Let e;, e; and e3 be a basis in 3D. A point, P, can be written
P = p.e;+pyez+p.e3+O. P — O is the vector which is a linear
combination of the basis. p,e; + pye: + p.e;3.

A vector, v, can be written v = v.e; 4+ vyes 4 v,e3. Formally:

Pz Vg

_ Py _ Uy
P = [e;, ez, €3, O] and v = [e;, ez, e3, O]

pz UZ

1 0

Coordinates with four components (three in 2D) are called
homogeneous coordinates. This is how it looks in 2D:

€

One advantage with homogeneous coordinates is that a trans-
lation can be written as a matrix-vector product (i.e. not only
linear mappings). This leads to a unified treatment of simple
mappings. Homogeneous coordinates are also used when dealing
with perspective projections.

145

In computer graphics it is common to change coordinate systems.
Suppose we would like to produce the following image (the co-
ordinate system should not be included).

+ “Agl
-5 0 5

-10

=
1)

10
A cumbersome way is to create absolute coordinates
for the corners of the polygon.

x = [8 10 10 9 8]; % initial position

y=1[-1-1 121];

fill(x, y, 'k’) % draw one polygon
hold on

x = [7.3149 9.3149 ...]; % new coordinates
y = [2.4442 2.4442 ...];

fill(x, y, 'k’) % draw the next polygon
More convenient is to design ONE polygon in a “design coordi-

nate system”, using so-called modeling coordinates.

‘We draw the polygons by translating the coordinates:

x=[-1 1 1 o0 -1]; % nice x and y
y=[-1-1 1 2 1]; % using modeling coordinates
for k = 1:16 % number of polygons
dx = ...; dy = ...; % translate
fill(dx + x, dy + y, 'k’)
hold on
end

The above is the normal way in Matlab, but in most, low level,
graphics systems one would do like this instead:

for k = 1:16
make a temporary translation of the coordinate
system to where the polygon should be drawn
draw_polygon() % draw using modeling coordinates

translate back
end

draw polygon knows only about the modeling coordinates.
To move points (using dx and dy) or to move a coordinate
system are two sides of the same coin.

‘We will look at this in more detail later on.

Note, also that we no longer talk about functions. We do not
plot y = f(z). Instead we create sets of points and these points
can be given different interpretations.

% solid curve
% separate points
% polygon

plot (x, y)
plot(x, y, 'o’)
fill(x, y, 'k’)
etec.

147

Some transformations

‘We would like to transform points given in homogeneous
coordinates. What types of transformations do we need?
Scaling, rotation and translation. Linear transformations are not
sufficient, since they map the origin onto the origin (which exclu-
des translation). We need an affine transformation (linear plus
translation). Using homogeneous coordinates we can write the
transformation as a matrix-vector multiply, where the matrix is
given by:

01
A is a 3 X 3-matrix in the 3D-case, and t is a 3 X 1-matrix.

M= [A t]
A point, P,, in 2D and a point, Pj, in 3D can be written:

x
PB=|y|, BB=
1

=N e 8

Let p denote the z,y-part, the x, y, z-part in the 3D-case. Then

nez] »-1]

Let us see how M transforms a point. P is a 2D- or 3D-point.
At p|_|Ap+t
we =5[] =]

Ap corresponds to a linear part and +t gives a translation. We
get a pure translation by setting A = I (the identity) and a pure
linear transformation (e.g. scaling, rotation) by taking ¢t = 0.

148

Example: Show that the inverse transformation, M~!, exists
when A is nonsingular, and that:

-1

At A7l —A

-1 _ —

M= [0 1] _[0 1]

M can be factored as:
At] _[I1t][Ao] _[AO]|[I A~
01| |01 01| |01 0 1
So M can be written as a product of a linear transformation

followed by a translation (which is no surprise). The reverse is
true, if A~ exists.

Let us see how M transforms a straight line. Use s as parameter
and write the line in the following form:

L(s) =P+ sW

where P is a point and W is a vector. How do we write a vector
in homogeneous coordinates? We change the 1 to a 0. W can be
interpreted as wye; + wyes; + w,.e3 4+ 0- O, so a vector is a linear
combination of the basis vectors. We wrote a point, in homoge-
neous coordinates, as: wye; + wyes + w,e3 + 1- O. A point is a
vector plus a point, in other words.

M maps a vector this way (w is the coordinate part):

o ille =)

Note that t is not included. It is not meaningful to translate a
vector.

149

Our line is mapped as follows:

o sfesmn =[G [[3] 0]

e]

point new direction

If Aw =0 (A is singular and w € N'(A)) the whole line is
mapped to a single point.

Exercise: show that M maps planes onto planes and planar
polygons onto planar polygons.

A translation example in 2D

‘We would like to translate the unit square so that the lower
left corner ends up in (1,1). It is sufficient to look at how the
corners are translated, since we have seen that straight lines are
mapped onto straight lines. Here are the corners in homogeneous
coordinates:

0 1 1 0
ofl, |of, [1], |1
1 1 1 1

We take A = I and t = [1,1]7, and apply the transformation,
M, on all four corners at the same time:

101 0110 1221
011 0011 = 1122
001 1111 1111

corners transformed corners

M~ is given by taking t = [—1, —1]7, which is in
correspondence with our intuition (I hope).

Exercise: suppose we make a series of translations (one M-matrix

for each). What is the M-matrix for the combined
transformation.

150

Some scalings

For a pure scaling we set ¢t = 0 and A to a diagonal matrix with
scale factors. Let us double the width of the unit square. The
matrix is (in 2D):

200
M=|010
001
The matrix
200
M=|020
001
doubles the lengths of both sides and
0.500
M = 0 20
0 01

halves the width and doubles the height etc.

151

Two sides of the same coin

Example: let us study how M transforms an arbitrary point P:

1-11 Dz Pz_py+1
M=)1 11|, P=|py|, MP=|p,+p,+1
0 01 1 1

This can be written in the following way:

1 0 0

MP=M |p, |0 |+py, |1|+1(0 =
0 0 1
——r ——r >

er ez
1 0 0
PoM | 0| +p,M |1 | +1M |0 | = pye] + pyeh + 10’
0 0 1
N—— N——
A e o’

So, M P, can be interpreted as using the original coordinates
for P, but in the transformed coordinate system {ej, e}, O’} =
{Mel, M62, MO}.

So, in the first interpretation we change the point’s
coordinates, but keep the original coordinate system.

The second interpretation keeps the original coordinates for the
point, but we transform the coordinate system.

In this particular example the new coordinate system is given
1 —1 1

e’1= 1], e'2: 1 , O=]1
0 0 1

152

This image shows how P, with p, = p, = 1, is transformed. M P
has coordinates (1,3). The dashed lines show the transformed
coordinate system.

MP
3]
20 8 e
\\\ ”l e]_
\\ ’l
1t e, \\,"]
o
o o e,]
0 1 2

Another example: A translation produces the new system:
(e1,e2,e3,t + O) since the translation of the basis vectors gives
the same basis.

Let us look at a few more complicated examples, involving
rotations.

153

Rotations in 2D

We would like to rotate points an angle 1, ccw (counter clockwi-
se) around the origin. Here is M:

cos®yp —siny 0
M = | sin®Y cosvy 0
0 0 1

‘We can simplify the analysis of M by looking at how the coor-
dinate system is transformed. Since M is linear (no translation)
the origin is mapped onto the origin. So if we take a point at
the end of each coordinate axis we can see how the coordinate
system is transformed.

costy —siny 0 10 cosp —sinp
M = | sini cosyp 0 01| =|siny cosy
0 0 1 11 1 1

The dashed lines gives a rotated system. p., p, are the original
coordinates.

cos
\
\
\
\
\
' Roterad punkt
\ MP
\
\
\
\‘/
\
*\sin U]
\ —=
‘ L.
A} - -
\ .-
\ -
- P,
‘\ .- X
v .t
—siny cos

154

Combined transformations
Let us study M = TR and M = RT where T is a translation
and R is a rotation. Set C = R(1: 2,1 : 2). We get:

- (52 [31)- (5]

It Cco Ct
re={g1][51]=10 1]
Both products have the same structure, but in the RT-case, the

translation vector has been multiplied by C, i.e. t has
been rotated.

The following images show RT and TR acting on the unit
square. The dotted unit squares shows the situation after the
first step of the transformations have been applied. The dashed
lines show the final result. As usual it is sufficient to look

at the corners.

RTP TRP
3 3
25 25 :
. 7N\
A}
2 2 -7 \
d Y
A N
N
15 15 R g
a7
1 1
0.5 0.5
0 0
_05 -05
1 05 0 05 1 15 2 25 1 05 0 05 1 15 2 25

155

Suppose we would like to rotate the unit square around an
arbitrary point (not just around the origin). It is easy to perform
the transformation in three steps.

Pick (1, 1) as the point (the upper right corner of the square). Let
T translate this point to the origin (¢t = [—1, —1]T). The following
sequence gives the requested transformation: M = T—! R T. In
words: translate the point of rotation to the origin, rotate around
the origin, translate back.

Note that T—! corresponds to a translation with ¢t = [1, 1]7.

The following image shows the steps. I have increased the
linewidth in each step.

15r . . .|

0.5 1

-0.5- al

“1b . 4

-15
-15 -1 -0.5 0 0.5 1 15 2

156

OpenGL and transformations

Let us return to the RT, T R-example and see how this is
done in OpenGL (at least in principle, all the details will come
later). Suppose we do the following function calls in OpenGL

(... marks parameters that we skip for the time being):

Call Matrix operation
glLoadIdentity () ; M=1I // M = Model matrix
glRotatef(...); M =M * R // affects coming

glTranslatef(...); M=M*T // points

glVertex3fv(point); // plot(M * point) (roughly)

First we note that OpenGL uses post-multiplication, every new
transformation matrix is multiplying M from the right. Pre-
multiplication would multiply M from the left. So, after the
calls, M = RT even though we made the Rotate first and the
Translate after.

To get M = TR we must first call Translate and then

Rotate. So why this strange order (post and not pre)? The re-
ason is that post is the correct order if we take the view of
transforming coordinate systems rather than points.

The following image shows how the coordinate systems are trans-
formed (the same example as before, but now with coordinate
systems and not squares/points). The original system is dashed,
the next one (after the first transformation) is dotted and the
last is plotted using solid lines.

157

RTP

25
15

1
1

05 R
o

-0.5
-1 -05 0 0.5 1 15 2 25

TRP

25

2

15

1
1
1
05 '
1

0 Lo,

-0.5
-1 -05 0 0.5 1 15 2 25

In the first image M = RT, so the order of the OpenGL-calls are
Rotate, Translate. The dotted system is rotated relative the ori-
ginal. The solid has been translated relative the rotated system.
The unit square is drawn using the last system.

When M = TR Translate is called first and then Rotate. The
dotted system has been translated, and the next system has been
rotated relative to the newly translated system. The unit square
is drawn using the last system.

158

A common problem

Suppose we have drawn an object (like in the house-example)
in a nice coordinate system centered on the origin. We would
like to place copies in different positions in the plane. Suppo-
se the object should be placed in the four positions (1,0,0),
(0,1,0), (-1,0,0) and (0,—1,0). Assume that our C-routine,
DrawObject () draws the object.

Will the following code sequence give the required result?

glLoadIdentity();
glTranslatef(1, 0, 0); // x =1, y
DrawObject () ;

0 (z = 0)

glTranslatef(0, 1, 0); // x =0, y
DrawObject () ;
etc.

1 (z = 0)

The answer is no! The second glTranslate can be interpreted
relative to the translated system (made by the first Translate).
The second object will be drawn in (1,1,0), in other words.

It would be possible to, in the second glTranslate, correct for the
first and write glTranslatef (-1, 1, 0);. This will be rather
complicated if we have many transformations.

A better alternative is to save the old coordinate system (the old
M) and make a temporary change. OpenGL has three matrix
stacks (for different kinds of transformations). We are going to
use the stack for the GL MODELVIEW-matrix (in which M is a
part).

159

glMatrixMode (GL_MODELVIEW); // Choose type of matrix

glPushMatrix () ; // Save current M
glTranslatef (1, 0, 0); // x =1, y =0 (z = 0)
DrawObject () ;

glPopMatrix () ; // Fetch saved M
glPushMatrix () ; // Save current M
glTranslatef (0, 1, 0); // x =0, y=1 (z = 0)
DrawObject () ;

etc.

Transformations in 3D

Here are the most common transformations in 3D. S = scaling,
T = translation.

sz 0 00 100t
0 s, 00 010t
S = y T = v
0 0s,0]|’ 001t,
00 01 000

R, = rotation ccw the angle v around the x-axis (when we look
along the negative x-axis). Analogous for R, and R..

Let ¢ = cosvy and s = sin .

Note that we have the number one for the axis.

10 00 c 0s0 c—s00
0c —s0 0 100 s ¢c 00
R, = 0s c O » By = —s0cO » R = 0010
00 0 1 0 001 0 0 01

To make more complicated transformations we can combine the
above. Here is an example where we want to rotate the square
around the dashed axis.

160

y

-

Rotate around z—axis

y

N

Back around z—-axis

oy

161

Rotate around y-axis

y

\fL?—N

Rotate around y-axis

>;7—N

y

Back around y-axis

XE
N
<

A few exercises

e Find the M-matrix that maps the rectangle, with corners in
(1,1), (3,3), (2,4) and (0,2), onto the unit square.

e Find the M-matrix which maps the quadrilateral, with
corners in (0,0), (1,0), (2,1) and (1,1), on the unit square.
This is an example of a shear transformation.

e Let R(1) be a rotation matrix in 2D. Why is it true that
R(Y)R(p) = R(¢ + ¢)?

Use this equality to prove the additions laws:
sin(y + ¢) = sin cos ¢ + cos 1 sin ¢ etc.

e Find the M-matrix which mirrors the plane in the y-axis (i.e.
the point (x,y) is mapped onto (—z,y)).

e Do the same for the plane z = ¢ (c is a constant).

o Which M-matrices keep distances between (arbitrary) points?

o Which M-matrices preserve angles between vectors?

e Suppose we have two sets P and Q where each set contains
three distinct points. Is there always an M-matrix which
maps P onto Q7
(Hint: think in geometrical terms.)

o Write a Matlab program that creates the image on the next
page. The program should start with a square and then trans-
form it. The second image contains two images of the above
kind, on with the rotation R(#) and the other with R(—1).

e Use recursion in Matlab to draw some type of the Sierpinski
triangle (last page).

162

163

164

Projections

\
JAN YA
SODDLDLE

ANANAZ

AVAN
DN

A
¥
JAN
VAA AAVAA AA
VxVAAVxVAAVA
5

VAN JAVAN
N AR
JAN A JaN
VAA ‘AVAA AAVAA AAVAA A
YAVAY AVXVA AVxVA AVXV

Javay Yavi
AWA Y
iy y\ iy
sy AAVAAAAV
ARANNNNNK

A
iy

Orthografic (parallel) projection

Perspective projection

165

166

set (gca, 'Projection’,

'orthographic’,
[-10 -1 2])}
'perspective’,

[-10 -1 2])}

. % first plot
! CameraPosition’,
'Projection’,

’CameraPosition’,

set (gca,

% second plot

N\
SOAN
“‘ \\\\\\‘ 77
h&\\\\ N
§\§\\\~'

\

AR
\\Z 2\

\

|

X

AN ‘/”/1;';';"&;\\ \

S
\W

<7
AR
=\
</

N

=
L7
=%

e
L7
=
A

Z—~7

7/
7z 7

i
77

e

P
7

77
7 7

7z
Z=
o=
o
7

Z

P
Z

7

e
X7
QU

9%

2

167

168

Projections, the modelview matrix
Transformations in a simple OpenGL-program.

// Define the projection
// Orthografic in this case

glMatrixMode (GL_PROJECTION); // Projection matrix
glLoadIdentity(); // Matrix = I
glortho(-1,3, -1,3, 0,4); // Multiply

// Place the eye (camera).
// gluLookAt (eye pos, look at, up_direction)

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
gluLookAt(1,0,1, 0,0,0, 0,1,0);

// Modelview matrix
// Matrix = I
// Multiply

later in the program

// Create the transformation for coming points
glTranslatef (2, 0, 0); // transformations
glRotatef (... // etc.

// Points, affected by the above transformations

glColor3£f(1, 0, 0); // Choose colour

glBegin (GL_QUADS) ; // Rectangle
glVertex3£(0, 0, 0); // Define corners
glVertex3f(1, 0, 0); // that are sent
glVertex3f(1, 1, 0); // through the
glVertex3f(0, 1, 0); // graphics pipeline

glEnd() ;

// We can modify CT (Current Transformation)
glTranslatef(l, 1, -1); // multiplies M

// and define new objects
glBegin (GL_QUADS) ;

169

The eye is initially in the origin looking along the negative z-
axis. The up-direction is along the positive y-axis. We can only
see part of the room, the view volume, which is specified using
glortho (for an orthografic projection) or by gluPerspective
(for a perspective projection). There are other routines as well.

glortho takes the following parameters:

glOortho(x_min, x max, y min, y max, near, far)
The view volume is a box (rectangular parallelepiped).
Here is an example. I have created a square window and
made the call:

glortho(-1,3, -1,3, 0,4);

gluLookAt has not been called so the eye remains in the initial
position. The image contains four squares and a coordinate sy-
stem placed in the origin. So initially the eye is located in the
origin and is looking at the red square. Here is the plot window.

EIE Yiewing =—-vo————— H[[{]

170

This Matlab-plot shows the situation from another direction.
The view volume is marked with dashed lines.

Farplane

1
[
1 1
1 1' !
' Ne, i 1
' A plane , ! (x_max, y_max) I
' 1 y (X_max,y_| l
1 ' 1 !
. 1 '] !
View volume ' ']
1 1 1
: ' 1 !
] y ' 1 !
1 '] !
1 ! 1 !
1 ' 1 !
1 ' 1 !
1 ' 1 !
1 '] !
1 ! 1 !
17 X 1] !
: —’__-—-...IL__.. :
- Il .
|__-—’- 1 “rzd
e _e=
~—ak-
(x_min, y_min)

In this example the read square lies in the “near plane”. If we
increase near the near plane is moved away from the eye (more
negative z). Part of the scene will clipped away (one talks about
the near clipping plane, as well). In the same way we get clipping
if we move the “far plane” towards the eye (if we decrease far).
‘We can get clipping in the x- and y-directions as well.

To see something more than the red square we can move the
objects or, equivalently, move the eye.

171

Here is the widow after the following call:
glulLookAt (2,2,2, 0,0,0, 0,1,0);

Note that the view volume is “attached” to the eye (like one has
glued the view volume to the front of ones head). The volume is
not “deep” enough, one corner is clipped.

@IE Viewing Bm

Here is a Matlab illustration, from an other angle:

172

Let us decrease the volume (increase near and decrease far) even
further (note the use of transparency in Matlab, help alpha):
float d = 2 * sqgrt(3) - 2 / sqgrt(3);
glOortho(-1,3, -1,3, d+0.05, 3.7);

@E Viewing B

173

The transformation of points correspond to matrix multiplica-
tions which generate the model matrix, M (each transformation
updates M). How does gluLookAt work? We can change the
view in two (equivalent) ways.

e We move the eye but not the points.

e We move the points but not the eye. This corresponds to
extra modeling transformations.

So suppose we set the view first and then apply modeling trans-
formations. This can be seen a matrix multiplication using a view
matrix, V, computing M = VM. Note that only the product,
V M, is stored, and we refer to the product as the modelview
matrix. Let us look at two simple examples.

gluLookaAt (0,0,1, 0,0,0, 0,1,0);

The eye should be placed in (0,0,1) and look at the origin,
(0,0,0).

The up direction is (0,1,0) (the y-axis). We can generate this
view by translating all points by (0,0, —1) (one step along the
negative z-axis). The view matrix, V, should consequently be:

100 0
010 O
001-1
000 1

‘We can check that is the case, using the following code sequence:

174

GLenum error; // to be on the safe side
float V[16]; // memory for V
char format[] = "%5.1f %5.1f %5.1f %5.1f\n";

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

// choose MV-matrix
// MV = I

gluLookAt (0,0,1, 0,0,0, 0,1,0);
glGetFloatv (GL_MODELVIEW_MATRIX, V);

// multiply
// fetch Vv

// note, stored in Fortran order, column-wise
printf (format, V[0], V[4], VI[8], Vv[12]);
printf (format, V[1], V[5]1, VI[9], V[13]);
printf (format, V[2], V[6], V[10], V[14]);
printf (format, V[3], V[7]1, V[11], V[15]);

error = glGetError(); // problems?

if (error != GL_NO_ERROR)
printf ("glGetError = %d\n", error);

% gcc modelview.c —-1GL -lglut

% a.out
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 -1.0
0.0 0.0 0.0 1.0

175

Let us now analyze the call:
gluLookAt(1,0,1, 0,0,0, 0,1,0);

The eye should be placed in (1,0, 1), a translation as above, but
we also make a rotation 45° around the y-axis. Moving points, we
first make the rotation —45° ccw (i.e. 45° cw) looking along the
negative y-axis. Then we perform the translation (0,0, —+/2).
Let us do this in Matlab:

>> T = eye(4);

>> T(3, 4) = -sqrt(2); % translation
> a = -pi / 4; % angle
>> ¢ = cos(a);
>> s = sin(a);
> R=[c 0 s 0 % rotation
0 1 0 O
-s 0 ¢ O0
0 0 0 171;
> V=T *R % note the order
v =
0.7071 0 -0.7071 0
0 1.0000 0 0
0.7071 0 0.7071 -1.4142
0 0 0 1.0000

which is in accordance with the printout from the OpenGL-
program.

176

In the examples above, M = I, so let us set both matrices.

glLoadIdentity();

gluLookAt (1,0,1, 0,0,0, 0,1,0); % changing V

glTranslatef(l, 1, 1); % changing M

‘We continue using our V from the Matlab-program.

>> M = eye(4); M(1:3, 4) = [1 1 1]"

M=
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1
> V * M
ans =
0.7071 0 -0.7071 0.0000
0 1.0000 0 1.0000
0.7071 0 0.7071 0.0000
0 0 0 1.0000

which is OK as well.

One can set the matrix as well:

glMatrixMode (GL_MODELVIEW) ;
glLoadMatrixf (matrix_data); // sets MV

177

‘We choose perspective projection by:
gluPerspective (view_angle, aspect_ratio, near, far);

where view angle is the field of view angle, in degrees, in the y
direction aspect _ratio is the ratio of x (width) to y (height).
near and far as before.

Back
Front clipping
View clipping Plane
plane plane

178

On its way to the screen a point will undergo several
transformations. The point is sent through a graphics pipeline.

A somewhat simplified picture, and only for orthografic
projections, looks like this:

e The point is first multiplied by the modelview matrix. Note
that this matrix can be changed at a later stage.
These, later, changes do not affect our point. The current
matrix is often called CT (Current Transformation). We send
a point through the pipeline by using glVertex.

The next step is multiplication with the projection matrix
which has been created by glOrtho (or gluPerspective).
This matrix transforms the point so that they reside in the
standard cube ((-1, 1) in each dimension).

This step is more complicated for perspective projections.
The direction of the z-axis is reversed, so that increasing
values of z correspond to a larger distance from the eye.
After this step the objects are usually deformed, but that is
fixed in the last step.

Clipping (removal of parts outside the standard cube) is the
next step. The clipping has been made easier since we can
cut against the sides of a cube.

e The last step is to map the standard cube onto a 3D “view-
port”, where x and y correspond to a rectangular part of the
screen, and z lies in [0, 1]. glViewport sets up the viewport;
more about this later.

179

An example of a projection matrix. Suppose we have made the
call:

glortho(0,1, -1,5, 0,4);

The projection matrix, P, should map the view volume onto the
standard cube. The first step is to make a translation (the centre
of the view volume should be mapped to the origin) and then a
scaling so that all sides has length two.

In our example, the view volume is defined by: 0 < = < 1,
—1 < y<5and —4 < z < 0. So the following transformation
should work:

T = eye(4); T(1:3, 4) = [-0.5; -2; 2] % translate
and then scale

S = diag([2 1/3 -1/2 1]) % -1/2, reversal of z-axis

The product s * T is what OpenGL produces as well:

GL_PROJECTION_MATRIX

2 0 0 -1
0 0.333 0 -0.667
0 0 -0.5 -1
0 0 0 1

On the next page I have plotted the unit square using the view
volume above and without moving the eye. The window was
400x400 pixels and the viewport had the same dimension as the
window.

We can see that the square is deformed.

180

BB Viewing BO

Let us set the viewport: glViewport (20, 20, 60, 360);.
The lower left corner of the viewport is 20 pixels to the right
and above the lower left corner of the window. The width of
the viewport is 60 pixels and the height is 360. So the ratio
between height and width is six, which is the same ratio we had
in glortho, 0 < # < 1, —1 < y < 5. This causes the square to
get correctly scaled.

@B Viewing BO

181

Removing hidden objects

we are looking along the negative z—axis

The basic painter’s method:
1. compute the centre of mass (for example) for each polygon
2. sort the polygons according the z-coordinates of the centres

3. paint the polygons, in order of increasing z-coordinates

182

The depth buffer (z-buffer) method. We have a matrix (z-buffer)
containing the distances from a point to the eye and a
“framebuffer” (image memory) where we store the pixels.

set all element in the z-buffer to the distance to
the back clipping plane

for each polygon

for each pixel, with coords. (x, y, z), in the polygon

if z < z_buffer(x, y) then
z_buffer (x, y) =z
framebuffer(x, y) = the colour in (x, y, z)
end if
end

end

In Matlab we can choose between several methods:

>> h = figure;
>> set (h, ’'Renderer’)
[{painters} | zbuffer |

OpenGL | None]

None gives no rendering at all.

Here are some pros and cons with the different methods.
painters: fast for simple figures, users vector graphics (line-
to, moveto), good for PostScript, gives high resolution. Cannot
handle light, transparency or 24-bit colour surfaces. Can draw
incorrect figures (example next page).

zbuffer: uses bitmap (raster) graphics, faster than painter’s
(when complex figures), can use a lot of memory, can cope with
light but not transparency.

opengl: uses bitmap (raster) graphics, the fastest for complex
scenes (tries to use the machine’s graphics hardware), can handle
both light and transparency, but not Phong shading (later).

183

opengl sometimes renders images in an incorrect way.

A disadvantage with both zbuffer and opengl is that the
PostScript files can be very large.

% a demo—command that draws a surface
>> set(l,’'renderer’)

[{painters} | zbuffer | OpenGL |
>> print -depsc peak_paint.eps

>> peaks

None]

>> set (l,’'renderer’, ’'zbuffer’)
>> print -depsc peak z.eps

>> set (l,’'renderer’, ’'opengl’)
>> print -depsc peak ogl.eps

>> !1s -s peak¥*

6384 peak_ogl.eps 432 peak_paint.eps 6384 peak_z.eps

So the raster images require more than fifteen time as much
space. It is possible to change the print-resolution (help print,
see the -r option).

Note that opengl gives much faster graphics, on the math-
machines. Very useful if we want to rotate a complex image,
for example. The following images show one major disadvantage
with the painters algorithm in Matlab.

184

set (h, 'Renderer’, ’'painters’)

set (h, ’'Renderer’, ’'zbuffer’)
185

A few words about colours

The eye has two kinds of receptor cells. The cones are colour-
sensitive and the rods that cannot distinguish colour nor see fine
details. Each eye has 6-10% — 7-10° cones, each with its on nerve
cell, making it possible to see fine details.

The cones are concentrated in a small area, the fovea, in the
centre of the retina. The fovea, also called the “yellow spot”

is less than 1 square millimeter.

The number of rods is 75 - 10¢ — 150 - 10, and many rods are
attached to one nerve cell. The rods are spread out over the
retina surrounding the fovea. The rods are use for night vision,
and they will not be of interest in the following discussion.

Humans have three types of cones, sensitive to yellowish-green
light (Long wavelength), bluish-green (Medium) and blue-violetish
(Short) respectively. The last type is much less sensitive.

The peak wavelengths are 564 nm, 534 nm, and 420 nm
respectively.

This (trichromatism) is the reason it is sufficient with three
types of phosphors in a television tube and why we can use the
RGB-system of colours in computer graphics.

Phosphor should not mixed up of with Phosphorus, one of the
elements (symbol P). A typical phoshor is zinc sulfide with a few
ppm of copper. When bombarded by electrons this phosphor will
produce a green colour.

For more details: http://en.wikipedia.org/wiki/Phosphor.

Not all animals have three types of cones, chickens have as many
as 12 kinds of receptors, for example.

186

Not all humans have a complete set of cones; colour blindness.
About 10% of males and 1% of females have some form of
deficiency in their colour vision. The most common is a lack of
receptors for the L-cones (protanopia) or for the M-cones (deu-
teranopia). This makes it hard to distinguish between red and
green.

Note that even people with a full set of cones are less sensitive
to blue. This is one reason why it is bad to present fine detail
(e.g. small text) in blue on a black background. This is, unfor-
tunately, not so uncommon on the web, and it makes for hard
reading.

The RGB-system is the most common colour system in com-
puter graphics. A colour is described by the amounts of the
primary colours, red, green and blue. The minimum amount
is zero and if the maximum amount is one, the RGB-triple
[1,0,0] corresponds to red. [0,0,0] is black and [1,1,1] is white.
[0.9,0.9,0.9] is light gray etc.

There are other colour systems. In the HLS-system we use hue
(the type of colour from the spectrum), lightness and saturation
(the intensity of the colour, the purity) instead.

Of more interest, in this course, is the CMY-system. Cyan, Ma-
genta and Yellow are the so called complementary colours of red,
green and blue. Complementary, in the sense that
cyan+red=magenta-+green=yellow-+blue all equal white.

So the RGB-triples for cyan is [0,1,1], magenta has [1,0,1] and
yellow [1,1,0].

The RGB-system is an additive colour system, we add R, G
and B, to black, to get our colour. In a subtractive system, like
CMY, we start with white light and remove colours (think of
using a filter) to produce the colour.

187

To see how this works let us take the CMY-triple [0.4,0.5,0.2].
The corresponds to the RGB-triple [1,1,1]-[0.4,0.5,0.2]=[0.6,0.5,0.8].
To describe the “subtraction” we let white light pass through
three filters.

The first has the CMY-triple [0.4,0,0] (corresponding to RGB
[0.6,1,1], looks like light cyan). This filter will remove 0.4 of red.
The next filter has CMY [0,0.5,0] (RGB [1,0.5,1], light magenta)
and it removes 0.5 of green. The last filter, finally, has CMY
[0,0,0.2] (RGB [1,1,0.8], light yellow) removes 0.2 of blue. The
resulting colour is RGB [0.6,0.5,0.8] (a kind of grayish purple, I
think it looks like).

This is interesting when we, later, are going to look at the dif-
fuse reflection of light. Suppose white light is reflected from a
non-shiny surface, having the RGB-colour [0,1,1]. The reflected
light is void of red. (Reflection from shiny surfaces tend to be
white, regardless of the colour of the surface.)

This is used in printing, where the CMYK-system is common.
K stands for black (you can find the etymology below). Mixing
cyan-coloured pigments into a colourless paint will remove the
red colour component from the incoming white light and reflect
green and blue. Mixing C, M and Y would, in theory, remove all
the light giving a black surface. So why is a separate black ink
used for printing?

There are several reasons, according to Wikipeda: the mix of
CMY becomes “a dark murky color”. Using so much ink would
make the paper wet, requiring longer times for drying and high
quality paper. It is easier to write details (text) using black,
rather than having to mix three inks. Black ink may be cheaper.

188

There are problems mixing colour systems, since physical de-
vices such as a monitor or printer may have different colour
ranges (usually called the colour gamut of the device). The co-
lour gamut of a printer is usually a subset of that of a monitor.
The primaries R, G and B may different on different monitors,
as well. It is not uncommon that a colour image looks different
on two different systems.

Even if an RGB-colour on the monitor is representable on the
printer the relationship may be complicated. There are commer-
cial systems, colour samples on paper with a unique code (like
when you buy a new car or wallpaper; the systems, for printing,
are not free, however). On can pick the colours one needs and
tell the printer the codes. The printer should know how to pro-
duce the correct colours given the codes.

On the math-computers we have so called 24-bit colour (often
called true colour). Each pixel is represented by three bytes, one
each for red, green and blue. The total number of different co-
lours is (28)% = 22¢ = 16 777 216. Each byte can store an
unsigned integer between 0 and 255. So white is represented
by the RGB-triple [255,255,255].

On older systems a colour look-up table (CLUT) was often used.
Think of the CLUT as being a matrix, with three columns, one
for each of the primaries. The number of rows equals the number
of colours (a power of two, so 64, 128 or 256 colours, perhaps).

The pixels in the image store a row index, into the CLUT (so
this is often called indexed colour). Using 256 rows in the CLUT
makes the required memory for the image smaller (only one byte
per pixel instead of three).

189

One, very noticeable drawback is that each application (pro-
gram) usually has its own CLUT. When one moves the mouse
between windows, different CLUTs are used, but since a par-
ticular CLUT is used for all the windows on the screen there
will be a lot of colour flashes.

Some etymology (with web-sources):

magenta: 1860, in allusion to the Battle of Magenta, in Italy,
where the French and Sardinians defeated the Austrians in 1859,
because the brilliant crimson aniline dye was discovered shortly
after the battle.... www.etymonline.com

About K for black: In printing, a key plate was the plate which
printed the detail in an image. When printing color images by
combining multiple colors of inks, the colored inks usually did
not contain much image detail. The key plate, which was usually
impressed using black ink, provided the lines and/or contrast of
the image... www.wikipedia.org

Gamut: Medieval Latin gamma, lowest note of a medieval scale
(from Late Latin, 3d letter of the Greek alphabet)

1: the whole series of recognized musical notes

2: an entire range or series “ran the gamut from praise to con-
tempt” www.m-w.com

190

Shading models

Say we want to draw a green billiard ball. Here are some example
showing increasing levels of realism. Wire frame (left image),
hidden surface removal (right).

=\

=

SN
S

I i
pY
A

P

<7

Adding light: flat shading (left image), one colour for each
polygon. We can smooth out the colours: Gouraud- or Phong-
shading. Add highlights, “specular light” (right image).

191

Shading does nor mean “shadows”, but it means to color so that
the shades, of colour, pass gradually from one to another.

We would like to mimic different surface textures and mate-
rials: balls for billiards, tennis. Steel, copper etc. OpenGL does
not support the rendering of shadows, or realistic reflection and
refraction. If you have such needs look at the links (raytracing).

OpenGL does the light computation for each polygon and then
each pixel at a time. Shadows, reflection take too much time,
and are faked, but some physics is used.

In the following image the green * marks the light source. Note
that the sphere, to the left, gets as much light as the one to the
right, even though the left one is hidden.

Normal vectors will be important as will the location of the
eye and the direction of the incoming light. We can make the
computations for each of the primaries separately and then add
the resulting components at the end.

192

Two types of light sources:

e Point sources (can shine in all directions, like the Sun, or in
a limited cone, like a spotlight). We can have distant light
sources (the Sun) or local (a table lamp). It is faster to do
the computations for distant light sources since only direction
and not actual distance has to be considered.

Ambient light (surrounding) gives a general level of light in
the scene. This light source has not position or direction;
light is spread equally in all directions. Since OpenGL does
not handle the reflection, refraction etc. of light in a realistic
manner it must be faked. Without ambient light we get sharp
contrasts in the scene. Too much ambient gives a watered
down, insipid look.

Fran Merriam-Webster: www.m-w.com

Etymology: Latin ambient-, ambiens, present participle of ambi-
re to go around, from ambi- + ire to go — more at

ISSUE.

Date: 1596

: existing or present on all sides : ENCOMPASSING

‘We do not set the colour using RGB-vectors, instead there are
intensities for the light sources and material properties (reflec-
tion coefficients) for the objects (points) in the scene.

The ambient light has intensity I,, really one for each of the
primaries, so sa I, I,y och I;. Let I, stand for one of them.
Each corner of each polygon has a reflection coefficient for
ambient light p, (or rather p,, psg och pg). The corner gets
the light contribution p,I, (for each primary). The colours of
the corners will later be used to colour the whole surface of the
polygon.

193

‘We now look at light having a direction, and we will see how
much is reflected to the eye.

(a) (b) (]

(a) shows specular reflection (billiard ball)

(b) shows diffuse reflection (tennis ball). The reflected light is
spread equally in all directions.

(c) shows transparency and refraction. Transparency can be
simulated in OpenGL and Matlab.

‘We start with diffuse reflection. Since the light is spread equally
in all direction the position of the eye does not affect the light
computation (as long as the eye sees the front of the polygon).
The position of the polygon relative to the light source is of
importance, however.

Incoming light of constant width

normal

Widtp

S

o

02 o 0z 04 06 08 1

Suppose that the ray has width w,. It should be spread out over
an interval, of length w, = w,/ cos, along the x-axis.
194

The intensity of the light, along the x-axis, is proportional to
1/w, i.e. to cosp. So if the incoming light has intensity Iy, the
reflected light has intensity pglI4cos (for each primary).

This is called Lambert’s law.

‘We can use vectors to compute cos 1.

Let us only consider solid objects having outward normals. Note
that OpenGL does not compute normals for us (Matlab does)
so we have to fix them.

Let L be the normalized direction to the light source, and let
n be the normal to the surface in the point where the ray hits,
then cosy = L - n.
If L -n < 0 the backside of the polygon is hit by the light, but
according to our assumption we cannot so that side, so the
intensity becomes:

palamax [L - n, 0]

It is common to take p, = p4.

More etymology:

Main Entry: specular

Etymology: Latin specularis of a mirror, from speculum
Date: 1661

: of, relating to, or having the qualities of a mirror

195

Next, specular reflection. If we have a perfectly polished surface
and a spotlight is located in the L-direction, the eye will see a
reflected ray only if it is located along 7.

Real-life surfaces are not perfect, so a more realistic model will
show light also in the vicinity of the r-direction. The amount of
reflected light should decrease when we move away from 7.
The Phong reflection model (Bui Tuong Phong, b. Vietnam,
1977-1998) tries to capture this behaviour. The intensity of the
reflected light is

pIs(r - v)f
7 is as above and v is the normalized direction to the eye. f is
the “specular reflection coefficient” and it measures how much
the light is spread. A large f gives a small spread of light and a
small f gives a large spread. OpenGL approximates the angle,
by using the angle between n and L + v (which is ¢ /2 if all
the vectors lie in the same plane). This makes it unnecessary to
compute r (faster).

This is how the intensity varies with f:

From left to right: f = 1, 10, 100

Coe¢

The following image shows, from right to left, specular, diffuse
and ambient. The last sphere is rendered using all three.

Coeoe

The colour of the light matters as well. If we use red light on a
green sphere (using only diffuse), it will be black. The reason an
object is green is because it reflects green light.

If we have a local light source (not the Sun, say) the distance is
taken into account. The intensity of the source should decay as
1/7? (where r is the distance), but this does not look

realistic, so the programmer can set up a fake decay rate:

1/(a + br + cr?) (a, b and c can be adjusted).

197

We are now ready to add together the intensities. We should
add over all light sources and for the three primaries: sa:

f
I pols + palgmax [L - n, 0] + p,I; max [HE%H -n, 0]

distance
It is possible to add a general ambient source, which is not bound
to any point. There is also “emissive” color; an object can glow,
for example. Finally there is a factor for spotlights, which emit
light in a cone.

‘We have now computed a colour in each corner, and it is time
to colour the whole polygon, pixel by pixel. This can be done
in several ways. If we use the same colour for all the pixels, one
talks about flat shading. In this case we use one normal for the
whole polygon. The surface gets a faceted appearance.

To create smooth shading we must create more normals (by
calling glNormal). Suppose we have one normal in each corner.
In Matlab there is support for Gouraud shading and for Phong
shading. OpenGL only supports Gouraud shading.

Suppose this is the polygon, with corners a-d:

‘When colouring the polygon OpenGL works pixel-row by pixel-
row (scan lines). Suppose pixel p should be coloured. In Gouraud
shading we use linear interpolation of the intensities in a and c
to get a value in pl. Similarly the intensities in b and d are
combined to form a value in p2. Finally, the intensities in p1l
and p2 are combined to give the final value in p.

198

Phong shading gives a more realistic result, but it takes more
time to compute. Here new normals are computed in pl and
p2 using linear interpolation (as for the intensities in Gouraud
shading). Using linear interpolation we compute a new normal
in p. This new normal is used for doing the light computation in
pixel p.

In this image one can (on the screen at least) see that Phong
shading gives a less jagged highlight.

Phong left, Gouraud right

199

Normals in Matlab

When we create polygons and surfaces in Matlab, the normals
will be created for us. Consider the following code:

>> [X, ¥, Z] = sphere(1l0); % type sphere for the code
>> h = surf (X, Y, Z, ones(size(X)));
>> get (h) % part of the output
XData = [(11 by 11) double array]
YData = [(11 by 11) double array]
ZData = [(11 by 11) double array]
FaceLighting = flat
EdgeLighting = none
AmbientStrength = [0.3]
DiffuseStrength = [0.6]

SpecularStrength = [0.9]
SpecularExponent = [10]
SpecularColorReflectance = [1]

VertexNormals = [(11 by 11 by 3) double array]

% Run this code...
hold on
N = get (h, ’'VertexNormals');

d =0.5;
= 1:11
for k = 1:11
= X(j, k); y = ¥(j, k); z = 2(], k);
IN(j, k, 1) N(j, k, 2) N(§, k, 3)];
n=d*n / norm(n); % not normalized
plot3([x, x+n(1)], [y, y+n(2)], [z, z+n(3)], 'k")
end

»®
|

=]
]

end
view(-3.5, 28)
axis equal
axis off

200

Not quit the normals we would like. Matlab produces normals
to the polygons (it seems) but we would like to have the normals
of the sphere. Like this:

for j = 1:11
for k = 1:11

N(j, k, 1) = X(j, k);
N(j, k, 2) = ¥(j, k);
N(j, k, 3) = Z2(j, k);
end

end

set (h, ’'VertexNormals’,6 N)

One cannot see any difference, however.

By setting the normals to a random matrix produces differences
(when light has been switched on):

>> set (h, 'VertexNormals’, randn(size(N)))

Why does the surface look smooth with Gouraud- and Phong
shading? This is because we have one normal in each point, so
the polygons coming together in a point share this normal. This
gives a continuous variation over the edges.

This is not quite the case when we use the £il113-command.
Here is an example. I have reused the cylinder example.

The first plot uses surf (and light etc). The lines are the
normals (length 0.5).

The second plot uses £i113. I have reversed the direction of
some normals. The four normals for one polygon have the same
direction, so this gives something looking like flat shading.

In the third plot, I use the same number of normals as in the
second, but they have all been adjusted. This looks similar to
the surf-plot.

The only problem with surf is where the cylinder is closed along
a “seam”. The normals, on adjacent polygons along the seam,
have different directions which gives rise to a difference in co-
lour. So, to get a perfect result we should adjust the normals
along the seam so that they have the same direction.

202

surf

fill3 + new normals

Colour and light in Matlab

Let us start without light and look at colour only. Matlab sup-
ports something like indexed colour as well as 24-bit colour. First
something about indexed colour.

‘When we make a simple plot with mesh or surf, surf (X, Y, 2),
the colour is set by the height (z-value) in the following way.
Each window has a Colormap-property (like the CMAP we di-
scussed earlier). The default value is a 64x3 RGB-matrix. The
entries are double precision numbers in [0,1] (not [0,255] in this
case).

The smallest- and largest z-value are stored in a two-element
vector [emin, cmax]. Each axis-object stores such an array in
its CLim-property. The index, cmi, into the CMAP for a specific
c-value (¢ = z in this case), is given by the following expression:

emi = fix((c-emin) / (cmax-cmin) * cm_length) + 1

cm_length is the number of entries in the CMAP and fix rounds
towards zero.

It is possible to change [cmin, cmax] using the caxis-command.
This may be useful if we gradually add objects to a plot and
would like to avoid changing colours (we must know zmin and
zmax in advance). It may be useful when we have several axis
(subplots) in one figure, as well. It is easy to change CMAP,
colormap (CMAP) . CMAP does not have to have 64 entries.

colormap (' default’) sets the current figure’s CMAP to the
default, JET. There are 13 builtin functions that generate CMAPs
as well, such as pink, copper, hot, summer.

See the documentation for a complete list.

204

>> C = copper(4) % a small CMAP

C =
0 0 0
4.1667e-01 2.6040e-01 1.6583e-01
8.3333e-01 5.2080e-01 3.3167e-01
1.0000e+00 7.8120e-01 4.9750e-01

>> colormap (C) % changes the figure immediately

>> colormap (copper (128)) % we don’t have to use C

There is even a CMAP-editor, help colormapeditor (the Java-
gui must be switched on). brighten is another command.

Suppose we supply an extra matrix in the surf-command:

surf (X,Y,2,C). In this case caxis contains the min- and max
of ¢ and the c-values in the formula above are the c(j, k)-
elements.

The colorbar-command places a colour bar in the plot. This
provides a connection between colour and the numerical values
in the C-matrix (or the z-values if no C is present).

Now for 24-bit colour. We can type surf (X,Y,Z,C), where C
is a 3D-matrix. C(:, :,1) contains the red component and the
size should coincide with the coordinate data X etc. Here is a
silly example:

>> [X, ¥, 2] = peaks; % get some data

>> C(:, :, 1) = ones(size(X));
>> C(:, :, 2) = ones(size(X));
>> C(:, :, 3) = zeros(size(X));

>> surf(X, ¥, 2, C) % gives a yellow surface

205

Let us finally look at light and shading in Matlab. It resembles
OpenGL, but it is not always quite clear (to me) how it works.
OpenGL is simple in the sense that everything is specified in the
OpenGL standard.

[X, Y] = meshgrid(-2:0.2:2);
4 =X .* exp(-X."2 - ¥."2);

figure (1)
h = surf (X, ¥, 2);

% Here are some of the properties.

% Matlab has ONE AmbientStrength etc. and not

% one for every primary. To a certain extent this
% can be adjusted using the colour data.

%

color = [1 1 1];

set (h,
'FaceColor’, color,
’EdgeColor’, 'none’ ,
'EdgeLighting’, "phong’ ,
'Facelighting’, "phong’ ,
'AmbientStrength’, 0.23,
'DiffuseStrength’, 0.28,
' SpecularStrength’, 0.77,
' SpecularExponent’, 90)

lhl = light(’'Position’, [-10 -4 4],

'Style’, 'Infinite’);
lh2 = light ('Position’, [10 0 4],
"'Style’, 'Local’);

get (1hl)
Position = [-10 -4 4]
Color = [1 1 1]
Style = infinite

206

05

-0.5

207

There are some commands that set these properties for us. Let
us look at what they do when we have plotted a surface with
surf (slightly different things are done for a mesh since it does
not fill the polygons, which surf does). This is what happens
internally:

facecolor edgecolor
shading flat: flat none
shading interp: interp none
shading faceted: flat black
facelighting edgelighting
lighting flat: flat none
lighting gouraud: gouraud none
lighting phong: phong none
lighting none: none none

The material-command sets the reflection coefficients. It can
be used in several ways, e.g.

material shiny

material ([ka kd ks])

material ([ka kd ks n sc])

and it sets (part of) AmbientStrength, DiffuseStrength, Specu-
larStrength, SpecularExponent and SpecularColorReflectance.

It is possible to use shading interp without using light. What
it means is that a Gouraud-procedure is used to colour the inside

of a polygon.

The best way to understand what happens is to try:

208

[x, Y]

meshgrid(-2:0.2:2, -2:0.2:2);

4 =X .* exp(-X."2 - Y."2);
figure (1) =

S ' PONNS
surf (X, ¥, Z); ‘{“::\\ "’I\lllllll““}‘“::‘:‘
shading flat % flat shading S==
figure (2)

surf (X, ¥, 2);
shading faceted % flat shading with mesh lines

figure (3)
surf (X, ¥, 2);
shading interp % Gouraud shading

figure (4)
surf (X, ¥, 2);
shading interp % Gouraud shading

light % default light
lighting phong % changes face- och edgelighting

% [rho_a rho_d rho_s spec_exp]
material([0.4 0.6 0.5 30])

material metal
material dull
material shiny

%
%
%
% material default

209 210

The back and front of polygons % Default is reverselit
figure (3) etec.
A quote from the manual: . . set (h, ’'AmbientStrength’, 0.8, ... % NOTE!
“The default value for BackFaceLighting is reverselit. This ete.
setting reverses the direction of the vertex normals that face 'BackFaceLighting’, ’unlit’)

away from the camera, causing the interior surface to reflect
light towards the camera. Setting BackFaceLighting to unlit
disables lighting on faces with normals that point away from the
camera.”

[X, ¥, Z] = sphere(20);
Z(X <= 0 & Y <= 0) = NaN; %$ TRICK!
color = [1 0.5 0.1];

figure (1)

hold off

h = surf (X, Y, 2);

set (h, 'AmbientStrength’, 0.0, ... % NOTE
'DiffuseStrength’, 1.0,
! SpecularStrength’, 0.5,
! FaceColor’, color,
! EdgeColor’, color,
'Facelighting’, "phong’ ,
' Edgelighting’, ’phong’)

hold on

light_pos = [0 -1 2];

plot3(light_pos (1), light_pos(2), light_pos(3), ’'*’)
light ('Position’, light_pos)

axis equal ~

figure (2) etc.
set (h, ’'AmbientStrength’, 0.0,
etc.

’'BackFaceLighting’, ‘unlit’) % NOTE!

211

More 3D plot commands

Now that we have seen how to use more fancy graphics it is
time to list some of the remaining 3D-plot commands. They can,
essentially, be divided into two groups.

If we have a scalar quantity, like pressure or temperature,
defined in (x,y, z), we can use tools like isosurfaces or slices. If,
on the other hand, a vector (velocity) is defined in each point,
we would usually use some type of stream lines or arrows.

One cannot do justice to these functions using transparencies.
Many of the commands require lighting, transparency, and the
z-buffer. Also the description in the manual requires 45 pages.
My suggestion is that you try them, which is not hard work.
Almost all the commands have one or more examples at the end
of the help text. So just cut-and-paste!

Here is a list taken directly from the manual:

Functions for scalar Data

contourslice Draw contours in volume slice planes

isocaps Compute isosurface end-cap geometry
isocolors Compute the colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data

patch Create a patch (multipolygon) graphics object
reducepatch Reduce the number of patch faces
reducevolume Reduce the number of elements in a

volume data set
shrinkfaces Reduce the size of each patch face
slice Draw slice planes in volume

smooth3 Smooth 3-D data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set

213

Functions for Vector Data

coneplot Plot velocity vectors as cones in 3-D vector fields
curl Compute the curl and angular velocity of a
3-D vector field
divergence Compute the divergence of a 3-D vector field
interpstreamspeed Interpolate streamline vertices from
vector-field magnitudes
streamline Draw stream lines from 2-D or 3-D vector data
streamparticles Draw stream particles from
vector volume data
streamribbon Draw stream ribbons from vector volume data
streamslice Draw well-spaced stream lines from
vector volume data

streamtube Draw stream tubes from vector volume data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data

volumebounds Return coordinate and color limits
for volume (scalar and vector)

To use these routines the coordinates must usually be gridded
(as if produced by meshgrid).

214

About OpenGL, according to
http://www.opengl.org/about/overview/

OpenGL is the premier environment for developing portable,
interactive 2D and 3D graphics applications. Since its introduc-
tion in 1992, OpenGL has become the industry’s most widely
used and supported 2D and 3D graphics application program-
ming interface (API), bringing thousands of applications to a
wide variety of computer platforms...

4.010 What is GLU? How is it different from OpenGL?

If you think of OpenGL as a low-level 3D graphics library, think
of GLU as adding some higher-level functionality not provided
by OpenGL. Some of GLU’s features include:

... Specialty transformation matrices for creating perspective
and orthographic projections, positioning a camera, and selec-
tion/picking. Rendering of disk, cylinder, and sphere primitives

3.010 What is GLUT? How is it different from OpenGL?

Because OpenGL doesn’t provide routines for interfacing with
a windowing system or input devices, an application must use a
variety of other platform-specific routines for this purpose. The
result is nonportable code.

Furthermore, these platform-specific routines tend to be full-
featured, which complicates construction of small programs and
simple demos.

GLUT is a library that addresses these issues by providing a

platform-independent interface to window management, menus,
and input devices in a simple and elegant manner.

215

Some OpenGL-examples

How can we create the following image using OpenGL and C?

@I[E My first aurve EEE

After having reshaped the window:

[e][E My first curve B

BIE My first cufENIE

Here is the C-program. If you have not seen C before, see the
Diary. The line numbers are not part of the program.

216

1 // I'm using C++-comments // in this code. 38 void MyInit ()
2 #include <GL/glut.h> // includes gl.h, glu.h as well 39 {
3 #include <stdlib.h> // For void exit (int) 40 glClearColor(l, 1, 1, 0); // white to erase
4 41
5 void Display(); // Prototypes 42 // set up projection matrix
6 void MyInit(); 43 glMatrixMode (GL_PROJECTION) ;
7 void Reshape (int, int); 44 glLoadIdentity(); // matrix = I
8 void KeyHandler (unsigned char, int, int); 45
[} 46 // 2D orthographic projection
10 // arge = argument count >= 1 (command name first) 41 // x_min, x_max, y_min, y_max
11 // argv = arg vector (array of pointers to char) 48 gluOrtho2D (0, 2, -1, 1);
12 49
13 int main(int argc, char *argv[]) 50 // set the modelview matrix to I
14 { 51 glMatrixMode (GL_MODELVIEW) ;
15 glutInit (&argc, argv); 52 glLoadIdentity();
16 53 }
17 // use RGB-color and not indexed color 54 void Display ()
18 glutInitDisplayMode (GLUT_RGB) ; 55 {
19 56 float x;
20 // width = 500, height = 300 pixels 57 // clear color buffer, i.e. erase
21 glutInitWindowSize (500, 300); 58 glClear (GL_COLOR_BUFFER_BIT) ;
22 59
23 // (0, 0) upper-left corner of screen 60 glColor3£(0, 0, 1); // blue
24 glutInitWindowPosition (10, 10); 61 glBegin (GL_LINE_ STRIP); // draw solid curve
25 glutCreateWindow ("My first curve"); // title 62 glVertex2£ (0, 1); // define point
26 63 glVertex2£(1.9, -0.9); // define point
27 // the following calls define three callbacks 64 glEnd() ; // end of curve
28 glutDisplayFunc (Display) ; // at re-displays 65
29 glutReshapeFunc (Reshape) ; // change in size 66 // Note that glColor is in effect for all
30 glutKeyboardFunc (KeyHandler); // keypress 67 // points defined by glVertex2f.
31 68 glColor3f(1, 0, 0); // new color
32 MyInit(); // my own initializations 69 glPointSize (5); // larger points
33 glutMainLoop(); // wait for events 70 glBegin (GL_POINTS) ; // draw points
34 return 0; 71 for(x = 0; x < 1.99; x += 0.1)
35 } 72 glVertex2f(x, 1 - x); // define point
36 73 glEnd(); // end of GL_POINTS
37 74
217 218
15 glFlush(); // force drawing 5-8: Prototypes.
7%} 13: argv and argc are not used in our case.
” 33: We never return from glutMainLoop.
78 void Reshape (int w, int h) // new size in pixels
79 | 40: Color values are floats, but we are using the automatic con-
80 int border = 20; // a frame around the curve version between int and float in this case. The last values is the
81 alpha-value (for transparency).
82 // area where we draw the curve, positive
83 int size_of_curve; 54: Display is called to draw the image. Called after Reshape.
84 int low left x, low left y; // viewport
85 58: Fill using the color defined on line 40.
86 if (w> h) {
87 if (h < 2 * border) border = 0; 60: 3f = three floats. There are 32 different glColor-routines,
88 size_of_curve = h — 2 * border; // >= 0 e.g. glColor3fv which takes a float vector with three elements
89 low_left_x = 0.5 * (w — size_of_curve); glColor3£(0.0, 0.0, 1.0); is OK as well.
90 low_left_y = border;
91 } else { 61: glBegin defines how the glvVertex-calls should be interpre-
92 if (w < 2 * border) border = 0; ted, e.g. like points on a curve or like separate points. Com-
93 size of curve = w — 2 * border; pare Matlab, plot (x, y) and plot(x, y, ‘o’). There are:
94 low_left_x = border; GL_POINTS, GL_LINES, GL_LINE STRIP, GL_LINE LOOP, GL_TRIANGLES,
95 low_left y = 0.5 * (h — size_of curve); GL_TRIANGLE STRIP, GL_TRIANGLE FAN,
96 } GL_QUADS, GL QUAD STRIP, and GL POLYGON.
97 See the man-page for glBegin for details.
98 glvViewport (low_left_x, low_left_y,
99 size_of_curve, size_of_curve); 78: Called when a window is created and when it is modified
100 } in size. We must rescale things so that the curve is not defor-
101 med.
102 void KeyHandler (unsigned char key, int x, int y) A viewport is rectangular area of the window
103 { x, y, width, height.
104 if (key == 'q’ || key == 27)
105 exit (0);
106 }
219 220

This is the idea behind the values. We get two cases. If w is larger
than h, the new width and height, of the window:

| border (x2, y2) |
| F=—————— + |
	curve	
F=—————— +		
(x1, yl) border		

size_of_curve = h - 2 * border (size of square)

yl = border

x1l =w / 2 - size_of _curve / 2
x2 = x1 + size of curve

y2 = yl + size_of_curve

Similarly when w is less than h.

102: This routine is called whenever we press a key and when
the mouse is placed in the window. (x, y) is the position of the
mouse, in pixels, (0, 0) = upper left. We exit the program if q
or escape is pressed. escape has character code 27.

221

A typical OpenGL manual page:

% man glvertex (in edited form)

Misc. Reference Manual Pages GLVERTEX ()
NAME

glVertex2d, glVertex2f, glVertex2i, glVertex2s,
glVertex3d, glVertex3f, glVertex3i, glVertex3s,
glVertex4d, glVertex4f, glVertex4i, glVertexds,

glvertex2dv, glVertex2fv, glVertex2iv, glVertex2sv,
glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,
glVertex4dv, glVertex4fv, glVertex4iv, glVertexdsv
— specify a vertex

C SPECIFICATION

void glVertex2d(GLdouble x, GLdouble
void glVertex2f(GLfloat x, GLfloat
void glVertex2i(GLint X, GLint

Ko

void glVertex3d(GLdouble x, GLdouble y, GLdouble z)
void glVertex3f(GLfloat x, GLfloat vy, GLfloat 1z)

PARAMETERS

X, Y, 2, w Specify x, y, z, and w coordinates of a
vertex. Not all parameters are present
in all forms of the command.

C SPECIFICATION
void glVertex2dv(const GLdouble *v)

void glVertex2fv(const GLfloat *v)

void glVertex3dv(const GLdouble *v)
void glVertex3fv(const GLfloat *v)

222

const protects the elements in the array from change.
TE’s comment.

PARAMETERS

v Specifies a pointer to an array of two, three, or
four elements. The elements of a two-element array
are x and y; of a three-element array, x, y, and z;
and of a four-element array, x, y, z, and w.

DESCRIPTION

glVertex commands are used within glBegin/glEnd pairs
to specify point, line, and polygon vertices. The
current color, normal, and texture coordinates are
associated with the vertex when glVertex is called.

When only x and y are specified, z defaults to 0.0 and
w defaults to 1.0. When x, y, and z are specified, w
defaults to 1.0.

NOTES
Invoking glVertex outside of a glBegin/glEnd pair
results in undefined behavior.

SEE ALSO

glBegin, glCalllist, glColor, glEdgeFlag, glEvalCoord,
glIndex, glMaterial, glNormal, glRect, glTexCoord

223

A careful OpenGL programmer uses the OpenGL types (I have
not), e.g.:

void Display (void)
{

GLfloat color[3] = {0, O, 1}, x;
glClear (GL_COLOR BUFFER_BIT);
glColor3fv(color);

glBegin (GL_LINE_STRIP);
for(x = 0; x < 1.99; x += 0.1)
glvertex2f(x, 1 - x);
glEnd();

However, looking in /usr/include/GL/gl.h one sees that:

typedef unsigned int GLenum;
typedef unsigned char GLboolean;
typedef unsigned int GLbitfield;
typedef signed char GLbyte;
typedef short GLshort;

typedef int GLint;

typedef int GLsizei;

typedef unsigned char GLubyte;
typedef unsigned short GLushort;
typedef unsigned int GLuint;
typedef float GLfloat;

typedef float GLclampf;

typedef double GLdouble;

typedef double GLclampd;

typedef void GLvoid;

224

Here is a simple 3D-example. Reshape and KeyHandler are
unchanged from the previous example (and are not included).

#include <GL/glut.h>
#include <stdlib.h>

void Display();
void MyInit();
Reshape (int,

void int);

void KeyHandler (unsigned char,
DrawCoordSys () ;

DrawSquares () ;

int, int);
void

void

int main(int argc,
{
glutInit (&argec, argv);
// switch on Z-buffer:
glutInitDisplayMode (GLUT_RGB |

char *argv[])

GLUT_DEPTH
GLUT_DEPTH) ;

// draw the squares
// draw a coord syst.

DrawSquares () ;
DrawCoordSys () ;

glFlush();

void MyInit ()
{
glClearColor(l, 1, 1, 0);
glEnable (GL_DEPTH_TEST); // enable Z-buffer
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glortho(-2, 2, -2, 2, 0, 3); // view volume
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

16 glutInitWindowSize (300, 300); 53 gluLookAt (1,1,1, 0,0,0, 0,1,0); // place eye
17 glutInitWindowPosition (10, 10); 54 }

18 glutCreateWindow ("A 3D-example"); 55

19 glutDisplayFunc (Display) ; 56 void DrawCoordSys ()

20 glutReshapeFunc (Reshape) ; 57 {

21 glutKeyboardFunc (KeyHandler) ; 8 float color[] = {0, 0, 0}, p[]l = {0, 0, O};
2 MyInit(); 59 char xyz[] ={'x", 'y, '2"};

23 glutMainLoop () ; 60 int axis;

24 return O; 61

2 } 62 glLineWidth(2);

26 63 for (axis = 0; axis <= 2; axis++) {

o 64 color[axis] = 1;

2 void Display() 65 glColor3fv(color);

2 { 66 color[axis] = 0; // back to black

30 // clear color- and Z-buffer (depth buffer) 67

" glClear (GL_COLOR_BUFFER_BIT | // NOT || o glBegin (GL_LINE_STRIP);

- GL_DEPTH_BUFFER_BIT) ; 6 glVertex3£fv(p);

3 70 plaxis] = 1; glVertex3fv(p);

3 71 glEnd() ;

s 225 " 226

73 glColor3fv(color); Handling the mouse

74 plaxis] = 1.1; glRasterPos3fv(p);

75 glutBitmapCharacter (GLUT_BITMAP_9 BY_ 15, T . i i i

i xyz[axis]) ; void MouseHandler (int, int, int, int);

(44 plaxis] = 0;

8 } int main(int arge, char *argv[])

79} {

80 void DrawSquares () o

ot { glutMouseFunc (MouseHandler) ;

82 // red unit square at z = 0.5 o

83 glColoxr3£f (1, 0, 0); }

84 glBegin (GL_POLYGON) ;

. glvVertex3£(0, 0, 0.5); void MouseHandler (int button, int state, int x, int y)
% glvVertex3£(l, 0, 0.5); 5*

87 glVertex3f (1, 1, 0.5);

o glVertex3£(0, 1, 0.5); button: one of GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON,
o glEnd() ; or GLUT RIGHT BUTTON. state is either GLUT UP or
w0 GLUT_DOWN indicating whether the callback was due to
o // blue unit square at z = -0.5 a release or press respectively.

glColor3£(0, 0, 1);
glBegin (GL_POLYGON) ;

glVertex3£f(0, 0, -0.5);

glVertex3f(1, 0, -0.5);

glvertex3f(1, 1, -0.5);

glvertex3f(0, 1, -0.5);
glEnd();

}

It is possible to call glColor once for every glVertex. The po-
lygon is then coloured using interpolation, provided smooth sha-

ding is on, which is the default (g1ShadeModel (GL_SMOOTH)). If

one has switched on flat shading (g1ShadeModel (GL_FLAT)) the
colour of the first vertex in the polygon is used to colour the
whole polygon.

227

If a menu is attached to a button for a window,
mouse callbacks will not be generated for that
button. (x, y) = (0, 0) upper-left

*/

}

If the display should be redrawn call glutPostRedisplay() ;.
Do not call Display () ; directly.

‘We create a square window: glutInitWindowSize (300,

The next page shows how rotations work. main and DrawCoordSys
have not been included.

300) ;.

228

1 #include <GL/glut.h>

2 void MouseHandler (int, int, int, int);
3 void Display();

4 void MyInit();

5 void DrawCoordSys () ;

7 void MyInit ()
8 |
9 glClearColor(l, 1, 1, 0);

39 void Display ()
40 {

41 glClear (GL_COLOR BUFFER BIT |
42 GL_DEPTH_ BUFFER BIT);
43 DrawCoordSys () ;

44 glFlush();

45 }

14: The gluPerspective arguments are:

i‘: giEnable (GL_DEPTH_TEST); “field of view angle” (in degrees) in the y-direction.
u g1lMat rixMode (GL_PROJECTION) ; “asPect .ratlo” that determines the field of view in the
13 glLoadIdentity(); x-direction. L. X i .
14 gluPerspective (20, 1, 1, 10); The aspect ratio is the ratio of x (width) to y (height).
5 “distance from the viewer” to the near clipping plane (> 0).
16 g1MatrixMode (GL_MODELVIEW) ; “distance from the viewer” to the far clipping plane (> 0).
i: :izzz:i::l::?;?s(f ! 0,0,0, 0,1,0); 21: VV'hen clicking on the mouse we get the following
v} coordinate systems:
20 void
21 MouseHandler (int button, int state, int x, int y) v x
2 | |
23 if (state == GLUT _UP) { |——— x —_— x |-—— z —_—z
2 switch (button) { // new statement / /1 / /1
25 case GLUT_LEFT_BUTTON Zz vy | y x |
26 glRotatef (90, 1, 0, 0); // Rx z y
27 break; // NOTE!
28 case GLUT_MIDDLE_ BUTTON Initially After Rx After Ry After Rz
29 glRotatef (90, 0, 1, 0); // Ry
30 break;
31 case GLUT_RIGHT_BUTTON
32 glRotatef (90, 0, 0, 1); // Rz
33 break;
34 }
35 glutPostRedisplay() ;
36 }
37 }
229 230
The next program contains several new OpenGL-constructs. 29 MyInit();
Double buffering, lighting and materials. 30 glutMainLoop () ;
31 return O;

The program draws two spheres (radius one), a red centered
on the origin and a green centered on (2, 0, 0). A light is placed
at (5, 0, 0). When + is pressed the spheres rotate around the
origin in a ccw fashion, and when - is pressed they rotate the
other way. By using a menu we can make the light follow the
spheres or to be stationary.

1 #include <GL/glut.h>
2 #include <stdlib.h>

4 void Display();

5 void MyInit();

6 void KeyHandler (unsigned char, int, int);
7 void MenuHandler (int); // For menus

8 void CreateObject();

9 int rotating_light = 0; // global variable
11 int main(int arge, char *argv[])

12 {

13 glutInit (&arge, argv);

14

15 // GLUT_DOUBLE = double buffering

16 glutInitDisplayMode (GLUT_RGB | GLUT_DEPTH |
17 GLUT_DOUBLE) ;

18

19 glutInitWindowSize (500, 500);

20 glutCreateWindow ("Spheres") ;

21 glutKeyboardFunc (KeyHandler) ;

22 glutCreateMenu (MenuHandler) ; // Menu

23 glutAddMenuEntry ("Rotating light", 1);

24 glutAddMenuEntry ("Stationary light", 2);

25 glutAddMenuEntry ("Quit", 3);

26 glutAttachMenu (GLUT RIGHT BUTTON); // for example

28 glutDisplayFunc (Displﬁy) ;

32 }
33 void Display ()
34 {

35 glClear (GL_COLOR BUFFER BIT |

36 GL_DEPTH BUFFER BIT);

37

38 CreateObject () ; // my own routine
39 glFlush();

40 glutSwapBuffers(); // double buffering

41 }
42 void MyInit ()
43 {

44 float

45 light_pos[] = {5, 0, 0, 0},

46 light_ambient[] = {0.2, 0.2, 0.2, 1},

a1 light_diffuse[] ={1, 1, 1, 1},

48 light_specular[] = {1, 1, 1, 1};

49

50 glClearColor(l, 1, 1, 0);

51 glMatrixMode (GL_PROJECTION) ;

52 glLoadIdentity();

53 gluPerspective (45, 1, 1, 100);

54

55 glMatrixMode (GL_MODELVIEW) ;

56 glLoadIdentity();

57 glulookAt (0,0,10, 0,0,0, 0,1,0);

58

59 // set up ambient, diffuse, and specular

60 // components for light 0

61

62 glLightfv (GL_LIGHTO, GL_AMBIENT, light_ambient);
63 glLightfv (GL_LIGHTO, GL_DIFFUSE, light_diffuse);
64 glLightfv (GL_LIGHTO, GL_SPECULAR, light_specular);

232

78

glEnable (GL_LIGHTING) ;
glEnable (GL_LIGHTO) ;

// switch on lighting
// at least 8 lamps

// set the position of lightO
glLightfv (GL_LIGHTO, GL_POSITION, light_pos);

// switch on smooth shading; the other
// alternative is GL_FLAT
glShadeModel (GL_SMOOTH) ;

glEnable (GL_DEPTH_TEST) ;

}
void CreateObject ()

{

float // material properties (refl. coeff.)

white re[] = {1, 1, 1, 1},
red_rcl] = {1, o0, 0, 1},
green_rc[] = {0, 1, 0, 1},
spec_exp = 100;

// define material properties for front face
glMaterialfv (GL_FRONT, GL_AMBIENT,
glMaterialfv (GL_FRONT, GL DIFFUSE,
glMaterialfv (GL_FRONT, GL_SPECULAR,
glMaterialf (GL_FRONT, GL_SHININESS,

white_rc);
red_rc);

white rc);
spec_exp) ;

// create the polygons and normals for a

// sphere; radius, resolution along

// longitudes and latidudes

glutSolidSphere (1, 20, 20);

// the translate should be temporary

glPushMatrix () ;
glTranslatef(2, 0, O0);
glMaterialfv (GL_FRONT,

glutSolidSphere (1, 20,
233

GL_DIFFUSE, green_rc);
20);

103

glPopMatrix();
}

void KeyHandler (unsigned char key,

{
float 1light pos[] =

int x, int y)

{5, 0, 0, 0};
if (key == ’q’)
exit (0);
else if (key == '+')
glRotatef (3, 0, 1,
else if (key == '-')
glRotatef (-3, 0, 1,
else
return;

0); // Ry, 3 degrees

0); // Ry, -3 degrees

// The position of a light is affected by M, so...
if (rotating_light) // Transform by M

glLightfv (GL_LIGHTO, GL_POSITION, light_pos);

else { // Stationary light
glPushMatrix();
glLoadIdentity(); // Do NOT multiply by M

glLightfv (GL_LIGHT0, GL_POSITION,

glPopMatrix () ;

light_pos);

glutPostRedisplay () ;
}
void MenuHandler (int id) // id =
{
if (id == 1)
rotating_light = 1;
else if (id == 2)
rotating light = 0;
else if (id == 3)
exit (0);

// update image

menu alternative

// global variable

// Quit

234

45-etc: Define light properties.

If last element in 1ight pos = 0, skip the actual distance to the
light source, just look at the direction. If the sphere is centered
on (8, 0, 0) the light still comes from the right. If the compo-
nent is 1 the position is taken into account and a sphere centered
on (8, 0, 0) is lit from the left.

The fourth element in light ambient etc. is for transparent
materials.

122-: If we do not move the light, it will always come from the
right.

235

More on animation

In the previous example we used double buffering to get a smooth
animation (line 17, 41). This should be used in the planet-lab as
well, but a difference is that the planets should move on their
own, we should not have to press any buttons.

To fix that we define an “idle-callback”, a callback that OpenGL
executes when it is idle.

‘We set the callback by glutIdleFunc (idle callback),

where idle callback, is our callback routine. In this routine
one updates the positions of the Earth and Moon and then calls
glutPostRedisplay ().

It is possible to solve the updating problem in several ways.
In some solutions it is necessary for the callback to “remember”
values between calls. We can do that by using global variables.
Another alternative is to use static variables. Here are two silly
examples.

#include <stdio.h>
void idle_func();

int remember_me = 0; // global variable (in this file)
int main(int argc,
{
idle_func();
return O;

char *argv[])

idle_func(); idle_func();

void idle_func()
{
remember_me++;
printf ("remember_me =

%$d\n", remember_me);

236

Here is another way:

#include <stdio.h>
void idle_ func();

int main(int argc, char *argv[])
{
idle func();
return O;

idle func(); idle func();

void idle_func()

{

static int remember_me = O0; // NOTE static
remember me++;
printf ("remember_me = %d\n", remember_me);

}
Both solutions will produce the following printout:

remember me = 1
2
3

remember me
remember me

One difference between these programs is the remember me is
local to the function in the second case, but accessible to all
functions in the first program.

237

Textures

Sometimes one can increase the level of realism by using
textures. A texture is a matrix with colour values, e.g. an image.
In one lab you are going to simulate the Sun-Earth-Moon system,
using textures for the Earth and Moon. Textures are common
in computer games, e.g. a brick wall in a castle would be drawn
using a texture instead of drawing brick by brick. A texture
could be the result of a computation as well, a procedural tex-
ture. Graphics cards have support for working with textures.

The default behaviour (can be changed) is that the colour of
the texture will be mixed with the colour of the pixels

in a polygon.

An image is made up by a finite set of pixels (often called texels
in this context) but using some form of interpolation OpenGL
will provide the colour in an arbitrary point in the texture:
texture(s, t). s and t are two coordinates, 0 < s, < 1 (usually).

We need to map the texture onto a surface, e.g. a rectangle.
In the lab we will map a texture onto a sphere. We do this by
giving an (s, t)-pair for every (x, y, z) on the surface. So the
code may look something like

compute s, t, x, y and z

glTexCoord2f (s, t);
glVertex3f(x, y, z);

OpenGL must be able to change the size of the texture, e.g. if
we change the size of the window. More about that later on.

To create the texture we need to know how it should be
stored. My examples assume that every texel is represented by
an RGB-triple, each colour consisting of an unsigned byte. The
datatype in OpenGL is GLubyte. In the GL-header file, g1.h, it
says typedef unsigned char GLubyte;.

238

In the manual page for glTexImage2D it says:

The first element corresponds to the lower left corner of the tex-
ture image. Subsequent elements progress left-to-right through
the remaining texels in the lowest row of the texture image, and
then in successively higher rows of the texture image. The final
element corresponds to the upper right corner of the texture
image.

Here is the order if the width is 3 and the height is 2.

3 4 5
0o 1 2

If we store the RGB-triples in sequence in an one-dimensional
array it would look like this.

r(0) g(0) b(0) texel 0
r(l) g(l) b(l) texel 1
r(2) g(2) b(2) texel 2
r(3) g(3) b(3) texel 3
r(4) g(4) b(4) texel 4
r(5) g(5) b(5) texel 5

The colours are stored in byte order in memory, so an array
Glubyte vec[2 *3 * 3]; would work like this:

vec[0] <-> red(0)
vec[l] <-> green(0)
vec[2] <-> blue(0)
vec[3] <-> red(1l)
ete.

Another way is to use a matrix. In C the rightmost dimension
varies fastest (colour) then comes the columns and last the rows,
so like this:

239

Glubyte mat[2] [3][3];

mat[0] [0] [O] // red
mat [0] [0] [1] // green
mat [0] [0] [2] // blue
mat[0] [1] [O] // red
mat[0] [1][1]

mat[0] [1][2]

mat [0] [2] [0]
mat[0] [2] [1]

mat [0] [2] [2]

mat[1] [0] [0] Next row
mat[1][0] [1]
mat[1][0] [2]
mat[1][1][0]
mat[1][1][1]
mat[1][1][2]
mat[1][2] [0]
mat[1][2] [1]
mat[1][2] [2]

Usually we would have much larger textures than this. Small
textures may, in fact, lead to problems. It used to be that the
width and height had to be powers of two. Some implementations
require even numbers and perhaps a minimum size. One reason
for this is performance. Some machines have hardware that is far
more efficient at moving data to and from the framebuffer if the
data is aligned on two-byte, four-byte, or eight-byte boundaries
in processor memory.

The default alignment is four, and in our example one row occu-
pies 3-3 = 9 bytes, leading to misaligned rows (and an incorrect
image on the screen). If we pad the matrix

Glubyte tex[2][4][3];

keeping the values of height and width, it works. Another way
is to change the alignment by the following calls:

240

glPixelStorei (GL_PACK_ALIGNMENT, 1);
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);

Here comes a small example where we construct the textures
using a function. First a routine MakeTexture which is called
from main (before glutMainLoop is called).

void MakeTexture()
{
int width = 3, height = 2;
GLubyte mat [height] [width] [3],
vec[3 * width * height];

// loops are an alternative :-)

mat[0] [0] [0] = mat[0][0][1] = mat[0][0][2] = 50;
mat[0] [1][0] = mat[0][1][1] = mat[0][1][2] = 100;
mat[0] [2] [0] = mat[0] [2][1] = mat[0][2][2] = 150;

mat[1][0][0] = mat[1][0][1] = mat[1][0][2] = 250;
mat[1][1][0] = mat[1][1][1] = mat[1][1][2] = 200;
mat[1] [2][0] = mat[1][2][1] = mat[1][2][2] = 150;

vec[0] = vec[l] = vec[2] = 150;
vec[3] = vec[4] = vec[5] = 200;
vec[6] = vec[7] = vec[8] = 250;
vec[9] = vec[l0] = vec[ll] = 150;
vec[l2] = vec[1l3] = vec[1l4] = 100;
vec[l5] = vec[l6] = vec[l7] = 50;

// For all future pixel operations
glPixelStorei (GL_PACK_ALIGNMENT, 1);
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);

241

glBindTexture (GL_TEXTURE_2D, 100);

// Done for each texture

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MIN_FILTER,
GL_NEAREST) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MAG_FILTER,
GL_NEAREST) ;

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height,

0, GL_RGB, GL_UNSIGNED_BYTE, mat);

glBindTexture (GL_TEXTURE_2D, 200);
glTexParameteri (GL_TEXTURE_ 2D, GL_TEXTURE MIN_FILTER,
GL_NEAREST) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MAG FILTER,
GL_NEAREST) ;
glTexImage2D (GL_TEXTURE 2D, 0, GL_RGB, width, height,
0, GL_RGB, GL UNSIGNED BYTE, vec);

glEnable (GL_TEXTURE_2D) ;
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_MODULATE) ;
}

Note that we normally would not change the alighment.
glBindTexture gives the texture, to be defined, a name (a
positive integer, 100 in this case).

‘We do not usually have an image that contains the same num-
ber of texels as the number of pixels in the rectangle (polygon).
glTexParameteri is used to define what should happen if the
rectangle is smaller or larger than the texture.

GL_TEXTURE MIN FILTER defines the function which is used when
the texture must be minified. GL_TEXTURE MAG FILTER defines
the function which is used when the texture must be magnified.

242

When texture (s, t) is needed, GL NEAREST tells OpenGL to
use colour from the nearest pixel (in || ||1) in the original image.
Another choice is GL_LINEAR. This uses a weighted average of
the four texture elements that are closest to the center of the
pixel being textured.

GL_NEAREST is generally faster than GL_LINEAR, but can
produce textured images with sharper edges because the
transition between texture elements is not as smooth.

In glTexImage2D we finally make the image data available to
the OpenGL-system. The parameters are: GL_TEXTURE 2D
defines the type of the texture, level specifies the level of detail.
Level 0 is the base level.

GL_RGB specifies the number of colours in the texture (we could
have written 3). width and height obvious. It is possible to have
a border around the texture, we say that its width is zero. This
GL RGB specifies the format of the data (mat and vec contain
RGB-triples), and GL_UNSIGNED BYTE is the type. Finally comes
an address to the data.

glEnable enables texturing.

The last call (which is unnecessary, since I have chosen the
default value) says that the colour of the textures should be
mixed with the colour of the object.

So the resulting red (ambient + diffuse) component,

for example, in a pixel becomes r; - 1, where r; is the red
component originating from the ordinary shading computation
and 7 is the red component from the texture.

In the Display-routine below we bind the two textures to two
rectangles. In this simple program lighting is not used, so the
textures will modulate the colour white, set by

glColor3£(1l, 1, 1);.

243

The call of glBindTexture picks the 100-texture. The pairs
of calls to glTexCoord2f and glVertex3f defines the mapping
between image and rectangle. Note that we can deform the image
by changing the mapping.

void Display ()

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glColor3f (1, 1, 1);

glBindTexture (GL_TEXTURE 2D, 100);
glBegin (GL_POLYGON) ;

glTexCoord2£(0.0, 0.0); glVertex3£(0.0, 0.0, 0.5);
glTexCoord2£(1.0, 0.0); glVertex3£(1.0, 0.0, 0.5);
glTexCoord2£(1.0, 1.0); glVertex3£(1.0, 1.0, 0.5);
glTexCoord2£(0.0, 1.0); glVertex3£(0.0, 1.0, 0.5);

glEnd();

glBindTexture (GL_TEXTURE_2D, 200);

glBegin (GL_POLYGON) ;
glTexCoord2£ (0.0, 0.0); glVertex3£(0.5, 1.1, 0.5);
glTexCoord2£(1.0, 0.0); glVertex3f£(2.0, 1.1, 0.5);
glTexCoord2£(1.0, 1.0); glVertex3f(2.0, 2.0, 0.5);
glTexCoord2£ (0.0, 1.0); glVertex3£(0.5, 2.0, 0.5);

glEnd();

glFlush();

}

Here is part of the window (since I used grayscale in the images
it is easy to interpret the result). The origin is in the lower left
corner of the leftmost black rectangle.

244

Let us try a harder example. We are going to wrap an OpenGL-
logo on a cylinder. The cylinder is symmetric around the y-
axis. An additional problem is that we are going to use light,
so the program has to compute normals. Just to see that I have

void MakeTexture ()

{

produced the image in the correct way the program puts the int r, g, b, row, col, width = 220, height = 97;

image on a rectangle as well. I used xv to transform the image, char c;

from gif to PBM/PGM/PPM (ascii) (as it says in xv). I named GLubyte logo[height] [width] [3];

the file opengl.ppm and the first lines look like: FILE *fp;

P3 . " v omenm

CREATOR: XV version 3.10a-jumboFix+Enh of 20050501 if ((fp = fopen("opengl.ppm”, "r")) == NULL) {

220 97 printf ("Problems opening opengl.ppm.\n");

255 exit (1);

255 255 255 255 255 255 255 255 255 255 255 255 255 255 | }

255 255 255 255 255 255 255 255 255 255 255 255 255 255 | row = 0;

220 97 is the dimension (which I could have read in). It is hard- do { // skip the header

coded in the code. As it turns out I have to reverse the rows fscanf (fp, "%e¢", &c);

when reading the lines (or the logo will be upside-down). First if (¢ == '\n’) rowt+;

comes the resulting image and then parts of the program. } while (row < 4);

245 246
for (row = height - 1; row >= 0; row--) // reverse
for (col = 0; col < width; col++) { // Draw a rectangle
fscanf (fp, "%d %d %d", &r, &g, &b); glNormal3f(l, 0, 0); // Note
logo[row] [col] [0] = r; glBegin (GL_POLYGON) ;
logo[row] [col] [1] = g; glTexCoord2f (0.0, 0.0); glvVertex3f(0.0, 1.5, 2.0);
logo[row] [col] [2] = b; glTexCoord2f (1.0, 0.0); glVertex3£(0.0, 1.5, -2.0);
} glTexCoord2£(1.0, 1.0); glVertex3£(0.0, 3.5, -2.0);
glTexCoord2£(0.0, 1.0); glVertex3£(0.0, 3.5, 2.0);
fclose (fp); glEnd();
glBindTexture (GL_TEXTURE 2D, 100); // Draw a cylinder
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_ MIN_FILTER, seg = 10;
GL_NEAREST) ; d_phi = TWO_PI / seg;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, r = 2;
GL_NEAREST) ;
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, glBegin (GL_QUAD_STRIP) ;
0, GL_RGB, GL_UNSIGNED_BYTE, logo); for (k = 0; k <= seg; k++) {
glEnable (GL_TEXTURE_2D) ; phi = k * d_phi;
} c = cos(phi);
. P . . . s = sin(phi);

The 'followmg r(‘)utlne is called from Display (as is a routine glNormal3f(s, 0, c); // Note

drawing a coordinate system). c *= r;

void CreateObject () s *= r;

{ glTexCoord2f (k / seg, 0.0); glvVertex3f(s, 0, c¢);
int k; glTexCoord2f(k / seg, 1.0); glvVertex3f(s, 2, ¢);
double r, ¢, s, phi, d_phi, TWO_PI = 2.0 * M_PI, seg; }
float white_rc[] = {1, 1, 1, 1}, spec_exp = 100; glEnd();

glMaterialfv (GL_FRONT,
glMaterialfv (GL_FRONT,
glMaterialfv (GL_FRONT,
glMaterialf (GL_FRONT,

GL_AMBIENT,
GL_DIFFUSE,
GL_SPECULAR,
GL_SHININESS,

white rc);
white_rc);
white rc);
spec_exp) ;

glBindTexture (GL_TEXTURE_2D, 100);

247

}

In order to understand the last loop we first read the manual
page for glBegin. It says the following about GL_QUAD STRIP:

GL_QUAD _STRIP Draws a connected group of quadrilaterals. One
quadrilateral is defined for each pair of vertices presented after
the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadri-
lateral n. N/2-1 quadrilaterals are drawn. ...

248

So if we have vertices numbered 1, 2, 3, etc., this is the way they
are used to define the quadrilaterals.

2 4 6
O o o
| | |
| | |
o——————— o——————— o———
1 3 5

So the first quadrilateral (n = 1) is defined by vertices 1, 2, 4, 3
(2n-1, 2n, 2n+2, and 2n+1).

Now to the cylinder. [sin ¢, 0, cos ¢] describes a circle in the
x-z-plane. [sin ¢, 2, cos ¢] is another circle at y = 2. Since we are
alternating between y = 0 and y = 2, we get the correct order
for using GL_QUAD STRIP.

249

‘When textures are used in computer games, for example, it may
be interesting to repeat a texture. To put a wallpaper on a wall
it may be sufficient to define a small part of the pattern. The
repetition happens automatically if we use texture coordinates
outside [0, 1], texture(1.2, 3.4) becomes texture(0.2, 0.4) (leaving
the fractions). To change this behaviour we can ask for clamping
instead; using one image but stretching the pixels on the edges.
The following code

glBindTexture (GL_TEXTURE_2D, 100);
glBegin (GL_POLYGON) ;

glTexCoord2f (0.0, 0.0); glvVertex3£(0.0, 0.0, 0.5);

glTexCoord2£(3.0, 0.0); glVertex3f(1.0, 0.0, 0.5);

glTexCoord2£f (3.0, 2.0); glvVertex3f(1.0, 1.0, 0.5);

glTexCoord2£(0.0, 2.0); glVertex3£(0.0, 1.0, 0.5);
glEnd();

will produce two image-rows with three image-columns (so our
original image occurs six times).

250

Another way (mipmapping) to solve the minification problem is
to let OpenGL build a sequence of images in decreasing sizes.
This must be used in the planet-lab, otherwise the Moon-texture
will flicker (it looks like small electric flashes).

“mip” is an acronym for multum in parvo, which is Latin for
something like “much in little”.

This is what it may look like in the lab:

glBindTexture (GL_TEXTURE_2D, 100);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST) ;

// New
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MIN FILTER,
GL_LINEAR MIPMAP NEAREST) ;

// You have to set width, height and texture
gluBuild2DMipmaps (GL_TEXTURE_2D, GL_RGB,
width, height,
GL_RGB, GL_UNSIGNED_BYTE,
texture);

GL_LINEAR MIPMAP NEAREST (looks best, I think) picks the
mipmap that most closely matches the size of the pixel being
textured and uses the GL_LINEAR criterion to produce a texture
value.

251

252

