〉 = 0∀v ∈ K0}.

Note that if u ∈ K⊥0 then

〈Au, v〉 = 〈u,Av〉 = 0 ∀v ∈ K0.

Hence A : K⊥0 → K⊥0 . Moreover, if

u ∈ K⊥0 , Au = 0 =⇒ u ∈ K0 ∩K⊥0 =⇒ u = 0.

Hence A is bijective from K⊥0 to itself. Since A has eigenvalues {λj}nj=1, and 0
appears with multiplicity k, λk+1 6= 0. It has some non-zero eigenvector. Let’s call
it u. Since it is an eigenvector it is not zero, so we define

vk+1 :=
u

||u||
.

Proceeding inductively, we define K1 to be the span of the vectors {v1, . . . , vk+1}.
We look at A restricted to K⊥1 . We note that A maps K1 to itself because if

v =

k+1∑
1

cjvj =⇒ Av =

k+1∑
1

cjAvj =

k+1∑
1

cjλjvj ∈ K1.

Similarly, if w ∈ K⊥1 ,

〈Aw, v〉 = 〈w,Av〉 = 0∀v ∈ K1.



FOURIER ANALYSIS & METHODS 5

So, A maps K⊥1 into itself. Since the kernel of A is in K1, A is a surjective
and injective map from K⊥1 into itself. We note that A restricted to K⊥1 satisfies
the same hypotheses as A, in the sense that it is still Hermitian, and it has a
characteristic polynomial of degree equal to the dimension of K⊥1 So, there is an
eigenvalue λk+2, for A as a linear map from K⊥1 to itself. It has an eigenvector,
which we may assume has unit length, contained in K⊥1 . Call it vk+2. Continue
inductively until we reach in this way {v1, . . . , vn} to span Cn.

Why are the eigenvalues all real? This follows from the fact that if λ is an
eigenvalue with eigenvector u then

〈Au, u〉 = λ||u||2 = 〈u,Au〉 = λ||u||2.
Since u is an eigenvector it is not zero, so this forces λ = λ.

1.3. An example. Let us do an example. On [−π, π], the functions which satisfy

∆f = λf, f(−π) = f(π)

are
f(x) = fn(x) = einx.

The corresponding
λn = n2.

So, the eigenvalues of ∆ with this particular boundary condition are n2, and the
corresponding eigenfunctions are e±inx. We have proven that these are orthogonal.
We can make them orthonormal by dividing by the norms,{

einx√
2π

}
n∈Z

.

We note that for all f and g in L2 which satisfy f(−π) = f(π), g(−π) = g(π) and
which are also (at least weakly) twice differentiable, we would also get f ′(−π) =
f ′(π) and similarly for g, so that

〈∆f, g〉 =

∫ π

−π
−f ′′(x)g(x)dx = −f ′(x)g(x)

∣∣∣π
−π

+

∫ π

−π
f ′(x)g′(x)dx

= −f ′(x)g(x)
∣∣∣π
−π

+ f(x)g′(x)
∣∣∣π
−π
−
∫ π

−π
f(x)g′′(x)dx.

Due to the boundary conditions, all that survives is

−
∫ π

−π
f(x)g′′(x)dx = 〈f,∆g〉.

So we see that
〈∆f, g〉 = 〈f,∆g〉.

This is just like the spectral theorem for Hermitian matrices! There is a similar
spectral theorem here, a “grown-up linear algebra” theorem, called The Spectral
Theorem. This grown-up version of the spectral theorem says that, like a Hermitian
matrix, the operator ∆ also has an L2 orthonormal basis of eigenfunctions. Hence,
by this theorem, we know that the orthonormal set,{

einx√
2π

}
n∈Z

,
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(which à priori could be missing stuff) is in fact not missing anything, spans all of
L2, and is an ONB. If you’re interested in this topic, you can try to convince me
to give a PhD/Master’s course on it. With sufficiently many interested students, I
may be convinced.

1.4. Regular SLPs. Let L be a linear, second order ordinary differential operator.
So, we can write

L(f) = r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x).

Above, r, q, and p are specified REAL VALUED functions. As a simple example,
take r(x) = −1, and q(x) = p(x) = 0. Then we have

L(f) = ∆f = −f ′′(x).

We are working with functions defined on an interval [a, b] which is a finite interval.
So, the Hilbert space in which everything is happening is L2 on that interval. Like
with matrices, we can think about the adjoint of the operator L. The adjoint by
definition satisfies

〈Lf, g〉 = 〈f, L∗g〉,
where we are using L∗ to denote the adjoint operator. Whatever it is. On the
left side, we know what everything is, so we write it out by definition of the scalar
product

〈Lf, g〉 =

∫ b

a

L(f)g(x)dx =

∫ b

a

(r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x)) g(x)dx.

Integrating by parts, we get

= (rḡ)f ′|ba −
∫ b

a

(rḡ)′f ′ + (qg)f |ba −
∫ b

a

(qḡ)′f +

∫ b

a

pfḡ

= (rḡ)f ′ + (qḡ)f |ba −
∫ b

a

[(rḡ)′f ′ + (qḡ)′f − pfḡ] .

We integrate by parts once more on the (rḡ)′f ′ term to get

= (rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba +

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ.

So, if the boundary conditions are chosen to make the stuff evaluated from a to b
(these are called the boundary terms in integration by parts) vanish, then we could
define

L∗g = (rg)′′ − (qg)′ + pg,

since then

〈Lf, g〉 =

∫ b

a

(rḡ)′′f − (qḡ)′f + fpḡ = 〈f, L∗g〉.

Here we use that r, q and p are real valued functions, so r̄ = r, q̄ = q, and p̄ = p.
For the spectral theorem to work, we will want to have

L = L∗.

When this holds, we say that L is formally self-adjoint. So, we need

Lf = L∗f ⇐⇒ rf ′′ + qf ′ + pf = (rf)′′ − (qf)′ + pf.

We write the things out:

rf ′′+qf ′+pf = (rf ′+r′f)′−qf ′−q′f+pf ⇐⇒ rf ′′+qf ′ = rf ′′+2r′f ′+r′′f−qf ′−q′f
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⇐⇒ qf ′ = 2r′f ′ + r′′f − qf ′ − q′f ⇐⇒ (2q − 2r′)f ′ + (r′′ − q′)f = 0.

To ensure this holds for all f , we set the coefficient functions equal to zero:

2q − 2r′ = 0 =⇒ q = r′, q′ = r′′.

Well, that just means that q = r′. So, we need L to be of the form

Lf = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

The boundary terms should also vanish, so we want:

(rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba = (rḡ)f ′ − (rḡ)′f + (r′ḡ)f |ba = 0,

⇐⇒ rḡf ′ − r′ḡf − rḡ′f + r′ḡf |ba = 0 ⇐⇒ rḡf ′ − rḡ′f |ba = 0

⇐⇒ r(ḡf ′ − ḡ′f)|ba = 0.

So, it suffices to assume that we are working with functions f and g that satisfy

(ḡf ′ − ḡ′f)|ba = 0.

Writing this out we get:

ḡ(b)f ′(b)− ḡ′(b)f(b)− (ḡ(a)f ′(a)− ḡ′(a)f(a)) = 0 ⇐⇒

ḡ(b)f ′(b)− ḡ′(b)f(b) = ḡ(a)f ′(a)− ḡ′(a)f(a).

This is how we get to the definition of a regular SLP on an interval [a, b]. It is
specified by

(1) a formally self-adjoint operator

L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on
[a, b].

(2) self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i

are such that for all f and g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

(3) a positive, continuous function w on [a, b].

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero
eigenfunction f so that together they satisfy the above equation, and f satisfies the
boundary condition.

We then have a miraculous fact.

Theorem 6 (Adult Spectral Theorem). For every regular Sturm-Liouville problem
as above, there is an orthonormal basis of L2

w consisting of eigenfunctions {φn}n∈N
with eigenvalues {λn}n∈N. We have

lim
n→∞

λn =∞.
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Here, L2
w is the weighted Hilbert space consisting of (the almost everywhere-equivalence

classes of measurable) functions on the interval [a, b] which satisfy∫ b

a

|f(x)|2w(x)dx <∞,

and the scalar product is

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx.

We are not equipped to prove this fact. You can rest assured however that it is
done through the techniques of functional analysis and bears similarity to the proof
of the spectral theorem for finite dimensional vector spaces.

1.5. Exercises for the week: Hints. Those exercises from [
folland
1] which one should

solve are:

(1) (3.3.1) Show that if {fn}n≥1 are elements of a Hilbert space, H, and we
have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.

Hint: Apply the Cauchy-Schwarz inequality to 〈fn − f, g〉.
(2) (3.3.2) Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.
Hint: First show that for any real numbers a and b,

|a− b|2 = a2 − 2ab+ b2.

Next, apply this fact with a = ||f || and b = ||g|| to show that

|||f || − ||g||| = ||f ||2 − 2||f ||||g||+ ||g||2.
Compare this to

||f − g||2 = ||f ||2 − 2<〈f, g〉+ ||g||2.
(3) (3.3.10.c) Use Parseval’s equation to compute∑

n≥1

n2

(n2 + 1)2
.

Hint: The Fourier series for the function sinhx on (−π, π) and extended to
be 2π periodic is

2 sinhπ

π

∑
n≥1

(−1)n+1n

n2 + 1
sin(nx).

(4) (3.4.7.b) What is the best approximation in L2(0, π) to the function f(x) =
x amongst all functions of the form b1 sinx+ b2 sin(2x)? Hint: By the best
approximation theorem, unnormed version, compute

bj =
1

|| sin jx||2

∫ π

0

x sin(jx)dx, j = 1, 2.
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(5) (3.4.7.c) What is the best approximation in L2(0, π) to the function f(x) =
x amongst all functions of the form a cos(x) + b sin(x)? Hint: By the best
approximation theorem, unnormed version, compute

a =
1

|| cos(x)||2

∫ π

0

x cos(x)dx, b =
1

|| sin(x)||2

∫ π

0

x sin(x)dx.

(6) (3.5.7) Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

Hint: As we have computed before, consider three cases, λ = 0, λ > 0, and
λ < 0. Use the boundary conditions to solve for all the possible f .

(7) (3.4.2) Find constants a, b, A,B,C such that f0(x) = 1, f1(x) = ax + b,
and f2(x) = Ax2 + Bx + C are an orthonormal set in L2

w(0,∞) where
w(x) = e−x. Hint: For f1 first you want the weighted scalar product with
f0 to be zero, so you want

〈f0, f1〉w =

∫ ∞
0

f0(x)f1(x)e−xdx = 0 =

∫ ∞
0

(ax+ b)e−xdx.

This will give you an equation expressing b in terms of a. Next, you also
want

||f1||2w = 1 =

∫ ∞
0

(ax+ b)2e−xdx,

so substituting for your expression for b in terms of a, you get an equation
for a. Repeat the same thing for f2, demanding that:

〈fj , f2〉w =

∫ ∞
0

fj(x)f2(x)e−xdx = 0, j = 0, 1

and

||f2||2w =

∫ ∞
0

|f2(x)|2e−xdx = 1.

This will give you three equations for the three unknowns A, B, and C, for
which you can solve!

(8) (4.2.3) Let f(x) be the initial temperature at the point x in a rod of length
`, mathematicized as the interval [0, `]. Assume that heat is supplied at
a constant rate at the right end, in particular ux(`, t) = A for a constant
value A, and that the left end is held at the constant temperature 0, so that
u(0, t) = 0. Find a series expansion for the temperature u(x, t) such that
the initial temperature is given by f(x). Hint: Divide and conquer. First
find a so-called steady state solution, that is find a function g(x) which does
not depend on t which satisfies

(∂t − ∂xx)g = 0, g(0) = 0, g′(`) = A.

Now, since g does not depend on t, when you apply the heat operator you
just get

−g′′(x) = 0, g(0) = 0, g′(`) = A.

Find g which solves this. Now, look for a solution u which satisfies

ut − uxx = 0, u(0, t) = ux(`, t) = 0, u(x, 0) = f(x)− g(x).
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You can use the methods from last week, separation of variables, superpo-
sition (since everything including the BCs are homogeneous), and Fourier
series (Hilbert spaces!) to solve for u. The full solution will then be

u(x, t) + g(x).
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