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Quadric Surfaces

The most general second-degree equation in three variables is
Ax2+By2+Cz2+ny+Exz+Fyz+Gx+Hy+Iz= J.

We will not attempt the (rather difficult) task of classifying all the surfaces that can be
represented by such an equation, but will examine some interesting special cases, Let
us observe at the outset that if the above equation can be factored in the form

(Aix + Bry+Ciz—- DY) (Asx + Bay + Coz — Dy =0,
‘then the graph is, in fact, a pair of planes,
Ax A+ By +Ciz =Dy and Agx + Bay + Caz = D,

or one plane if the two linear equations represent the same plane. This is considered a
degenerate case. Where such factorization is not possible, the surface (called a quadric
sarface) will not be flat, although there may still be straight lines that lie on the surface.
Nondegenerate quadric surfaces fall into the following six categories.

Spheres. The equation x> + y? + z% = a? represents a sphere of radius ¢ centred at
the origin. More generally,

(x — x0)® + (v — yo)? + (z = 20)* = &

represents a sphere of radius @ centred at the point (x0, Y0, zo). If a quadratic equation
in x, y, and z has equal coefficients for the x2, y2, and z% terms and has no other
second-degree terms, then it will represent, if any surface at all, a sphere. The centre
can be found by completing the squares as for circles in the plane.

Cylinders. The equation x? + y* = a?, being independent of z, represents a right-

circular cylinder of radivs ¢ and axis along the z-axis. (See Figure 10.34(a).} The
intersection of the cylinder with the horizontal plane z = k is the circle with equations

¥ y? = a?
lz=k

Quadric cylinders also come in other shapes: elliptic, parabolic, and hyperbolic. For
instance, z = x” represents a parabolic cylinder with vertex line along the y-axis. (See
Figure 10.34(b).) In general, an equation in two variables only will represent a cylinder
in 3-space.
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Figure 10,35
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Cones. The equation z2 = x? 4 y? represents a right-circular cone wit, axis o
the z-axis. The surface is generated by rotafing about the z-axis the lipe 7w
the yz-plane. This generator makes an angle of 45° with the axis of the cone, ¢y
sections of the cone in planes parallel to the xy-plane are circles. (See Figure 10.35
The equation x* 4 y* = a?z2 also represents a right-circular cone with Vertex o
origin and axis along the z-axis but having semi-vertical angle ¢ = tan~! a. A i
cone has plane cross-sections that are elliptical, parabolic, and hyperbolic. Convers
any nondegenerate quadric cone has a direction perpendicular to which the ¢
sections of the cone are circular. In that sense, every quadric cone is a cireulg, o
although it may be obligue rather than right-circular in that the line Jjoining the Cenlyeg
of the circular cross-sections need not be perpendicular to those Cross-sections, (
Exercise 24.)

See

(a)
Ellipsoids. The equation

represents an ellipsoid with semi-axes a, b, and ¢, (See Figure 10.35(b).) The surface
oval, and it is enclosed inside the rectangular parallelepiped —q < x <a,—-b <y <
—¢ = z=c¢ Ifa=b=c, theellipsoidis a sphere. In general, all plane cross-section
of ellipsoids are ellipses. This is easy to see for cross-sections parallel to coordina
planes, but somewhat harder to see for ofher planes.

Paraboloids. The equations

.2 2 2 2
X y X y
t=atE ad oz B2

a2

represent, respectively, an elliptic paraboloid and a hyperbolic paraboloid. (¢
Figure 10.36(a) and (b)Y Cross-sections in planes z = k (k being a positive coﬂ?tﬂﬂ[
are cllipses {circles if ¢ = b) and hyperbolas, respectively. Parabolic reflective miror

where 4 and p are real parameters. Every point on the hyperbolic paraboloid bes %
one line of each family. '
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‘Figure 10.36
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“(a) The elliptic. paraboloid z = Ztyy

.Iﬁ) The hyperbolic paraboloid
L 2yl

Hyperboloids. The equation

I 2
Z
A

a2+b2 2

represents a surface called a hyperboloid of one sheet. (See Figure 10.37(a).) The

equation
G SR
a®> Bt 2T

represents a hyperboloid of two sheets, (See Figure 10.37(b),) Both surfaces

f!_;;sre 10.37

) The hypesboloid of one sheet
a2

SR A

E LAY 2=

“’) szle hypzerboloid of two sheets
Ly g2
-:-HZ+B§—(TZ:%1

have eiliptical cross-sections in horizontal planes and hyperbolic cross-sections in
vertical planes. Both are asymptotic to the elliptic cone with equation

they approach arbitrarily close to the cone as they reééde arbitrarily far away from the
origin. Like the hyperbolic paraboloid, the hyperboloid of one sheet is a ruled surface.




