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Here comes the syllabus (kursplan):

Aim

The solution of computational problems with the help of com-

puters often generate large data sets. This course deals with

how computer graphics can be used to visualize data in order to

give a better understanding of the problem and its solution. In

simple cases the solution can perhaps be represented as a curve.

More complicated problems have solutions in the form of sur-

faces or volumes, maybe even time dependent. Many mathemat-

ical problems may not generate so large data sets but require an

understanding of more three dimensions.

Goal

At the conclusion of the course, the participant should find it

natural to think in visualization terms, be able to produce

insightful graphics in a number of common cases, be quite

familiar with Matlab graphics, and be acquainted with OpenGL

and ParaView.

Prerequisites

Basic courses in mathematics, numerical analysis, programming

and data structures. Basic Matlab programming. This is an

introductory course so no prior knowledge of computer graphics

is required.

Content

Introduction to visualization. Different techniques for visualiz-

ing surfaces, volumes and other common mathematical objects.

Animation. Interaction. An orientation about the construction

of user interfaces. OpenGL, ParaView and advanced Matlab

graphics.

Matlab, easy and to get started. OpenGL to see how some

basic computer graphics is done. ParaView, more capable than

Matlab (but harder to use).
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Computer graphics concepts, such as transformations and

shading models, necessary to use and understand the

graphics software. A sufficient amount of C to finish the the

computer assignments.

Organization

Lectures and computer assignments. The assignments, which

make up a substantial part of the course, consist of several

problems where the student will use Matlab, OpenGL and

ParaView to solve different visualization problems.

The problems are fetched from numerical analysis

and applied mathematics.

The assignments vary in difficulty. Some are routine tasks (would

take me minutes) while others require a bit of programming.

Literature

Lecture notes, articles and manuals.

Reference literature: F S Hill, S M Kelley, Computer Graphics

using OpenGL, 3d ed., Pearson, 2008 or Edward Angel, Interac-

tive Computer Graphics, A Top-Down Approach with OpenGL,

Pearson Education 2008, 5rd ed.

The topic of these titles are not strictly visualization, they are

standard computer graphics books.

See http://www.opengl.org/documentation/books/ for

more titles. On the next page I will list more literature.

Examination

Compulsory computer assignments and take-home exam.

We have two lectures and two labs per week. See the sched-

ule on www. Show me your solutions to the assignments at

lab-times. You do not have to hand in any reports.
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More books from my shelf

Here comes a list of books which I collected with this course

in mind. For other books, see the references on the home page.

Some E-books are available via the Chalmers library home page.

Finally there are man-pages and PDF-manuals.

• S. K. Card, J. D. Mackinlay, B. Shneiderman, Readings in

Information Visualization: Using Vision to Think Morgan

Kaufmann, 1999.

• C. D. Hansen, C. R. Johnson (eds.), Visualization Handbook

av Johnson, Academic Press, 2004.

• R. Spence, Information Visualization, Addison-Wesle, 2001.

• D. Thompson, J. Braun, R. Ford, OpenDX: Paths to Visual-

ization, 2nd ed. 2004, http://www.vizsolutions.com

• D. A. Norman, The Design of Everyday Things, Basic Books,

2002.

• C. Ware, Information Visualization Perception for Design,

Elsevier, 2004.

• M. K. Agoston, Computer Graphics & Geometric Modeling,

Implementation and Algorithms, Springer, 2004. There is

one Computer Graphics and Geometric Modeling: Mathe-

matics, which I do not have.

• S. R Buss, 3D Computer Graphics: A Mathematical Intro-

duction with OpenGL, Cambridge UP, 2003.

• H. C. Hege, K. Polthier (eds.), Mathematical Visualization,

Algorithms, Applications and Numerics, Springer, 1998.

• J. O’Rourke, Computational Geometry In C, Cambridge UP,

1998.

• D. F. Rogers, An Introduction to Nurbs: With Historical

Perspective Morgan Kaufmann, 2000.

• A. Unwin, M. Theus, H. Hofmann, Graphics of Large Datasets,

Springer, 2006. To the math-library.
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Some typical visualization problems

The primary goal of Scientific Visualization, is to provide in-

sight into scientific data. We often need a deeper understanding

of a phenomenon, need to draw conclusions, make predictions.

(Computer) graphics can (often) give us the help we need, after

all:

“An image says more than a thousand words (or numbers)”

Scientific visualization usually has a natural physical or mathe-

matical representation or background. We may want to visualize

the flow of air around aircraft or the roots of an equation. When

visualizing the data, we would probably make an outline of the

aircraft and draw a coordinate system for our roots. [Image]

A related area is information visualization. It is less common

with a physical background and it may not even be important.

A classical example is Harry Beck’s map of the London under-

ground (1931). [Image]

See http://en.wikipedia.org/wiki/Harry Beck for example.

Previous maps based on the actual layout, the geography, of

the underground had not worked well. Beck’s map, on the other

hand, leaves the physical reality behind and shows the order of

stations, where lines cross etc. It captures what is essential for

the traveler.

Another example is given by business graphics (pie charts etc.),

e.g. visualizing the number of admitted and graduated students

for different programmes at Chalmers/GU.
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This course will deal with scientific visualization.

You have already dealt with this in previous classes. Plotting

the graph of a scalar function of a scalar variable, plot(x, y)
provides almost a complete understanding of the function.

There are however harder visualization problems, where we only

get a partial understanding, e.g. looking at w = f(x, y, z), given

a function f . [Image] Understandingw = f(x, y, z, t) completely

may be hopeless.

Another cause of problems may be the amount of data.

Computers are fast, and when a program has executed a few

hours the output can be enormous, several Gbytes.

To visualize this amount of data may be difficult, but a thousand

numbers may be hard enough.

It is not always easy to say what is a meaningful image.

Tastes differ as does the ability to interpret 3D-plots, for

example. So this course will show different ways of visualizing

data, but there is rarely a unique solution to a visualization

problem (or to the assignments).

Use your imagination. If one plot is not that helpful there may

be another, better, way to visualize the data. Trial and error

may be a successful method.
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An example, the cosine function

In Matlab it is possible to compute cos z where z is a complex

number. Suppose we would like to understand how this function

behaves. Since we know a lot of mathematics we can easily list

several properties.

Let a, b be real numbers, then

cos(a+ ib) =
ei(a+ib) + e−i(a+ib)

2
= · · · =

(eb + e−b) cosa

2
− i

(eb − e−b) sina

2

If z ∈ C then the following is true, for example:

cos(z + 2π) = cos z, cos z = cos(−z), cos z̄ = cos z

So, it is sufficient to study 0 ≤ Re(z) ≤ 2π and Im(z) ≥ 0.

For large b

| cos z| ≈ eb| cosa− i sina|
2

=
eb

2

In a real application it may not be possible to use mathematics

this way. Perhaps the function is too complicated, or perhaps

worse, we may not have an expression for the function. We may

have to rely on a computer program that returns f(z) for a given

z.

The visualization of cos z is still a bit hard since we are

dealing with four real dimensions. Here are a few

alternatives (not all good).
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The obvious first try, plot | cos z| as a function of (Re(z), Im(z)).
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In Matlab this would be in colour, where the colour corresponds

to | cos z|.

It captures some of the behaviour: periodicity, what happens

for large Im(z). We have lost the sign information, and

introduced corners (like x → |x|).
On the other hand, this image may be exactly what we need.

It is possible to use more fancy graphics, no grid but a smooth

surface using light etc. [Image]

The next image was done with Matlab’s cplxmap-command. It

plots Re(cos(z)) as a function of (Re(z), Im(z)). The colour is

used for Im(cos(z)). I have added a color bar. I have a prob-

lem with this plot. The shape of the surface dominates over the

colour information.
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A similar idea is to plot | cos z| as before but to let the colour

show the argument, so if cos z = r eiϕ we use colour for ϕ and

height for r = | cos z|.
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In the next plot we do not loose any space-dimension. A grid in

the (Re(z), Im(z))-plane is mapped onto (Re(cos z), Im(cos z)).

We see the periodicity in a new way. Lines with constant imaginary-

part seem to be mapped onto closed curves.
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The plot is not quite truthful. Matlab tries to fill out the win-

dow, which may cause different scaling between the axes (a circle

may look like an ellipse). After correction, axis equal , we see

some new features.
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It seems like we have right angles between the curves in the right

diagram. So are the angles in the z-grid preserved? Yes. Those

who have read complex analysis may recognize this as a special

case of a more general theorem. cos is a conformal mapping and

hence preserves angles (whenever the derivative is non-zero).

One drawback with this plot is that is hard to know what line

corresponds to which cos z-curve. Perhaps we could use some

interaction with the mouse, clicking on a line in the left window

would make the corresponding curve in the right window blink,

change colour or something.

picking

We end with two images where we plot Re(cos z) and Im(cos z)

in two windows or together in one. [Image].

Several other alternatives remain.
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Now to another problem, mesh generation in 3D. The difficulty

is not the number of dimensions this time, but the huge amount

of data.

Discretize (divide into small volume elements) the air in the

box and outside the aircraft. Mesh generation (using m3d, an

ITM-project, Swedish Institute of Applied Mathematics) on one

RS6000 processor:

wed may 29 12:54:44 metdst 1996 So this is old stuff
thu may 30 07:05:53 metdst 1996

183463307 may 2 13:46 s2000r.mu

tetrahedrons in structured mesh: 4 520 413
tetrahedrons in unstructured mesh: 4 811 373

Does the program work? Does it refine the mesh it the right

places? Make nice images for the annual report (and for those

supplying the money). [Image] (several).

There are of course many other visulization problems. Here are

a few [Image] showing a simulation of an open cavity problem.

Others will turn up on the lectures or in the labs.
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Starting Matlab

> matlab -help

Here is an edited list:

-h|-help - Display arguments.
-nodisplay - Do not display any X commands. The

MATLAB desktop will not be started.
However, unless
-nojvm is also provided the Java
virtual machine will be started.

-nosplash - Do not display the splash screen
during startup.

-nodesktop - Do not start the MATLAB desktop.
Use the current terminal for
commands. The Java virtual
machine will be started.

-nojvm - Shut off all Java support by not
starting the Java virtual machine.
In particular the MATLAB
desktop will not be started.

I use matlab -nodesktop .

To get short help, type help command . For more help use the

GUI (Graphical User Interface) or doc command. There are

thick PDF-manuals available (through the GUI) as well. Start

Help and click on MATLAB, choose Printable (PDF) Documen-

tation. The basic graphics manual is 679 pages and the 3D-

manual an additional 212 pages.

For this to work you have to tell MATLAB what browser you

are using. Netscape is default (and we do not have it). This is

one way to fix it (not necessary in Matlab 2009b):
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cd
mkdir matlab
cd matlab
cp /chalmers/sw/sup/matlab-2008b/toolbox/

local/docopt.m . (I have broken the line)

edit docopt.m and change line 77 in the file
doccmd = ’netscape’;

to
doccmd = ’mozilla’; or
doccmd = ’firefox’;

Programming in Matlab

• A full programming language, if, for,...

• The basic datatype, a double precision matrix in several

dimensions. In new Matlab-versions there are more types,

such as single precision and integers.

• No type declarations. variables are created when needed.

• Interactive. Partially interpreted.

• New programming style; vector based.

• Object oriented (to some extent).

• Easy to use graphics.

• Can add toolboxes and compiled code.

A tutorial is available. Look under MATLABs help. You can

also see the Matlab-book by Jönsson (Swedish).

One should learn to work with vectors and matrices instead of

using loops and elements. Shorter, faster and easier to read.

It is convenient to write the labs as m-files (instead of typing

commands and using the history mechanism).

13



On the following pages comes a short and fast review of Matlab.

There will probably be new things for you as well. Some of the

commands below can be performed using the GUI instead.

>> v = [1 -5 7 8 -3] % or comma as delimiter
v =

1 -5 7 8 -3

>> a = v(2) + v(5)
a =

-8

>> v(2) = 25
v =

1 25 7 8 -3

>> v(2) + v(3)
ans = % default "answer", % = comment

32

>> who

Your variables are:

a ans v

>> sin(v(1))
ans =

0.8415

>> format short e
>> sin(v(1))
ans =

8.4147e-01
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>> format long e
>> sin(v(1))
ans =

8.414709848078965e-01

>> format short
>> sin(v(1))
ans =

0.8415

>> format bank
>> sin(v(1))
ans =

0.84

>> format hex
>> sin(v(1))
ans =

3feaed548f090cee

>> format compact % for less space

>> help format

FORMAT Set output format.
etc.

>> doc format % opens Matlab’s browser
% (or use the GUI)

Note that this changes the output format and not the internal

binary representation.
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>> w = 1:6
w =

1 2 3 4 5 6

>> w = 1:2:8
w =

1 3 5 7

>> w = 7:-2:-4
w =

7 5 3 1 -1 -3

>> w = 7:-2:8
w =

Empty matrix: 1-by-0

>> 1.5:0.856:6.7 % complex numbers do not work
ans =

1.5000 2.3560 3.2120 4.0680 4.9240 5.7800 6.6360

>> w = [1; 2; 3]
w =

1
2
3

>> w = [1; 2; 3]; % no printing
>> w
w =

1
2
3
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>> w = 1; 2; 3 % ; separates commands
ans =

3
>> w
w =

1

>> a = 1:3; b = 5:7;
>> c = a + b
c =

6 8 10

>> a = 1:3; b = 5:8;
>> c = a + b
??? Error using ==> plus
Matrix dimensions must agree.

>> size(a)
ans =

1 3 % size(a, 2) is 3 etc.
>> size(b)
ans =

1 4

>> b = (5:7)’
b =

5
6
7
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>> c = a + b
??? Error using ==> plus
Matrix dimensions must agree.

>> size(b)
ans =

3 1

>> a = a’
a =

1
2
3

>> c = a + b
c =

6
8

10

>> sqrt(c’)
ans =

2.4495 2.8284 3.1623

>> a = 1:3, b = 10 * (3:-1:1)
a =

1 2 3
b =

30 20 10

>> a * b
??? Error using ==> mtimes
Inner matrix dimensions must agree.

>> a . * b
ans =

30 40 30
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>> a ./ b
ans =

0.0333 0.1000 0.3000

>> a / b % something different
ans =

0.0714

>> a .\ b
ans =

30.0000 10.0000 3.3333

>> a \ b
ans =

0 0 0
0 0 0

10.0000 6.6667 3.3333

>> a \. b
??? a \.

|
Error: Unexpected MATLAB operator.

>> a .ˆ b
ans =

1 1048576 59049

>> a.ˆ2 . * b.ˆ3
ans =

27000 32000 9000

>> 1 + a
ans =

2 3 4
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>> 1 ./ a
ans =

1.0000e+00 5.0000e-01 3.3333e-01

>> i
ans =

0 + 1.0000i
>> j
ans =

0 + 1.0000i
>> sqrt(-1)
ans =

0 + 1.0000i

>> q = [1+i 2-3 * i 6+6 * i] % 2-3i works as well
q =

1.0000 + 1.0000i 2.0000 - 3.0000i 6.0000 + 6.0000i

>> q’
ans =

1.0000 - 1.0000i
2.0000 + 3.0000i
6.0000 - 6.0000i

>> q.’
ans =

1.0000 + 1.0000i
2.0000 - 3.0000i
6.0000 + 6.0000i

>> real(q) % is applied on the whole vector
ans =

1 2 6
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>> imag(q)
ans =

1 -3 6

>> abs(q)
ans =

1.4142 3.6056 8.4853

>> exp(i * pi) % pi is predefined
ans =

-1.0000 + 0.0000i

>> format short e
>> exp(i * pi)
ans =

-1.0000e+00 + 1.2246e-16i

>> sqrt(2)ˆ2 - 2
ans =

4.4409e-16

>> sin(pi)
ans =

1.2246e-16

>> v = 1:10

v =
1 2 3 4 5 6 7 8 9 10

>> s = 0;
>> for k = 1:10

s = s + v(k);
end

>> s
s =

55
21



>> s = sum(v) % there is prod as well
s =

55

Matrices

>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

>> A’
ans =

1 4
2 5
3 6

>> A(2, 3) = 66
A =

1 2 3
4 5 66
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>> A(3, 3) = 9 % A is increased dynamically
A =

1 2 3
4 5 66
0 0 9

>> 1 + A(3, 4)
??? Index exceeds matrix dimensions.

>> A = [1 2; 3 4]
A =

1 2
3 4

>> B = [3 4; 1 2]
B =

3 4
1 2

>> A * B
ans =

5 8
13 20

>> A + B
ans =

4 6
4 6

>> A . * B
ans =

3 8
3 8
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>> A ./ B
ans =

3.3333e-01 5.0000e-01
3.0000e+00 2.0000e+00

>> A .\ B
ans =

3.0000e+00 2.0000e+00
3.3333e-01 5.0000e-01

>> A / B % roughly A * inv(B)
ans =

0 1
1 0

>> A \ B % roughly inv(A) * B
ans =

-5.0000e+00 -6.0000e+00
4.0000e+00 5.0000e+00

>> Aˆ2
ans =

7 10
15 22

>> A.ˆ2
ans =

1 4
9 16

>> A.ˆA
ans =

1 4
27 256
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>> sqrt(A)
ans =

1.0000e+00 1.4142e+00
1.7321e+00 2.0000e+00

>> sqrt(-A)
ans =

0 + 1.0000e+00i 0 + 1.4142e+00i
0 + 1.7321e+00i 0 + 2.0000e+00i

>> R = rand(3)
R =

9.5013e-01 4.8598e-01 4.5647e-01
2.3114e-01 8.9130e-01 1.8504e-02
6.0684e-01 7.6210e-01 8.2141e-01

>> R = rand(3, 2) % rand
R =

4.4470e-01 9.2181e-01
6.1543e-01 7.3821e-01
7.9194e-01 1.7627e-01

>> R = randn(3, 2) % NOTE randN
R =

-1.9790e-02 2.5730e-01
-1.5672e-01 -1.0565e+00
-1.6041e+00 1.4151e+00

>> D = diag(1:2:5) % diag(matrix) returns the
D = % diagonal in a vector

1 0 0
0 3 0
0 0 5
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>> D = diag(1:2:5, -1) + diag(1:2:5, 1)
D =

0 1 0 0
1 0 3 0
0 3 0 5
0 0 5 0

>> I = eye(3)
I =

1 0 0
0 1 0
0 0 1

>> B = magic(3)
B =

8 1 6
3 5 7
4 9 2

>> IB = inv(B)
IB =

1.4722e-01 -1.4444e-01 6.3889e-02
-6.1111e-02 2.2222e-02 1.0556e-01
-1.9444e-02 1.8889e-01 -1.0278e-01

>> B * IB
ans =

1.0000e+00 0 -1.1102e-16
-2.7756e-17 1.0000e+00 0

6.9389e-17 0 1.0000e+00

>> IB * B
ans =

1.0000e+00 0 -2.7756e-17
0 1.0000e+00 0
0 1.1102e-16 1.0000e+00
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>> ones(2, 3)
ans =

1 1 1
1 1 1

>> zeros(2)
ans =

0 0
0 0

>> S = reshape(1:6, 2, 3)
S =

1 3 5
2 4 6

>> sum(S)
ans =

3 7 11

>> sum(S’)
ans =

9 12

>> sum(S, 2)
ans =

9
12

>> sum(sum(S))
ans =

21

>> cumsum(1:7)
ans =

1 3 6 10 15 21 28
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>> M = magic(3)
M =

8 1 6
3 5 7
4 9 2

>> sort(M)
ans =

3 1 2
4 5 6
8 9 7

>> M(:)’
ans =

8 3 4 1 5 9 6 7 2

>> s = sort(ans)
s =

1 2 3 4 5 6 7 8 9
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There are matrices of higher order:

>> A1 = [1 2;3 4]
A1 =

1 2
3 4

>> A2 = [5 6; 7 8]
A2 =

5 6
7 8

>> A(:,:,1) = A1;
>> A(:,:,2) = A2;

>> A
A(:,:,1) =

1 2
3 4

A(:,:,2) =
5 6
7 8
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1 ----- 2
/| /

/ | /
3 ------ 4

|
5 ----- 6 ---> 2nd index

/| /
/ | /

7 ------ 8
/ | third index

first index V

(1, 1, 1) 1 ----- 2 (1, 2, 1)
/| /

/ | /
(2, 1, 1) 3 ------ 4 (2, 2, 1)

|
(1, 1, 2) 5 ----- 6 (1, 2, 2)

/ /
/ /

(2, 1, 2) 7 ------ 8 (2, 2, 2)

30

Index vectors

>> v = 0.1 + (1:7)
v =

1.1 2.1 3.1 4.1 5.1 6.1 7.1

>> v(1:3:7) % 1:3:7 = [1 4 7]
ans =

1.1 4.1 7.1

>> M = magic(5)
M =

17 24 1 8 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

>> M(:, 2)
ans =

24
5
6

12
18

>> M([2 5], :)
ans =

23 5 7 14 16
11 18 25 2 9

>> M([2 5], [2 4])
ans =

5 14
18 2
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end is practical in constructions like these:

>> M(:, end)
ans =

15
16
22

3
9

>> M(end, :)
ans =

11 18 25 2 9

>> M(end, end)
ans =

9

>> M([1 3], [end-3:end])
ans =

24 1 8 15
6 13 20 22

An alternative is of course:

>> [m, n] = size(M)
m =

5
n =

5

>> M(m, :)
ans =

11 18 25 2 9
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A bit more original is:

>> M(:, [1 1 2])
ans =

17 17 24
23 23 5

4 4 6
10 10 12
11 11 18

Is used by meshgrid .

>> x = 1:3
x =

1 2 3

>> y = -2:0
y =

-2 -1 0

>> [X, Y] = meshgrid(x, y)
X =

1 2 3
1 2 3
1 2 3

Y =
-2 -2 -2
-1 -1 -1

0 0 0

Can be computed this way:

>> x = x(:)’; X = x(ones(length(y), 1), :)
X =

1 2 3
1 2 3
1 2 3

>> y = y(:); Y = y(:, ones(1, length(x)));
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I used this quite often:

>> [X, L] = eig(M)
X =

0.4472 -0.6780 -0.6330 0.0976 0.2619
0.4472 -0.3223 0.5895 0.3525 0.1732
0.4472 0.5501 -0.3915 0.5501 -0.3915
0.4472 0.3525 0.1732 -0.3223 0.5895
0.4472 0.0976 0.2619 -0.6780 -0.6330

L =
65.0000 0 0 0 0

0 21.2768 0 0 0
0 0 -13.1263 0 0
0 0 0 -21.2768 0
0 0 0 0 13.1263

>> [l, pntr] = sort(diag(L))
l =

-21.2768
-13.1263

13.1263
21.2768
65.0000

pntr =
4
3
5
2
1

>> X = X(:, pntr);

34

min can return a pointer vector as well. Suppose we would like

to find the row- and column indices for the largest element in a

matrix (we assume it is unique).

>> M
M =

17 24 1 8 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

>> [col_max, row_p] = max(M)
col_max =

23 24 25 21 22
row_p =

2 1 5 4 3

>> [max_M, col_p] = max(col_max)
max_M =

25
col_p =

3

>> M(row_p(col_p), col_p)
ans =

25
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>> M(1:2, 3:4) = M([2 5], [2 4])
M =

17 24 5 14 15
23 5 18 2 16

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

>> A = ones(3, 1) * (1:3)
A =

1 2 3
1 2 3
1 2 3

>> B = A(:, 3:-1:1)
B =

3 2 1
3 2 1
3 2 1

>> A = A’
A =

1 1 1
2 2 2
3 3 3

>> C = A(3:-1:1, :)
C =

3 3 3
2 2 2
1 1 1

Logical vectors

>> v = 0.1 + (1:7)
v =

1.1 2.1 3.1 4.1 5.1 6.1 7.1

36

>> v > 4
ans =

0 0 0 1 1 1 1
>> v(v > 4)
ans =

4.1 5.1 6.1 7.1

>> v([0 0 0 1 1 1 1])
??? Subscript indices must either be real positive

integers or logicals.

>> v(logical([0 0 0 1 1 1 1]))
ans =

4.1 5.1 6.1 7.1

Logical operators:

>> v(2 < v & v < 5)
ans =

2.1 3.1 4.1

>> v(v <= 2.1 | 6 <= v)
ans =

1.1 2.1 6.1 7.1

Count occurrences

>> sum(v ˜= 3.1) % == equality, ˜= not equal
ans = % unsafe for floating point

6

>> any(v ˜= 3.1)
ans =

1

>> all(v ˜= 3.1)
ans =

0
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>> all(v ˜= 3.5)
ans =

1

>> find(v > 4)
ans =

4 5 6 7

>> M = magic(4)
M =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

>> M > 11
ans =

1 0 0 1
0 0 0 0
0 0 0 1
0 1 1 0

>> M(M > 11)
ans =

16
14
15
13
12

>> i = find(M > 11)
i =

1
8

12
13
15
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>> m = M(:);

>> m(i)
ans =

16
14
15
13
12

>> [j, k] = find(M > 11)
j =

1
4
4
1
3

k =
1
2
3
4
4
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Creating matrices from parts

>> A = magic(2)
A =

1 3
4 2

>> b = [1; 3]
b =

1
3

>> C = [A, b; b’, 7]
C =

1 3 1
4 2 3
1 3 7

>> b = (1:3)’;

>> F = [b b(3:-1:1) [b([3 1]); 10]]
F =

1 3 3
2 2 1
3 1 10

>> [F(:, end:-1:1), F’; F(end:-1:1, :), F]
ans =

3 3 1 1 2 3
1 2 2 3 2 1

10 1 3 3 1 10
3 1 10 1 3 3
2 2 1 2 2 1
1 3 3 3 1 10
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Three dimensional matrices

>> A1 = [1 2; 3 4] + 0.1;
>> A2 = [5 6; 7 8] + 0.1;
>> A(:,:,1) = A1;
>> A(:,:,2) = A2;

>> A
A(:,:,1) =

1.1000 2.1000
3.1000 4.1000

A(:,:,2) =
5.1000 6.1000
7.1000 8.1000

>> A(A > 3)
ans =

3.1000
4.1000
5.1000
7.1000
6.1000
8.1000

>> i = find(A > 3)
i =

2
4
5
6
7
8

>> A(:)’
ans =
1.100 3.100 2.100 4.100 5.100 7.100 6.100 8.100
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[i, j, k] = find... does not do anything useful in this case.

Here is an alternative using loops:

i = []; j = []; k = [];

for r = 1:size(A, 3)
[row, col] = find(A(:, :, r) > 3);
i = [i; row];
j = [j; col];
k = [k; r * ones(size(row))];

end

ind = [i, j, k]

ind =
2 1 1
2 2 1
1 1 2
2 1 2
1 2 2
2 2 2

v = [];
for i = 1:6

v(i) = A(ind(i, 1), ind(i, 2), ind(i, 3));
end

v
>> v
v =

3.1000 4.1000 5.1000 7.1000 6.1000 8.1000
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Linear systems

>> A = [1 -1 1; 1 2 3; 4 5 6]
A =

1 -1 1
1 2 3
4 5 6

>> b = [0 1 0]’
b =

0
1
0

>> x = A \ b
x =

-0.9167
-0.1667

0.7500
>> r = b - A * x
r =

1.0e-15 *
0.1110

0
0
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Cell arrays

An array where the elements can be of different types:

>> c{1, 1} = sqrt(2);
>> c{1, 2} = [1 2; 3 4];
>> c{2, 1} = ’Hejsan’;
>> c{2, 2} = 1:5;

>> c
c =

[1.4142e+00] [2x2 double]
’Hejsan’ [1x5 double]

>> c{1, 2}(2, 2)
ans =

4

>> celldisp(c)
c{1,1} =

1.4142e+00
c{2,1} =
Hejsan
c{1,2} =

1 2
3 4

c{2,2} =
1 2 3 4 5

>> cc={1:3, ’hej’; c, eye(2)}
cc =

[1x3 double] ’hej’
{2x2 cell } [2x2 double]

>> cc{2,1}{1,2}(1, :)
ans =

1 2
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>> C = cell(2)
C =

[] []
[] []

Another data structure where we can store elements of different

types is the struct (record, post in Sw). We name the element

with a string and not an index.

>> s = struct(’type’, ’circle’, ...
’geom’, struct(’c’, [1 3], ’r’, 1.2), ...
’color’, [1 0 0])

s =
type: ’circle’
geom: [1x1 struct]

color: [1 0 0]

>> s.type
ans =
circle

>> s.geom
ans =

c: [1 3]
r: 1.2000e+00

>> s.geom.c
ans =

1 3

>> s.geom.c(2)
ans =

3
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>> s.color(2) = 1;

>> s.color
ans =

1 1 0

One can have arrays of structs (of the same kind)

>> v(1).fn = ’Thomas’;
>> v(1).ln = ’Ericsson’;
>> v(2).fn = ’Anders’;
>> v(2).ln = ’Andersson’;

>> v(3).new = ’oops’ % a new member
v =
1x3 struct array with fields:

fn
ln
new

>> v(1).new % all the structs in the array
% get this new member

ans =
[]
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There are if-statements etc.

>> a = 2.25;
>> if a > 1

disp(’a > 1’)
else

disp(’a <= 1’)
end

a > 1

>> a = 0.2;
>> if a > 1

disp(’a > 1’)
else

disp(’a <= 1’)
end

a <= 1

>> help if % for elseif etc.

&&, || for lazy scalar and, or.

>> a = 2.25;
>> if a, disp(’ **** ’), end

****

>> a = 0;
>> if a, disp(’ **** ’), end

Handling characters

>> s = ’AabcDd’
s =
AabcDd
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>> s + 0 % double(s) works as well
ans =

65 97 98 99 68 100

>> whos
Name Size Bytes Class

s 1x6 12 char array

Grand total is 6 elements using 12 bytes

>> S = [s; s(6:-1:1)]
S =
AabcDd
dDcbaA

>> s = ’sirapiparis’;
>> palin = all(s == s(end:-1:1))
palin =

1

>> s(1)=’a’;
>> palin = all(s == s(end:-1:1))
palin =

0

>> s1 = ’ABC’;
>> s2 = ’ 12’;

>> s1 + s2
ans =

97 115 117

>> char(ans)
ans =
asu
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Tuning Matlab programs

The timings below are for Matlab R2009b. Matlab 6.5, and later

versions, has a JIT-accelerator (Just In Time) which speeds up

for-loops etc.

• Use the builtin compiled routines.

The Matlab-language is interpreted.

• Work on the matrix/vector-level, not on element-level.

“New” programming style.

• Take care when using the dynamic memory allocation.

Preallocate.

Some examples:

% Matrix sum. n = 3000 in all examples

for j = 1:n
for k = 1:n

A(j, k) = A(j, k) + B(j, k);
end

end

Takes 0.11 s.

A = A + B; requires 0.018 s.
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clear A
for k = 1:n

A(:, k) = x; % could have different arrays
end

Takes 96 seconds.

A = zeros(n); % preallocate
for k = 1:n

A(:, k) = x;
end

Takes 0.05 s.

Wis a 10000 × 15-matrix and x is a column vector having 10000

elements.

y = W * W’ * x; y = W * (W’ * x);

Takes 2.1 s 0.0006 s

Note that it may be impossible just to form W * W’ even

though y = W * (W’ * x); gives no problem.
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M-files and functions

• For short tests we may type commands by hand and use

the history mechanism, arrow keys etc. to modify state-

ments. Possible to use emacs-commands on the command

line. Ctrl-a beginning of line, Ctrl-e end of line, Ctrl-d
remove character, Ctrl-k kill (remove) the rest of the line

etc. Can match the beginning of a string: im↑ press up-

arrow, matches line starting with im .

For those using the GUI there is a Command History win-

dow, as well.

• For longer tests (assignments) we create an m-file script (or a

function) with an editor (e.g. Matlab’s own). If the filename

is name.m we execute the file by typing name in Matlab.

Scripts do not take any parameters. Matlab just reads from the

file instead of reading commands from the command window.

Sometimes functions are more useful or necessary. Here is a

simple example. We disregard the fact that Matlab has a func-

tion for computing the median. We store the function on the

file median.m . If the name of the function and file are different

you have to use the filename to invoke the function.

function med = median(v)
% med = median(v) computes the median of
% the elements in the vector v

n = length(v); % number of elements in v
if n == 0

med = 0;
else

s = sort(v); % s is local to the function
if rem(n, 2) == 0

n2 = n / 2;
med = 0.5 * (s(n2) + s(n2 + 1)); % even

else
med = s((n + 1) / 2); % odd

end
end
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We can think of the parameters as being passed by “call by

value”, but “call by reference” is used for variables that are not

changed. We could have written

v = sort(v); % replace v
...
med = 0.5 * (v(n2) + v(n2 + 1)); % even

This does not change the array in the calling program. The

variables n, n2, s and medare local to the function. We give the

function a value by giving the return-variable, med, a value.

>> help median

med = median(v) computes the median of
the elements in the vector v

>> v = randn(1, 4)
v =

-1.8092 -0.6337 -0.4533 0.2840

>> median(v)
ans =

-0.5435

>> median([v, 5])
ans =

-0.4533

There are several types of functions:

• Anonymous functions (short function not stored in a file)

• Subfunctions (several functions in one file)

• Nested functions (functions inside other functions)

• Overloaded functions (polymorphic functions)

• Private functions (functions in dir name/private are only

visible to functions in dir name)
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Let us look at the first three types. An anonymous function is

created by

fhandle = @(argumentlist) expr

expr is a simple expression and @a so-called function handle.

>> f = @(x) x . * exp(-x)
f =

@(x) x . * exp(-x)

>> f([-1 0 1])
ans =

-2.7183 0 0.3679

>> quadl(f, 0, 1) % integrate
ans =

0.2642

>> sin(f(2))
ans =

0.2674

% A cell array of functions.
% Be careful with blanks. See the manual

>> funcs = {@(x)x. * exp(-x), @(x)x. * sin(-x), ...
@(x)x. * cos(-x)};

>> for k=1:3, quadl(funcs{k}, 0, 1), end
ans =

0.2642
ans =

-0.3012
ans =

0.3818
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>> comm = @(A, B) A * B - B * A;
>> C = [1 2; 3 4];
>> comm(C, C’)
ans =

-5 -3
-3 5

% Using "external" variables
>> a = 10;
>> mul_10 = @(z) a * z
mul_10 =

@(z) a * z

>> mul_10(2)
ans =

20

>> a = 20; % does not change the function
>> mul_10(2)
ans =

20

One disadvantage with ordinary m-file functions is that they

tend to produce many files. It is possible to put several functions

in one file. The first function in the file, the primary function,

is visible from outside, but the functions coming after, the sub-

functions, are only visible to the primary function or to other

subfunctions in the same file. So something like this:

function w = f(x, y, z)
w = x + g(z);
...

function s = g(t)
...
s = ...
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Another alternative is to use nested functions,

function w = f(x, y, z)
w = x + g(z);
...

function s = g(t)
s = ...
...

end % necessary

end % necessary

Read more in the manual about scope for variables and

functions.

A function can take zero or more input arguments and return

zero or more output arguments.

function [b_plus_c, sum_A] = func(A, b, c)

b_plus_c = b + c;
sum_A = sum(A(:));

>> F = [1 2;3 4]
F =

1 2
3 4

>> h = [1 3]; g = [2 5];

>> [uu, vv] = func(F, h, g)
uu =

3 8
vv =

10

>> z = func(F, h, g)
z = 3 8
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One can choose to ignore output arguments (new in Matlab

R2009b):

>> [˜, vv] = func(F, h, g)
vv =

10

>> [uu, ˜] = func(F, h, g)
uu =

3 8

It is also possible to ignore input arguments (will come later).

It is possible to, inside the function, see the number of

arguments.

function [out1, out2, out3] = func(in1, in2, in3, in4)
n_in_arg = nargin;
n_out_arg = nargout;

if n_in_arg == 4
...

elseif n_in_arg == 3
...

etc.

It is possible to have optional input (output) parameters, so the

number of parameters of a function may change between calls.

See the documentation for varargin and varargout for details.
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Global variables

Variables in functions are local to the function. We use the

parameters to communicate with other routines. Another way

is to use global variables.

>> global a b % In Matlab, or the calling routine
>> type func

function func

global a b % A matching global declaration

a = a + 1;
b = b * 10;

>> a = 1; b = 2;
>> func
>> a

a =
2

>> b

b =
20
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Persistent variables

A variable which is local to a function does not keep its

value between calls. To make it keep the value, we use a

persistent declaration. A persistent variable is initialised

to the empty matrix.

>> type pers
function num_calls = pers

persistent k % persistent num_calls does not work

if isempty(k)
k = 0;

end

k = k + 1;

num_calls = k;

>> pers
ans =

1
>> pers
ans =

2
>> pers
ans =

3

>> clear pers
>> pers
ans =

1
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A few tips

Debugging: there is a Matlab-debugger, but it is usually

sufficient to remove semi-colons (to print variables).

The keyboard -command is convenient when we want to stop in

functions. Resume execution by typing the letters return .

>> y = cos(0)
y =

1
>> cos = 8
cos =

8
>> y = cos(0)
??? Subscript indices must either be real

positive integers or logicals.

>> which cos
cos is a variable. % checks variable first

% then function
>> clear cos % remove definition

>> which cos
built-in (/chalmers/sw/ ... /cos) % double method

% Even more amusing
>> cos = 1:4
cos =

1 2 3 4

>> cos(1)
ans =

1
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The clear -command takes several parameters. Here are a few.

For a full description, see the documentation.

clear removes all variables from the workspace.

clear variables does the same thing.

clear global removes all global variables.

clear functions removes all compiled M- and MEX-functions.

clear all removes all variables, globals, functions and MEX

links.

clear var1 var2 ... clears the variables specified.

clear fun clears the function specified.

Clear does not affect the amount of memory allocated to the

Matlab process under unix.
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Some commands have been written in C while others are m-files,

>> type cos
cos is a built-in function.

>> which ls
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/general/ ls.m

>> type ls % lists the m-file (not included)
>> dir % (DOS-command) faster

More unix-like stuff. cd , path etc. matlab and VIS are

directories.

/users/math/thomas
/ | \

visual.m matlab VIS
|

visual.m

>> cd ˜ % ˜ home dir
>> cd % print current directory
/users/math/thomas

>> pwd % an alternative
ans =
/users/math/thomas

>> which visual % one visual.m here
/users/math/thomas/visual.m

>> cd matlab
>> pwd
ans =
/users/math/thomas/matlab
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>> which visual % but no one here
visual not found.

>> cd ../VIS

>> pwd
ans =
/users/math/thomas/VIS

>> which visual
/users/math/thomas/VIS/visual.m % and one here

>> cd ../matlab
>> which visual
visual not found.

>> path(path, ’../VIS’)
>> which visual
../VIS/visual.

>> path % lists the path

MATLABPATH

/users/math/thomas/matlab
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/general
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/ops
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/lang
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/elmat

etc.
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Handling files

save filename saves all workspace variables to a binary file

filename.mat . The data may be retrieved with load .

If filename has no extension, .mat is assumed. save , by

itself, creates matlab.mat .

save filename var saves only var .

save filename var1 var2 var3 saves only var1 , var2 and

var3 .

save filename var -ascii or save -ascii filename var
saves in human readable form, 8-digit ASCII.

save -ascii -double filename var saves in 16-digit ASCII.

If one needs more control over the format, fprintf can be used.

This routine accepts the same type of formatting codes as C.

fscanf is a more general routine for reading data. help iofun
gives a long list of I/O-related routines.
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Graphics in Matlab

I assume you have seen some basic plotting, but here comes a

few simple examples. First 2D-plots:

>> x = 0:0.1:10; % or linspace
>> plot(x, (sin(x) + cos(x)) . * x.ˆ2)
>> grid on
>> xlabel(’x’)
>> ylabel(’y’)
>> title(’y = (sin(x) + cos(x)) xˆ2’)
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−150
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x

y

y = (sin(x) + cos(x)) x2

I usually make the lines thicker, increase the size of numbers

and letters when showing transparencies, but we have not learnt

that yet, and I do not want to give the wrong impression. So

that is why it is hard to read the text in the plots.
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>> hold on
>> plot(x, (sin(x) + cos(x)) . * x.ˆ2, ’o’)
>> help plot

PLOT Linear plot.
PLOT(X,Y) plots vector X versus vector Y.

....

An alternative to hold on/off:

>> y = (sin(x) + cos(x)) . * x.ˆ2;
>> plot(x, y, ’-’, x, y, ’o’)
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y = (sin(x) + cos(x)) x2
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A good sequence is:

figure(1) % create otherwise put on top
hold off
plot...
hold on
plot ...

figure(2) % makes a new figure window

plot(1, 1:3, ’o’) is equivalent to plot([1 1 1], 1:3, ’o’) .

plot(1:3, 1, ’o’) is equivalent to plot(1:3, [1 1 1], ’o’) .

plot(x, y) works as expected even if x is a row vector and

y is a column vector (or vice-versa).

If x is a vector and Y is a matrix, then plot(x, Y) is equiv-

alent to plotting plot(x, Y(:, 1)) , ..., plot(x, Y(:, end))
or plot(x, Y(1, :)) , ..., plot(x, Y(end, :)) whichever

lines up. If the matrix is quadratic, the columns are used.

x cannot be a scalar.

It is analogous for plot(X, y) .

plot(X, Y) where also X is a matrix plots Y(:, k) as a

function of X(:, k) .

Do not forget the x-values. plot(y) is equivalent to

plot(1:length(y), y) .

plot(Y) is equivalent to plot(1:m, Y(:, 1)) , ...,

plot(1:m, Y(:, end)) where m = size(Y, 1) .
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>> x = 0:0.1:10;
>> y = 3.52441 * exp(2 * x);
>> semilogy(x, y)
>> grid on
>> print -deps semilogy.eps

% head semilogy.eps In unix
%!PS-Adobe-2.0 EPSF-1.2
%%Creator: MATLAB, The Mathworks, Inc.
%%Title: semilogy.eps
%%CreationDate: 09/01/ 0 22:34:29
%%DocumentNeededFonts: Helvetica
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%Pages: 1
%%BoundingBox: 66 210 548 592 <--- NOTE
%%EndComments
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Do not use screen dumps (raster images, gif, jpeg or similar) for

simple plots (necessary of you add light).

>> loglog(x, y)
>> grid on
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One can plot with different styles, e.g. plot(x, y, ’r:’) , plot

with a red dotted line. Type help plot for details.
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Two y-axes.

>> x = linspace(0, 5);
>> y = exp(x);
>> plotyy(x, y, x, y, ’plot’, ’semilogy’)
>> grid on
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Polar coordinates and subplot

theta = linspace(0, 2 * pi);
subplot(2, 2, 1) % 2 x 2-matrix of plots
polar(theta, theta.ˆ2)
xlabel(’polar(\theta, \thetaˆ2)’)

subplot(2, 2, 2)
polar(theta, cos(theta))
xlabel(’polar(\theta, cos\theta)’)

subplot(2, 2, 3)
polar(theta, cos(theta).ˆ2)
xlabel(’polar(\theta, cosˆ2\theta)’)

subplot(2, 2, 4)
polar(theta, sin(theta). * cos(theta))
xlabel(’polar(\theta, sin\theta cos\theta)’)
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Here are two other ways to use subplot .

subplot(2, 2, [1 3]), title(’subplot(2, 2, [1 3])’)
subplot(2, 2, 2), title(’subplot(2, 2, 2’)
subplot(2, 2, 4), title(’subplot(2, 2, 4)’)
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subplot(2, 2, 4)

subplot(2, 2, [1 2]), title(’subplot(2, 2, [1 2])’)
subplot(2, 2, 3), title(’subplot(2, 2, 3’)
subplot(2, 2, 4), title(’subplot(2, 2, 4)’)
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subplot(2, 2, 4)
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Matlab understands simple TEX/LATEX-expressions such as:

Greek letters: \alpha, \beta, ..., \Gamma, \Xi

Index: \alpha_2ˆ3, \alphaˆ{m + n}

Integrals: \int_aˆb f(x) dx

Here is the LATEX-code:

α, β, ...,Γ,Ξ

α3
2, α

m+n

∫ b

a

f(x)dx

Matlab cannot cope with more complicate expressions, such as:

\sum_{k=0}ˆ{n-1}\ axˆk = a\ \frac{xˆn-1}{x-1},\ x\ne 1

n−1∑

k=0

axk = a
xn − 1

x− 1
, x 6= 1

unless ones changes the string’s Interpreter -property to latex
and surrounds the string with $ $.

It does not always seem to work properly though, I had

problems with minus-signs, for example.

text and gtext can be used to place text in a plot (as can

the menu in the plot window). ginput can be used to read the

position of the mouse.
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One can plot complex numbers

>> theta = linspace(0, 2 * pi);
>> iu = sqrt(-1)
iu =

0+ 1.0000i
>> circle = 1 + 2 * iu + 2 * exp(iu * theta);
>> plot(circle)
>> axis equal % or axis(’equal’). NOT axis square
>> grid on
>> hold
Current plot held
>> plot(1 + 2 * iu, ’ * ’)
>> xlabel(’real part’)
>> ylabel(’imaginary part’)
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A word on the axis command.

axis equal gives correct scaling, a circle does not look like an

ellipse and a sphere not like an ellipsoid. Not to be confused

with

with axis square makes the axis box square (regardless of the

extent in x and y).

axis vis3d freezes the aspect ratio so that plot is not deformed

during rotation.

axis off turns off axis. axis on turns on axis.

It is possible to set the axis limits:

axis([xmin xmax ymin ymax]) ,

axis([xmin xmax ymin ymax zmin zmax]) .

There are eight more options, type help axis or doc axis for

more (all) details.

An example: y = x2, |x| ≤ 5.
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Some business graphics

Matlab can produce, bar- and area graphs. help bar , help
area . There are pie charts and histograms (help pie , help
hist ) and a few others. Read the documentation to see the

available options.

This code produces the plot on the next page:

figure(1)
subplot(221)
pie(1:5)
title(’Pie’)

subplot(222)
hist(randn(1000, 1))
title(’Histogram’)

subplot(223)
bar(1:5, [(1:5)’, 2 * (1:5)’], ’stacked’)
axis tight
title(’Bar’)

subplot(224)
x = (1:5)’;
Y = [(1:5)’, 2 * (1:5)’];
area(x, Y)
title(’Area’)
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Here is a plot made by stem3 :

>> phi = linspace(0, 2 * pi);
>> stem3(cos(phi), sin(phi), sin(2 * phi))
>> title(’stem3’)
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Matlab has several commands for drawing arrows, compass,

feather , quiver and quiver3 . These are used e.g. when draw-

ing flow fields. Here is a quiver -example.

We start by creating a grid in the x-y-plane, using the meshgrid -

command. First a word on how meshgrid works:
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>> [X, Y] = meshgrid(linspace(-1, 1, 3))
X =

-1 0 1
-1 0 1
-1 0 1

Y =
-1 -1 -1

0 0 0
1 1 1

[X, Y] = meshgrid(x vec, y vec); is another alternative. In

this example we draw an arrow, [u, v], that is orthogonal to the

vector going from the origin to [x, y]. it should have the same

length as well. So one choice is taking [u, v]=[-y, x]. here is the

code:

>> [X, Y] = meshgrid(linspace(-1, 1, 10));
>> quiver(X, Y, -Y, X)
>> axis equal
>> title(’quiver’)
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The meshgrid -command is used when drawing simple surfaces

as well, such as when we have a function z = f(x, y). Here is an

example.

>> [X,Y] = meshgrid(-2:0.2:2);
>> Z = X . * exp(-X.ˆ2 - Y.ˆ2); % Note elementwise
>> figure % new plotwindow
>> mesh(X, Y, Z)
>> figure
>> meshc(X, Y, Z) % Note the c in meshc

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5

79

meshc draws the surface and contour lines, i.e. curves in the

x-y-plane where f(x, y) is constant. It is possible to just draw

the contours using the command contour(X, Y, Z) . One can

specify the number of contour lines or give the exact values

where a contour line should be drawn. using contour3 it is

possible to put a contour line at the correct z-level.

>> [X,Y] = meshgrid(-2:0.1:2);
>> Z = X . * exp(-X.ˆ2 - Y.ˆ2);
>> contour(X, Y, Z, 20, ’k’)
>> grid on
>> title(’contour’)

contour3
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>> contour3(X, Y, Z, 20, ’k’)
>> title(’contour3’)
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One can label the contour lines

>> [C, h] = contour(X, Y, Z, 10, ’k’);
>> clabel(C, h)
>> title(’Contour plot elevation labels’)
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A rather nice contour-command is contourf , which fills the area

between contour lines with different colours. Try it!
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Lines in 3D:

>> phi = linspace(0, 40 * pi, 400);
>> subplot(121)
>> plot3(phi . * cos(phi), phi . * sin(phi), 2 * phi)
>> axis equal
>> grid on
>>
>> subplot(122)
>> r = 0.5 + cos(0.1 * phi);
>> plot3(r . * cos(phi), r . * sin(phi), phi / 20)
>> axis equal
>> grid on
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Polygons

>> phi = linspace(0, 2 * pi, 7);
>> c = exp(sqrt(-1) * phi(1:end-1)); % need not close
>> x = real(c)’;
>> y = imag(c)’;
>> X = [1+x, x]; % one polygon per column
>> Y = [1+y, y];
>> fill(X, Y, ’w’) % not to waste tuner
>> axis([-1 2 -1 2])
>> axis square
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The second polygon is painted on top of the first. To see the

edges we can do (much more about such things later):

>> h = fill(X, Y, ’w’) % a vector of handles
>> set(h, ’FaceColor’,’None’); % change the FaceColor-

% property
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Polygons in 3D

>> C = Z;
>> fill3(X, Y, Z, ’w’)
>> grid on
>> axis equal
>> view([320, 20])
>> whos

Name Size Bytes Class

C 4x1214 38848 double array
X 4x1214 38848 double array
Y 4x1214 38848 double array
Z 4x1214 38848 double array

Grand total is 19424 elements using 155392 bytes

2000
4000

6000
8000

10000
12000

−4000

−2000

0

2000

4000

0

1000

2000

>> fill3(X, Y, Z, C)
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The surf -command.

We have used the mesh-command to draw surfaces (arising from

z = f(x, y)). When we have more general surfaces the mesh-

command may not work, the surface may not be the graph of a

function. The sphere is a simple example, z = ±
√

1 − x2 − y2

does not define a function from (x, y) to z, although z =
√

1 − x2 − y2

and z = −
√

1 − x2 − y2 do. So one (perhaps not very good) way

to draw a sphere is to use the mesh-command twice.

Another example is given by the following cylinder. The cylinder

is centered on the x-axis and has an hexagonal cross-section.

>> phi = linspace(0, 2 * pi, 7); % 6 corners; must close
>> surf([zeros(1,7); 2 * ones(1,7)], [1;1] * cos(phi), ...

[1;1] * sin(phi), ones(1,7)) % we could transpose
>> axis equal % everything
>> xlabel(’x’); ylabel(’y’); zlabel(’z’)
>> title(’Cylinder’)
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To understand this better we can read the documentation. This

is a quote from the manual:

Algorithm

Abstractly, a parametric surface is parametrized by two indepen-

dent variables, i and j, which vary continuously over a rectangle;

for example, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The three functions

x(i, j), y(i, j), and z(i, j) specify the surface. When i and j are

integer values, they define a rectangular grid with integer grid

points. The functions x(i, j), y(i, j), and z(i, j) become three

m×nmatrices, X, Y , and Z. Surface color is a fourth function,

c(i, j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected

to its four nearest neighbors.

i-1,j
|

i,j-1 - i,j - i,j+1
|

i+1,j

This underlying rectangular grid induces four-sided patches on

the surface. To express this another way, [X(:) Y (:) Z(:)]

returns a list of triples specifying points in 3-space. Each in-

terior point is connected to the four neighbors inherited from

the matrix indexing. Points on the edge of the surface have

three neighbors; the four points at the corners of the grid have

only two neighbors. This defines a mesh of quadrilaterals or a

quad-mesh.
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Let us take the cylinder and close the ends. First an example

where the ends are partially closed. Just to show that it is

possible, we transpose all the arrays. Here

>> phi = linspace(0, 2 * pi, 7)’; % Note transpose
>> z = zeros(7, 1); o = ones(7, 1);
>> c = cos(phi); s = sin(phi);
>> subplot(211)
>> surf([o 2 * o 4* o 5* o], [0.5 * c c c 0.5 * c], ...

[0.5 * s s s 0.5 * s], ones(7,4))
>> axis equal
>> subplot(212)
>> surf([o o 4 * o 4* o], [z c c z], [z s s z], ones(7,4))
>> axis equal
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The line in the right part is not visible on the monitor.

It is possible to draw the cylinders using the fill3 -command as

well. That would, however, require more points.

The first cylinder we drew was defined by 14 points (two times

seven edges). Using polygons we would need 24 points (6 poly-

gons with four corners).

When we come to shading (colouring polygons with light

present) we will notice a difference as well (with the normals).

Six polygons are six different objects while the surf -cylinder is

one object. We have 24 normals for the polygons and 14 for the

surf -command.

Polygons do not have to be planar (all point in a plane). Con-

sider the following polygon with four corners:

>> X = [0 1 1 0]’;
>> Y = [0 0 1 1]’;
>> Z = [0 0 0 1]’;
>> C = ones(size(X));
>> h = fill3(X, Y, Z, C)

Matlab breaks up till polygon in two triangles (i.e. two planar

polygons). This is a special case of tessellation:

Etymology: Late Latin tessellatus, past participle of tessellare

to pave with tesserae, from Latin tessella, diminutive of tessera

: to form into or adorn with mosaic
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There is an image-toolbox. Here I am covering a surface with an

image (usually called a texture, in this context, and the process

is called texture-mapping). We will be using textures in the

OpnGL-lab.

>> B = imread(’te.jpg’, ’jpg’);
>> image(B) % to look at the image
>> axis image % correct scaling
>> [X, Y] = meshgrid(linspace(-1, 1, 10));
>> warp(X, Y, (X.ˆ2 - Y.ˆ2) . * cos(0.1 * Y), B)
>> axis off

In the upper part of the windows there are buttons for zooming,

rotation etc. Have a look at the Tools- and View-menus as well.

Some of the remaining buttons and menus are used for editing

an image (adding text, arrows etc).

There are several other plot-commands, but before we get back

to those we need to have a look at Matlab’s handle graphics.
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Handle graphics

Plots, windows, polygons etc. are stored in a tree structure. The

windows (figure) are child-nodes to the Root (which can think

of as the screen: it is created by Matlab and contains data).

The axes is a child of a figure-window and the plot data is a child

of the axes etc. Each node has a set of attributes, properties that

can take different values.

A “figure” has a Color-property which is the colour around the

drawing area in the window. The standard value of this colour

is the RGB-vector [0.8 0.8 0.8] . Here is the tree, there are

hundreds of properties in total.

Root
|

UI objects ---- Figure ---- Hidden Annotation Objects
| |
| Annotation Objects
|

Core objects ---- Axes ---- Group objects
|

Plot Objects

This layout is new for Matlab v7, in previous versions there

were less talk about objects. A figure is a window in which the

graphics is displayed. Figures contain menus, toolbars, user-

interface objects (e.g. buttons and sliders), context menus (a

menu bound to a curve for example), axes.

Annotation objects are things like arrows, rectangles and are

usually created using the builtin plot editor.

Core objects are axes, image, light, line, patch, rectangle,

surface, text.

Groups objects can be used to collectively refer to several axes,

for example.

Plot Objects group together core objects. We will not look at all

the objects in detail, so what follows is a simplified presentation.

The manual contains more than 120 pages on the subject.
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Let us look at an example. We have just started Matlab (say)

and have typed the following commands:

>> format compact
>> x = 1:10;
>> plot(x, x.ˆ2, ’r’)
>> grid on
>> xlabel(’x’)
>> ylabel(’y’)
>> title(’y = xˆ2’)

The tree is linked together by handles (pointers). They are of

type double and usually have many decimals. The handles of

the figure windows are positive integers and the Root has han-

dle zero. Using the function get we can access the value of a

property for an object pointed to by the handle:

get(handle, ’PropertyName’) .

set(handle, ’PropertyName’, value) sets the value.

Some properties are read only. get(handle) prints the val-

ues of all the properties and set(handle) displays all property

names and their possible values for the object.

Let us start to inspect the Root. I have (usually) edited the

output to make it shorter. My comments after %.

This is about a third of what is printed.

>> get(0)
CurrentFigure = [1] % figure 1
Diary = off
DiaryFile = diary
FixedWidthFontName = Courier New
Format = short % set with format
FormatSpacing = compact % set with format
ScreenDepth = [24]
ScreenSize = [1 1 1280 1024]
Units = pixels
Children = [1] % The figure window
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To see the possible alternatives for Format , we can do

>> set(0, ’Format’)
[ short | long | shortE | longE | shortG | longG | hex |

bank | + | rational | debug | shortEng | longEng ]

and to change format to longE we can

>> set(0, ’Format’, ’longE’)
>> pi
ans =

3.141592653589793e+00

Usually we would instead type the shorter:

>> format long e

Property names are not case sensitive and we can shorten the

name as long as it becomes unique.

>> set(0, ’uNiTs’, ’centimeters’)
>> set(0, ’units’, ’centimeters’)
>> set(0, ’uni’, ’centimeters’)
>> set(0, ’u’, ’centimeters’)
??? Error using ==> set
Ambiguous root property: ’u’.

Let us now look at the Children of the Root. We have only one

child, the figure window. Since the handle is an integer we need

not fetch it, but I have done so just to show how get works.

>> hf = get(0, ’Children’) % hf for handle to figure
hf =

1

Here are a few of the properties:

>> get(hf)
Color = [0.8 0.8 0.8] % border colour
Colormap = [ (64 by 3) double array]
CurrentAxes = [153.009] % handle to the axes
DoubleBuffer = on % for animation
IntegerHandle = on % figure 1 has handle 1
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NumberTitle = on % Figure 1, 2 ...
Renderer = painters % Hidden lines removal
Resize = on % Can freeze the size
WindowButtonDownFcn = % A Callback
WindowButtonMotionFcn = % Another
WindowButtonUpFcn = % Another
ButtonDownFcn = % Click over an object
Children = [153.009] % Same as axes
CreateFcn = % More callbacks
DeleteFcn =
Parent = [0] % Root
Tag = % For us
UserData = [] % For us
Visible = on % Can hide the window

>> set(1, ’Color’, [1 0 0]) % change to red

Let us now look at the axes. Sometime it is inconvenient to go

down in the tree this way so there are functions that gives the

handles directly.

gca Get handle to current axis.
gcf Get handle to current figure.
gcbo Get handle to current callback object.
gco Get handle to current object.
gcbf Get handle to current callback figure.

So

>> gcf
ans = 1

>> get(get(0, ’Child’), ’Child’)
ans = 1.530087890625000e+02

>> gca
ans = 1.530087890625000e+02

>> ha = get(1, ’Children’)
ha = 1.530087890625000e+02 % Don’t write the decimals
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>> get(ha)
AmbientLightColor = [1 1 1]
Box = on
CameraPosition = [5.5 50 17.3205]
CameraUpVector = [0 1 0]
CLim = [0 1]
FontAngle = normal
FontName = Helvetica
FontSize = [10]
FontUnits = points
FontWeight = normal
GridLineStyle = :
LineWidth = [0.5]
NextPlot = replace
Projection = orthographic
Position = [0.13 0.11 0.775 0.815] % llx, lly, w, h
Title = [160.016] % made with title command
XLabel = [155.018] % made with xlabel
XTick = [ (1 by 10) double array]
XTickLabel = 1 2 3 4 5 6 7 8 9 10
Children = [154.088] % the plot data

...

Let us make the grid- and axle lines wider (not the curve), use

a larger font for the ticks

>> set(ha, ’LineWidth’, 2, ’FontSize’, 16, ...
’FontWeight’, ’Bold’)

The title is hardly readable so lets make that larger as well:

>> set(get(ha, ’Title’))
FontAngle: [ {normal} | italic | oblique ]
FontName
FontSize
FontWeight: [ light | {normal} | demi | bold ]
HorizontalAlignment: [ {left} | center | right ]
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>> get(get(ha, ’Title’), ’String’)
ans =
y = xˆ2

>> set(get(ha, ’Title’), ’Fontsize’, 16)

This is not so convenient, so many commands can set the

properties directly.

>> title(’y = xˆ2’, ’Fontsize’,16, ’Fontweight’,’Bold’)

We have one level left in the tree. Let us look at a leaf (terminal

node), the child to the axes.

>> hp = get(ha, ’Children’)
hp =

1.540881347656250e+02
>> get(hp)

Color: [1 0 0]
LineStyle: ’-’
LineWidth: 5.000000000000000e-01

Marker: ’none’
MarkerSize: 6 % useful

XData: [1 2 3 4 5 6 7 8 9 10]
YData: [1 4 9 16 25 36 49 64 81 100]
ZData: [1x0 double] % empty

ButtonDownFcn: []
Children: [0x1 double] % no child

Type: ’line’
UIContextMenu: []

UserData: []
Visible: ’on’

Parent: 1.530087890625000e+02

>> set(hp)
ans =

LineStyle: {5x1 cell}
Marker: {14x1 cell}

...
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>> set(hp, ’LineStyle’)
[ {-} | -- | : | -. | none ] % {-} the current
>> set(hp, ’Marker’)
[ + | o | * | . | x | square | diamond | v | ˆ | > | < |

pentagram | hexagram | {none} ]

I can change one point on the curve by typing:

>> y = get(hp, ’Ydata’)
y =

1 4 9 16 25 36 49 64 81 100
>> y(3) = 100;
>> set(hp, ’Ydata’, y)

I can change the line width, but I would usually do it using

the plot-command. The curve replaces the old one. The plot-

function returns the handle.

>> hp = plot(x, x.ˆ2, ’r’, ’LineWidth’, 2)
hp =

1.540887451171875e+02

>> get(gca, ’Child’) % A new child
ans =

1.540887451171875e+02

>> delete(hp) % deletes the curve
>> get(gca, ’Child’)
ans =

Empty matrix: 0-by-1 % no child
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It can be convenient to use structures:

>> prop.LineWidth = 3;
>> prop.Color = [1 0 0]
prop =

LineWidth: 3
Color: [1 0 0]

>> set(h1, prop)
>> set(h2, prop)

str = get(handle); returns a structure in str .

The field names are the property names and the field values are

the corresponding values of the properties.

Properties have default, factory, values. We can see the 589 of

them by typing get(0, ’factory’) (only for the root). Matlab

searches for a value beginning with the current object, going up

in the tree until a user-defined or factory-defined value is found.

We can define our own default values, which will affect objects

after the change. Say that we would like to increase the font size

for axes and text, say xlabel , in general.

>> diary factory % diary filename
>> get(0, ’factory’)
>> diary off
>> !grep -i font factory % unix; edited

factoryAxesFontAngle: ’normal’
factoryAxesFontName: ’Helvetica’

axes, xlabel factoryAxesFontSize: 10
title factoryAxesFontUnits: ’points’

factoryAxesFontWeight: ’normal’
factoryTextFontAngle: ’normal’

factoryTextFontName: ’Helvetica’
in plot area factoryTextFontSize: 10

factoryTextFontUnits: ’points’
factoryTextFontWeight: ’normal’
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>> figure(1)
% Change Factory (in the name) to Default, to set the
% default value. This works for plots in figure 1 only.
>> set(1, ’DefaultAxesFontSize’, 16, ...

’DefaultTextFontSize’, 16)

% This works for all windows,
>> set(0, ’DefaultAxesFontSize’, 16, ...

’DefaultTextFontSize’, 16)

To keep the defaults one can save them in ˜/matlab/startup.m ,

which is executed when Matlab starts.

reset(handle) resets the values, of the object, to the factory

defaults. (so DefaultAxesFontSize is set to 10).

To reset (remove) a specific default property, type

set(0, ’DefaultAxesFontSize’, ’remove’) for example.

Sometimes we get arrays with handles:

>> hp = plot(x, x.ˆ2, ’k-’, x, x.ˆ2, ’ro’)
hp =

1.5400e+02
1.5500e+02

>> get(hp, ’Type’)
ans =

’line’
’line’

>> get(hp, ’Marker’)
ans =

’none’
’o’

>> set(hp, ’Color’, [0 1 0]) % for all the objects

The fill -command will produce patches (polygons) etc.
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The above stuff is good to know when you make presentations,

reports etc. Graphics does not help much if the audience cannot

see it.

Here is an example. I do not claim that I have chosen the best

fonts etc. An alternative is to use the builtin plot editor (see the

menus and buttons in the top of the window).

% Say we are going to make a transparency for a lecture
figure(1)
set(1, ’DefaultAxesFontSize’, 16, ...

’DefaultTextFontSize’, 16, ...
’DefaultAxesFontWeight’, ’Bold’, ...
’DefaultTextFontWeight’, ’Bold’)

x = linspace(0, 2 * pi);
plot(x, sin(x))
hold on
grid on

% Suppose we would like to mark min and max
h = plot(0.5 * pi * [1 3], [1 -1], ’o’) % 2 handles
set(h, ’LineWidth’, 2, ’MarkerSize’, 10)
axis([-0.2 2 * pi+0.2 -1.2 1.2])

xlabel(’x’)
ylabel(’sin x’)
title(’A sine-curve’)

text(2, 1.1, ’A maximum’)

We can give the properties in the commands as well, e.g.

text(5, -1, ’A minimum’, ’Fontsize’, 10) which overrides

the default.
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An alternative to the above is to use the builtin plot editor (see

the upper part of the window). This is convenient when you are

doing an image once. I usually generate roughly the same image

many times (new data, new course etc.) in which case it is more

convenient to have an automatic generation in a program.

Something different: I have a command that deletes all the plot-

windows (store in ˜/matlab/del.m for example)

delete(get(0, ’Children’))
One can use close all instead.
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If we have several curves we should add a legend.

>> plot(x, cos(x), ’-’, x, sin(x), ’-.’, ’Linewidth’, 2)
% Default Location is NorthEast.
% Can move the legend using the mouse as well.
>> hl = legend(’cos(x)’, ’sin(x)’, ’Location’, ’Best’);

>> set(hl, ’Fontsize’, 16, ’Fontweight’, ’Bold’)
>> set(gca, ’Fontsize’, 16, ’Fontweight’, ’Bold’)

Looks like this:
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Annotations

Once you have produced your plot you may want to add so-called

annotations, things like arrows, text, lines, rectangles etc. This

can be done using the annotation -function, but it is easier to

use the Insert -menu in the figure-window, since you can work

with the mouse instead of typing coordinates.

A nice feature is that you can save an M-file containing the

code necessary to generate the figure, File/Generate M-file...
(otherwise you may have to redo the annotations if you want

change the image).

Another way is to save the figure in fig -format, using the

Save As... -menu alternative.

The following sequence together with an inserted Text Arrow
(the text “intersection” and an arrow pointing at the intersec-

tion between the cures), produced the M-file on the next page:

>> x = linspace(0, 1);
>> plot(x, sin(x), ’r’, x, cos(x), ’b’)
>> grid
>> xlabel(’x’)
>> ylabel(’y’)
>> title(’Intersection between sin x and cos x’)

Note, on the next page, that the actual data is not included in

the file. The comments are produced by Matlab.

Note the use of the annotation -function.
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function createfigure(X1, YMatrix1)
%CREATEFIGURE(X1,YMATRIX1)
% X1: vector of x data
% YMATRIX1: matrix of y data

% Auto-generated by MATLAB on 16-Sep-2010 17:39:49

% Create figure
figure1 = figure;

% Create axes
axes1 = axes(’Parent’,figure1);
box(axes1,’on’);
grid(axes1,’on’);
hold(axes1,’all’);

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1);
set(plot1(1),’Color’,[1 0 0]);
set(plot1(2),’Color’,[0 0 1]);

% Create xlabel
xlabel(’x’);

% Create ylabel
ylabel(’y’);

% Create title
title(’Intersection between sin x and cos x’);

% Create textarrow
annotation(figure1,’textarrow’,...

[0.576785714285712 0.737499999999997],...
[0.610904761904764 0.682333333333335],...
’TextEdgeColor’,’none’,...
’String’,{’intersection’});
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Callbacks

It is common in Matlab-, OpenGL-, X11-programming to use

callback routines. Such a routine is bound to a special event

(e.g. the click of a mouse button) and the routine is called if the

event occurs.

In this example a ButtonDownFcn-property of a curve, is used

to change the colour of a curve. When we click close (5 pixels)

to the curve it will change colour from blue (standard) to red.

The value of the property (the callback) is, in this example, a

Matlab-command. It will be executed if we click on the curve.

>> x = 0:0.1:2 * pi;
>> h1 = plot(x, cos(x));
>> hold on
>> h2 = plot(x, sin(x));

>> get(h1)
....

ButtonDownFcn =
CreateFcn =
DeleteFcn =

>> set(h1, ’ButtonDownFcn’, ...
’set(h1, ’’Color’’, [1 0 0])’)

>> get(h1)
ButtonDownFcn = set(h1, ’Color’, [1 0 0])

This could be used to do the picking for the complex cosine

function (in the introduction).

Note, a common misconception: the callback is not executed

when we define it. It is executed if/when the action is

performed.
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Note also that the example shows unsafe programming, the

variable h1 may not exist when we click on the curve. Here

is a better way, using the gcbo -function (get current callback

object):

>> set(h1, ’ButtonDownFcn’, ...
’set(gcbo, ’’Color’’, [1 0 0])’)

All graphics objects have three properties for which you can

define callback routines:

• ButtonDownFcn as above.

• CreateFcn executes during object creation after all

properties are set

• DeleteFcn executes just before deleting the object

User interface objects have a Callback property; more later on.

Figures have the three callbacks above and (from the manual):

• CloseRequestFcn executes when a request is made to close

the figure (by a close command, by the window manager

menu, or by quitting MATLAB). Default is closereq .

• KeyPressFcn executes when users press a key while the

cursor is within the figure window.

• ResizeFcn executes when users resize the figure window.

• WindowButtonDownFcn executes when users click a mouse

button while the cursor is over the figure background, a

disabled uicontrol, or the axes background.

• WindowButtonMotionFcn executes when users move the mouse

within the figure window (but not over menus or title bar).

• WindowButtonUpFcn executes when users release the mouse

button, after having pressed the mouse button within the

figure.
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The callback can be a Matlab command, as in the example, but

also:

• a string with the name of an M-file (script or function).

• a cell array of strings (see the manual, a bit special).

• a function handle or a cell array containing a function handle

and additional arguments (see the manual for the last case).

When using a function handle the callback-function must define

at least two input arguments. The handle of the object gener-

ating the callback, and the event data structure (can be empty

for some callbacks). Matlab passes these two arguments implic-

itly whenever the callback executes (it is possible to add input

arguments, see the manual). Here is a simple example:

>> h1 = plot(x, cos(x));
>> set(h1, ’ButtonDownFcn’, @my_callback)
>> type my_callback % list a file

function my_callback(handle, event_str)
% list input arguments (only in this example)
handle
event_str

% Can skip all. Must be true for all elements.
if all(get(handle, ’Color’) == [1 0 0])

set(handle, ’Color’, [0 0 1])
else

set(handle, ’Color’, [1 0 0])
end

>> handle = % clicked on the curve
1.540119628906250e+02

event_str =
[]
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When we use the first alternative (a string) there are no required

variables (we decide). An advantage with using function handles

is that we, when making GUIs, can collect all the callbacks in

one file, as in the following example. This is convenient since

one tends to get many callbacks.

Here is the complex cosine-example again. We make a rectan-

gular grid, in the complex plane, in a left subplot. Lines with

constant real-parts are black, and lines with constant imaginary

parts are red.

In the right subplot we plot the cosine of the points on the lines

(using the same colours).

When we click on a red or black curve in either plot, the curve

and the corresponding one in the other window, should become

blue and twice as wide.

When we click on a blue curve in either plot, the curve and

the corresponding one in the other window, should return to its

original colour and get its original width.

When we click on a curve, a callback is called. In this callback

we can find out the handle of the curve. The callback needs to

find out the handle of the corresponding curve in the other plot.

This can be solved in a number of ways.

• We can store the handles in a matrix, one row per pair of

handles.

• subplot creates an axes object, so the figure has two axes-

children. Each child has an array of handles to line-objects.

The two handle arrays are probably ordered in the same way.

• A more general approach: use the UserData -property of a

line to store the handle of the corresponding curve (one could

store more data, e.g. a cell-array). Since the callback needs

to know the original colours (can be done in several ways),

I have used the Tag-property to store the colour as a string,

’r’ for red and ’k’ for black.

Here comes the program. The user should give intervals (real

and imag) the number of lines.
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function cos_ex(real_int, imag_int, n)
% To save space I have not included any help

figure % New window
subplot(121); hold on % to avoid hold in the loop
subplot(122); hold on

iu = sqrt(-1); % 50 is a bit arbitrary
im = iu * linspace(imag_int(1), imag_int(2), 50);

for re = linspace(real_int(1), real_int(2), n)
subplot(121)
h1 = plot([re re], imag_int, ’k’);

subplot(122)
c = cos(re + im);
h2 = plot(real(c), imag(c), ’k’);

set(h1,’UserData’,h2, ’Tag’,’k’, ’ButtonDownFcn’,@cb)
set(h2,’UserData’,h1, ’Tag’,’k’, ’ButtonDownFcn’,@cb)

end

re = linspace(real_int(1), real_int(2), 50);
for im = linspace(imag_int(1), imag_int(2), n)

subplot(121)
h1 = plot(real_int, [im im], ’r’);

subplot(122)
c = cos(re + iu * im);
h2 = plot(real(c), imag(c), ’r’);

set(h1,’UserData’,h2, ’Tag’,’r’, ’ButtonDownFcn’,@cb)
set(h2,’UserData’,h1, ’Tag’,’r’, ’ButtonDownFcn’,@cb)

end

subplot(121); axis tight
subplot(122); axis tight
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There is a reason for:

c = cos(re + im);
h2 = plot(real(c), imag(c), ’k’);

If we write like this, it may not work:

h2 = plot(cos(re + im), ’k’);

Why? Consider the following:

>> iu = sqrt(-1);

% draws a line from (0, 0) to (0, 1) in Rˆ2
>> plot([0; iu])
>> hold on

% a line from (1, 0) to (2, 1). Not what we want!
>> plot([0; 1]) % imag = 0

% equivalent to
>> plot([1; 2], [0; 1])

% essentially a line from (0, 0) to (1, 0)
>> plot([0; 1] + eps * iu)

Here comes the callback. Note that event is not used so I choose

to ignore it using a tilde (new in Matlab R2009b).
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function cb(handle, ˜) % note, in the same file
blue = [0 0 1];

c = get(handle, ’Color’);
if all(c == blue) % new colours, reset
% get(handle, ’Tag’) is original colour ’k’ or ’r’

set(handle, ’Color’, get(handle, ’Tag’), ...
’LineWidth’, 1)

h = get(handle, ’UserData’); % other subplot
set(h, ’Color’, get(h, ’Tag’), ’LineWidth’, 1)

else
% original colours, change

set(handle, ’Color’, blue, ’LineWidth’, 2)
set(get(handle, ’UserData’), ’Color’, blue, ...

’LineWidth’, 2)
end

This works well in many situations. One problem is that the

inverse of cos does not always exist. So there may be z1 6= z2

with cos z1 = cos z2. This gives a problem with colour, clicking

on z1 may not give the same blue colour on cos z1. If cos z1 is on

top of cos z2 we get a blue line, otherwise we get a mix of black

and blue (or no change if we have a different line width).

A more severe problem is if we click on cos z1 = cos z2, only

one line (not two) will become blue in the first plot. Which line

reacts? Here is a short test;

>> v = [0 1];
>> plot(v, v, ’ButtonDownFcn’, ’1’) % echo 1
>> hold on
>> plot(v, v, ’ButtonDownFcn’, ’2’) % echo 2
>> ans = % clicking on the line

2

So the latest drawn line triggers the callback.
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The following “works”; we can click on the line or on the

markers.

>> v = linspace(0, 1, 30);
>> plot(v, v, ’ButtonDownFcn’, ’1’)
>> hold
>> plot(v, v, ’ro’, ’ButtonDownFcn’, ’2’)
>> ans = % clicking on a marker

2
>> ans = % clicking on the line

1

This may be another solution in some cases:

>> h1 = plot(v, v, ’ButtonDownFcn’, ’1’);
>> hold on
>> h2 = plot(v, v, ’ButtonDownFcn’, ’2’);

>> set(h2, ’HitTest’, ’Off’) % cannot trigger
>> ans = % clicked

1
>> set(h1, ’HitTest’, ’Off’) % switch this of as well

When both lines are “switched off” we do not get any print out

(unless we have set the ButtonDownFcn of the current axes).
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Finally an example where the event structure is not empty. Let

us use the KeyPressFcn of a figure.

>> figure(1)
>> set(1, ’KeyPressFcn’, @key_cb)
>> type key_cb

function key_cb(handle, event)

handle
event

>> handle = 1 % pressed the a-key with the
event = % mouse in the window

Character: ’a’
Modifier: {1x0 cell}

Key: ’a’

handle = 1 % pressed shift (part of writing A)
event =

Character: ’’
Modifier: {1x0 cell}

Key: ’shift’

handle = 1 % two events are generated for A
event =

Character: ’A’
Modifier: {’shift’}

Key: ’a’

handle = 1 % pressed left arrow
event =

Character: ’’ % some garbage
Modifier: {1x0 cell} % the key sends ˆ[[A

Key: ’leftarrow’ % ˆ[ = escape
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GUIs

It is now time to construct a more general GUI. Many things to

think about when constructing a GUI, here are a few. For more

references see the Diary. Some guidelines:

• No surprises! A good GUI behaves as the user expects. One

should not have to hesitate when pushing a button. Nice

with Undo and Cancel-alternatives.

• Consistency. Similar tasks should be done in similar ways.

The user can learn principles.

• Use metaphors. A button with a magnifying glass for

zooming, for example.

• Try to make the GUI self-explanatory. A user will not read

manuals, perhaps not even a few lines.

• Give feedback. Did I push the button or not? Is the program

running or has it crashed?

• Do not overuse strong colours, sound or movement. Keep

messages readable (font, fontsize, fontweight) and clear.

• No builtin order. Modelessness. Should be able to press

all buttons etc. without the program crashing. Turn off

(gray out), or hide, alternatives that cannot be chosen, for

example.

• Think of portability. Does the program work on another

system? How does the monitor’s resolution and size change

the GUI? Are the sizes of buttons in pixels or cm?

• For Matlab GUIs. The users may have done other work

before running your program, so be careful with using

variables and windows. When your GUI quits, just clean

up after your program, do not close all the windows, for

example.
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Matlab provides GUIDE (GUI Design Environment). You must

run the GUI-mode of Matlab to use it (so do not start with

matlab -nojvm ). Then type guide . I will not use guide in this

lecture.

Let us make a Quit-button. When we press the button, the win-

dow, which the button resides in, should be deleted. We make

the button gray with the black text, Quit, on it. uicontrol is

the basic tool.

>> figure
>> h = uicontrol;
>> set(h)

BackgroundColor
Callback: string -or- function handle -or- cell array
Enable: [ {on} | off | inactive ]
FontName
FontSize
ForegroundColor
HorizontalAlignment: [ left | {center} | right ]
KeyPressFcn: string -or- function handle -or- cell array
Max
Min
Position
String
Style: [ {pushbutton} | togglebutton | radiobutton |

checkbox | edit | text | slider | frame |
listbox | popupmenu ]

TooltipString
Units: [ inches | centimeters | normalized | points |

{pixels} | characters ]
Value

...
Visible: [ {on} | off ]
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We can choose between the following types:

• pushbutton, button with no memory

• togglebutton, on-off-button

• radiobutton, to choose the station on a radio

(mutually exclusive)

• checkbox, tick choices

• edit, text that can be edited

• text, above a button. for example

• slider

• frame, rectangles that provide a visual enclosure for regions

of a figure window (obsolete)

• listbox, scrollable list with alternatives

• popupmenu (does not work with -nojvm )

Some of the buttons only differ in appearance; we have to fix the

functionality. A suitable button in our example is a pushbutton,

which is the default. In this example we could use a string

instead of a function.

>> type Quit_ex

function Quit_ex

hf = figure;
set(hf, ’Name’, ’My GUI’, ...

’NumberTitle’, ’Off’, ...
’MenuBar’, ’None’, ...
’Units’, ’centimeters’, ...
’Position’, [10, 10, 5, 3])
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hb = uicontrol( ...
’Style’, ’pushbutton’, ... % default
’Units’, ’centimeters’, ...
’Position’, [0.5 0.5 2 1], ...
’String’, ’Quit’, ...
’TooltipString’, ’Close this window’, ...
’BackgroundColor’, [0.7 0.7 0.7], ...
’ForegroundColor’, [0 0 0], ...
’Callback’, @Quit_cb );

function Quit_cb(handle, event)

% gcbf: Get handle to current callback figure.
% fig = gcbf returns the handle of the figure
% that contains the object whose callback
% is currently executing.

delete(gcbf)

Position is lower left x, lower left y, width, height.
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Here comes a toggle button. The string, on the button, should

alternate between On and Off. The button has a Value-property.

Matlab will automatically alternate the value of Value between

0 and 1.

>> type Toggle_ex
function Toggle_ex

hf = figure;
set(hf, ’Name’, ’My GUI’, ...

’NumberTitle’, ’Off’, ...
’MenuBar’, ’None’, ...
’Units’, ’centimeters’, ...
’Position’, [10, 10, 5, 3])

% Toggle buttons set Value to Max (default 1) when
% they are down (selected) and Min (default 0)
% when up (not selected).
hb = uicontrol( ...

’Style’, ’togglebutton’, ...
’Units’, ’centimeters’, ...
’Position’, [0.5 0.5 2 1], ...
’String’, ’Off’, ...
’BackgroundColor’, [0.7 0.7 0.7], ...
’ForegroundColor’, [0 0 0], ...
’Value’, 0, ... % Initially
’Callback’, @Toggle_cb ); % Off

function Toggle_cb(handle, event)

% If Value = 1 when we clicked, then Value = 0
% in this callback.
if get(handle, ’Value’)

set(handle, ’String’, ’On’) % used to be Off
else

set(handle, ’String’, ’Off’) % used to be On
end

117



A shorter version:

function Toggle_cb(handle, event)
str = {’Off’, ’On’};
set(handle, ’String’, str{1 + get(handle, ’Value’)})

Note that str = [’Off’, ’On’]; gives one string, ’OffOn’ .

Here comes a slider, where we can set values continuously. We

should put a text close to each slider. In the example we use the

same callback. This is not necessary, nor is he use of the Tag.

>> type Slider_ex

function Slider_ex

hf = figure;
set(hf, ’Name’, ’My GUI’, ’NumberTitle’, ’Off’, ...
’MenuBar’, ’None’, ’Units’, ’centimeters’, ...
’Position’, [10, 10, 4, 4], ...
’DefaultUicontrolUnits’, ’centimeters’, ...
’DefaultUicontrolBackgroundColor’, [0.7 0.7 0.7], ...
’DefaultUicontrolForegroundColor’, [0 0 0])

uicontrol(’Style’, ’slider’, ...
’Position’, [0.5 0.5 3 0.7], ...
’Min’, -1, ... % min value of slider
’Max’, 2, ... % max value
’Value’, 1, ... % initial value
’Tag’, ’slider_1’, ...
’Callback’, @Slider_cb );

uicontrol(’Style’, ’slider’, ...
’Position’, [0.5 1.5 3 0.9], ...
’Min’, -1, ’Max’, 2, ’Value’, 1, ...
’Tag’, ’slider_2’, ...
’Callback’, @Slider_cb );
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% Help text. May want a different BG-colour
uicontrol(’Style’, ’text’, ’String’, ’Two sliders’, ...

’FontWeight’, ’Bold’,...
’Position’, [0.5 2.4 3 0.5])

function Slider_cb(handle, event)
% Can have different callbacks for different
% sliders of course. Does not do anything
% useful.

val = get(handle, ’Value’)
if get(handle, ’Tag’) == ’slider_1’

disp(’slider_1’)
else

disp(’slider_2’)
end

This is using Matlab with Java. Turning off Java, -nojvm , gives

a different appearance.

Notice also the area for the text (slightly darker).
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Here comes a more sophisticated example. We take the old

cosine-example (where we can click on the curves) and add some

buttons and menus. We start the program by typing cos ex gui
and get the following window:

Quit should delete the window. Reset should reset all the lines

to their original colours and width. Using the left popupmenu

we can choose between four functions; the plot is updated.

The next menu sets the number of grid lines; the plot is up-

dated. Zoom in allows us the click twice in the left window to

mark a smaller rectangle; the plot is updated. Reset all, resets

everything (like starting over).

There should be texts above the menus.
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Here is the code (> 240 lines). I have had to compress it

(compared to my original). All routines in one file.

function cos_ex_gui
% Should have better names for the global variables
% or not use global. Can use UserData of the figure.
global ha1 ha2 hm_fun hm_n fun funcs ...

real_int imag_int n

% default values
real_int = [-1 1]; % real interval
imag_int = [-1 1]; % imag interval
n = 10; % # of grid lines
fun = 1; % choice of function

funcs = {@(z)cos(z), @(z)sin(z), @(z)exp(z), @(z)z.ˆ2};

make_gui % create buttons etc.
make_plots % draws the grid and function(grid)

% ------------------- make_gui -------------------
function make_gui
global ha1 ha2 hm_fun hm_n funcs

hf = figure;

set(hf, ’Name’, ’My GUI’, ’NumberTitle’, ’Off’, ...
’Units’, ’centimeters’, ...

’DefaultAxesUnits’, ’centimeters’, ...
’DefaultUicontrolUnits’, ’centimeters’, ...
’DefaultUicontrolFontWeight’, ’Bold’, ...
’DefaultUicontrolBackgroundColor’, ...

[0.7 0.7 0.7], ...
’DefaultUicontrolForegroundColor’, ’k’)

ha1 = subplot(121); hold on
ha2 = subplot(122); hold on
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% shrink subplots
dp = 1.2 * [0 1 0 -1];
set(ha1, ’Position’, get(ha1, ’Position’) + dp)
set(ha2, ’Position’, get(ha2, ’Position’) + dp)

% create buttons and menus
pos = [1.5 0.5 2 1]; dx = 0.5;

% Quit-button
uicontrol(’Position’, pos, ...
’String’, ’Quit’, ...
’TooltipString’, ’close window’, ...
’Callback’, ’delete(gcbf)’ ); % string

% Reset-button
pos(1) = pos(1) + pos(3) + dx;
uicontrol(’Position’, pos, ...
’String’, ’Reset’, ...
’TooltipString’, ’reset lines’, ...
’Callback’, @reset_cb);

% Reset all-button
pos(1) = pos(1) + pos(3) + dx;
uicontrol(’Position’, pos, ...
’String’, ’Reset all’, ...
’TooltipString’, ’reset everything’, ...
’Callback’, @reset_all_cb);

% Zoom-button
pos(1) = pos(1) + pos(3) + dx;
uicontrol(’Position’, pos, ...
’String’, ’Zoom in’, ...
’TooltipString’, ’zoom in left plot’, ...
’Callback’, @zoom_cb);
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% Build menu-items
for fun = 1:length(funcs)

t = char(funcs{fun}); % @(z)expression
t = t(t ˜= ’.’); % rm elementwise
items{fun} = t(5:end);

end

% Function menu
pos(1) = pos(1) + pos(3) + dx;
hm_fun = uicontrol(’Style’, ’popupmenu’, ...
’Position’, pos, ...
’TooltipString’, ’function’, ...
’String’, items, ...
’Value’, 1, ... % default
’Callback’, @menu_fun_cb);

% An alternative to cell arrays
% n-menu (number of grid lines)
pos(1) = pos(1) + pos(3) + dx;
hm_n = uicontrol(’Style’, ’popupmenu’, ...
’Position’, pos, ...
’String’, ...

’5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20’, ...
’TooltipString’, ’# of lines’, ...
’Value’, 6, ...
’Callback’, @menu_n_cb);

% ------------------- equal -------------------
function eq = equal(s1, s2)
% Compare two strings. used by reset_cb.
% May be of unequal length (strcmp) and different
% case (i in strcmpi). Blanks are significant
% for strcmpi, so they are removed.

eq = strcmpi(s1(s1 ˜= ’ ’), s2(s2 ˜= ’ ’));
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% ------------------- reset_cb -------------------
function reset_cb(handle, event)
% Could call make_plots instead
% but this shows a different technique

h = get(handle, ’Parent’); % i.e. the figure
hc = get(h, ’Children’); % axes and uicontrol

for h = hc(:)’ % for all axes and uicontrols
if equal(get(h, ’Type’), ’axes’)

hl = get(h, ’Children’); % lines

for hline = hl(:)’ % for all lines
set(hline, ’Linewidth’, 1, ...

’Color’, get(hline, ’Tag’))
end

end
end

% ------------------- reset_all_cb -------------------
function reset_all_cb(handle, event)
global hm_fun hm_n fun real_int imag_int n

real_int = [-1 1]; % default values
imag_int = [-1 1];
fun = 1;
n = 10;

set(hm_fun, ’Value’, fun) % reset menus
set(hm_n, ’Value’, 6)

make_plots % redraw
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% ------------------- zoom_cb -------------------
function zoom_cb(handle, event)
%
% Can zoom in (but not out)
% There is builtin support for zoom (help zoom).
%
global real_int imag_int

[re, im] = ginput(2); % no conflict with
real_int = sort(re); % clicking on lines
imag_int = sort(im); % should check the values

make_plots % redraw

% ------------------- menu_fun_cb -------------------
function menu_fun_cb(handle, event)
global fun

fun = get(handle, ’Value’);
make_plots % redraw

% ------------------- menu_n_cb -------------------
function menu_n_cb(handle, event)
global n

n = 4 + get(handle, ’Value’);
make_plots % redraw

% ------------------- make_plots -------------------
function make_plots
% almost like the old version
global ha1 ha2 fun funcs real_int imag_int n
iu = sqrt(-1);
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% Remove curves. OK if empty. This is new.
delete(get(ha1, ’Children’))
delete(get(ha2, ’Children’))

im = iu * linspace(imag_int(1), imag_int(2), 50);
for re = linspace(real_int(1), real_int(2), n)

subplot(ha1) % subplot(121) changes position. New.
h1 = plot([re re], imag_int, ’k’);

subplot(ha2)
c = funcs{fun}(re + im); % This is new
h2 = plot(real(c), imag(c), ’k’);

set(h1, ’UserData’, h2, ’Tag’, ’k’, ...
’ButtonDownFcn’, @plot_cb)

set(h2, ’UserData’, h1, ’Tag’, ’k’, ...
’ButtonDownFcn’, @plot_cb)

end

re = linspace(real_int(1), real_int(2), 50);
for im = linspace(imag_int(1), imag_int(2), n)

subplot(ha1)
h1 = plot(real_int, [im im], ’r’);

subplot(ha2)
c = funcs{fun}(re + iu * im);
h2 = plot(real(c), imag(c), ’r’);

set(h1, ’UserData’, h2, ’Tag’, ’r’, ...
’ButtonDownFcn’, @plot_cb)

set(h2, ’UserData’, h1, ’Tag’, ’r’, ...
’ButtonDownFcn’, @plot_cb)

end
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% This is new
subplot(ha1); axis tight
h(1) = xlabel(’real z’);
h(2) = ylabel(’imag z’);
h(3) = title(’z’);

subplot(ha2); axis tight
t = char(funcs{fun}); % something like @(z)expression
t = t(5:end); % rm @(z)
t = t(t ˜= ’.’); % rm dots

% xlabel should be real(cos(z)) etc.
h(4) = xlabel([’real(’, t, ’)’]);
h(5) = ylabel([’imag(’, t, ’)’]);
h(6) = title(t);
set(h, ’FontWeight’, ’Bold’)

% ------------------- plot_cb -------------------
function plot_cb(handle, event)
% ... same as function cb in the previous example
blue = [0 0 1];

c = get(handle, ’Color’);
if all(c == blue) % new colours, reset
% get(handle, ’Tag’) is original colour ’k’ or ’r’

set(handle, ’Color’, get(handle, ’Tag’), ’LineWidth’, 1)
h = get(handle, ’UserData’); % other subplot
set(h, ’Color’, get(h, ’Tag’), ’LineWidth’, 1)

else
% original colours, change

set(handle, ’Color’, blue, ’LineWidth’, 2)
set(get(handle, ’UserData’), ’Color’, blue, ...

’LineWidth’, 2)
end
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It is possible to have textures on buttons. I fetched a gif-image of

a magnifying glass. Matlab requires true colour (24-bit colour)

and I used the xv -command to convert the image and saved it as

a jpeg-image (highest quality). The original image has a black

border.

>> C = imread(’mag.jpg’, ’jpg’); % read the file
>> image(C) % look at it
>> axis image % correct scaling
>> size(C)
ans =

32 32 3 % a 3D-matrix

>> figure
>> uicontrol(’Style’, ’Pushbutton’, ...

’Units’, ’pixels’, ... % Note
’Position’, [100 100 32 32], ...
’CData’, C, ... % Note
’Callback’, @Zoom_cb );

>> uicontrol(’Style’, ’Pushbutton’, ...
’Units’, ’pixels’, ...
’Position’, [150 100 64 64], ...
’CData’, C, ...
’Callback’, @Zoom_cb );
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We can add menus at the top of the window as well.

h = figure;
hm = uimenu(h, ’Label’, ’My menu’);
% set(h, ’MenuBar’, ’None’) removes the standard menu

% Accelerator: type CTRL-K with the mouse in the window
alt(1) = uimenu(hm, ’Label’, ’Beef’, ...

’Callback’, ’disp(’’Beef’’)’, ...
’Accelerator’, ’K’);

% Can have callback here as well
alt(2) = uimenu(hm, ’Label’, ’Chicken’);

alt(3) = uimenu(hm, ’Label’, ’Fish’, ...
’Callback’, ’disp(’’Fish’’)’ );

% We can do hierarchical menus. Don’t overuse!

uimenu(alt(2), ’Label’, ’with Cashew nuts’, ...
’Callback’, ’disp(’’Cashew’’)’);

uimenu(alt(2), ’Label’, ’in Curry’, ...
’Callback’, ’disp(’’Curry’’)’);

uimenu(alt(2), ’Label’, ’with Peppers’, ...
’Callback’, ’disp(’’Peppers’’)’);
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A few more words about clicking on curves.

If you choose “Data Cursor”-tool (to the right of the rotate

button) you can click on an object (also in 3D) to get

the coordinates.

You can change the cursor to one of several predefined:

>> set(gcf, ’Pointer’, ’arrow’)
% or ’watch’ etc. See the manual.

The watch-cursor is an animation under Gnome.

You can make your own cursor, as well. Create a 16×16-matrix

containing 1 (black), 2 (white) and NaN (transparent).

Let us make a large X.

>> C = eye(16); C = C + C(:, end:-1:1);
>> C = C ./ C;
Warning: Divide by zero.

>> C(6:11, 6:11)
ans =

1 NaN NaN NaN NaN 1
NaN 1 NaN NaN 1 NaN
NaN NaN 1 1 NaN NaN
NaN NaN 1 1 NaN NaN
NaN 1 NaN NaN 1 NaN

1 NaN NaN NaN NaN 1

>> figure(1)
>> set(1, ’Pointer’, ’Custom’, ...

’PointerShapeCData’, C, ...
’PointerShapeHotSpot’, [8.5 8.5])

PointerShapeHotSpot is the pointer location.
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We can bind a menu (context menu) to a graphical object, e.g.

a curve.

figure(1)

% Create a context menu
cmenu = uicontextmenu;

x = 0:0.1:1;

% and bind it to the curve
hp = plot(x, sin(x), ’UIContextMenu’, cmenu);

% Define callbacks...
cb1 = ’set(hp, ’’LineStyle’’, ’’--’’)’;
cb2 = ’set(hp, ’’LineStyle’’, ’’:’’)’;
cb3 = ’set(hp, ’’LineStyle’’, ’’-’’)’;

% Define the menu alternatives
uimenu(cmenu, ’Label’, ’dashed’, ’Callback’, cb1)
uimenu(cmenu, ’Label’, ’dotted’, ’Callback’, cb2)
uimenu(cmenu, ’Label’, ’solid’, ’Callback’, cb3)

If one RIGHT-clicks on the curve, a menu appears where we can

choose between dashed, dotted and solid.
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Loading files

> type load_file.m
function load_file
uicontrol(’Style’,’PushButton’, ’Units’,’centimeters ’, ...

’Position’, [1 3 2 1.5], ’String’, ’Load’, ...
’Callback’, @load_cb )

function load_cb(handle, event)
pos = [100 100]; % [from_left, from_top], in pixels
filter = ’ * .data’;

[file_name, path_to_file] = ...
uigetfile(filter, ’title’, ’Location’, pos);

file_name, path_to_file % We usually don’t print

>> load_file
file_name = test.data
path_to_file = /users/math/thomas/
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Error messages

function error_msg(msg)

% Inactivate all other windows using a modal
% dialogue
figure( ’Units’, ’centimeters’, ...

’Position’, [15 15 4 2], ...
’Color’, [1.0 0.5 0.5], ...
’MenuBar’, ’None’, ...
’NumberTitle’, ’Off’, ...
’WindowStyle’, ’Modal’, ... % Note
’Name’, ’Error’ );

axis(’off’)

% the error message
text(0, 0.7, msg, ’FontWeight’, ’Bold’)

% Remove the window when we have pressed OK

uicontrol( ’Style’, ’PushButton’, ...
’Units’, ’centimeters’, ...
’Position’, [0.3, 0.3, 1, 0.7], ...
’String’, ’OK’, ...
’Callback’, ’delete(gcbf)’)

error msg(’Nothing to plot’) gives:
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There is a function for this in Matlab:

errordlg(’message’, ’title’, ’modal’) .

This is one of several such functions. See help or the manual.

Predefined Dialog Boxes

• dialog Create and display dialog box

• errordlg Create and display error dialog box

• helpdlg Create and display help dialog box

• inputdlg Create and display input dialog box

• listdlg Create and display list selection dialog box

• msgbox Create and display message dialog box

• pagesetupdlg Display page setup dialog box

• printdlg Display print dialog box

• questdlg Display question dialog box

• uigetdir Display standard dialog box for retrieving

a directory

• uigetfile Display standard dialog box for retrieving files

• uigetpref Display dialog box for retrieving preferences

• uiputfile Display standard dialog box for saving files

• uisave Display standard dialog box for saving

workspace variables

• uisetcolor Display standard dialog box for setting an object’s

ColorSpec

• uisetfont Display standard dialog box for setting an object’s

font characteristics

• waitbar Display waitbar

• warndlg Display warning dialog box
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Animation in Matlab

Example: we would like to animate a square that bounces inside

a rectangle. We assume that the square always hits a wall at a

45 degree angle and that no energy is lost in the contact.

Here is a simple solution:

function test5
global min_x max_x min_y max_y v cont

% initial position for square
x = 3 * [0 1 1 0]’ + 15;
y = 3 * [0 0 1 1]’ + 15;

hf = figure;
set(hf, ’DeleteFcn’, @clean_up)

% plot square
h = fill(x, y, ’r’);
axis equal
min_x = 0; max_x = 90; min_y = 0; max_y = 31;

% boundingbox
axis([min_x max_x min_y max_y])
set(gca, ’xtick’, [], ’ytick’, [])

v = [1 1]; % initial direction
cont = 1;

while cont
% drawnow % update screen

pause(0.01) % pause and update screen
update_pos(h)

end

drawnow or pause is needed to flush the queue for graphics

events, otherwise all the events will accumulate and nothing is

plotted.
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function update_pos(h)
global min_x max_x min_y max_y v cont

% necessary since this routine can be called when
% we have deleted the window
if ˜cont, return, end

% fetch position
x = get(h, ’xdata’);
y = get(h, ’ydata’);

% check if squrea has hit a wall or a corner
off_y = y(3) >= max_y || y(1) <= min_y;
if x(2) >= max_x || x(1) <= min_x

if off_y
v = -v;
set(h, ’Facecolor’, ’g’) % change colour as well

else
v = [-v(1), v(2)];
set(h, ’Facecolor’, ’b’)

end
elseif off_y

v = [v(1), -v(2)];
set(h, ’Facecolor’, ’y’)

end

% update position
x = x + 0.2 * v(1);
y = y + 0.2 * v(2);

% update graphics data
set(h, ’xdata’, x, ’ydata’, y)
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function clean_up(obj, event)
% called when we delete the window
global cont

cont = 0;

Another way to update the image is to use a so-called timer

object. A timer object is similar to a clock that runs in parallel

with ones program (a separate thread).

The clock can be set up so that it calls a callback routine at

times t0, t0 + δt, t0 + 2δt, t0 + 3δt, . . .. t0 is called start delay and

δt period. Java must be enabled for this to work.

First some simple examples.

> t = timer(’TimerFcn’, ’disp(’’tic’’)’, ...
’ExecutionMode’, ’fixedSpacing’, ...
’Period’, 1, ’TasksToExecute’, 5)

Timer Object: timer-1

Timer Settings
ExecutionMode: fixedSpacing

Period: 1
BusyMode: drop

Running: off

Callbacks
TimerFcn: ’disp(’tic’)’
ErrorFcn: ’’
StartFcn: ’’

StopFcn: ’’

>> start(t)
tic
tic
tic
tic
tic
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>> get(t, ’Running’)
ans = off
>> delete(t)

% make a new timer
>> t = timer(’TimerFcn’, ’disp(’’tic’’)’, ...

’ExecutionMode’, ’fixedSpacing’, ...
’Period’, 10, ’TasksToExecute’, 5);

>> start(t)
tic
>> get(t, ’Running’)
ans = on
>> stop(t)
>> delete(t)

% make a new timer
>> t = timer(’TimerFcn’, ’disp(’’tic’’)’, ...

’ExecutionMode’, ’fixedSpacing’, ...
’Period’, 10, ’TasksToExecute’, 5);

>> start(t)
tic
tic
>> delete(t)
Warning: One or more timer objects were stopped

before deletion.

% make two new timers
>> t1 = timer(’TimerFcn’, ’disp(’’tic_1’’)’, ...

’ExecutionMode’, ’fixedSpacing’, ...
’Period’, 1, ’TasksToExecute’, 5);

>> t2 = timer(’TimerFcn’, ’disp(’’tic_2’’)’, ...
’ExecutionMode’, ’fixedSpacing’, ...
’Period’, 1, ’TasksToExecute’, 5);
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>> start(t1)
tic_1
tic_1
>> start(t2)
tic_2
tic_1
tic_2
tic_1
tic_2
tic_1
tic_2
tic_2
>> timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn:
1 fixedSpacing 1 ’disp(’tic_1’)’
2 fixedSpacing 1 ’disp(’tic_2’)’

>> delete(timerfind)
>> timerfind
ans =

[]

% make a new timer
>> t = timer(’TimerFcn’, ’disp(’’tic’’)’, ...

’ExecutionMode’, ’fixedSpacing’, ...
’Period’, 1, ’TasksToExecute’, 5);

>> start(t); wait(t) % block the command line

Possible to have ’TasksToExecute’, Inf
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Here are some of the most important properties of a

timer object.

• BusyMode Action taken when a timer has to execute TimerFcn
before the completion of previous execution of TimerFcn .

’drop’ , do not execute the function. (default).

’error’ , generate an error.

’queue’ , execute function at next opportunity.

• ExecutionMode Determines how the timer object schedules

timer events. ’singleShot’ (default), ’fixedDelay’ , ’fixedRate’
’fixedSpacing’ .

• Period Specifies the delay, in seconds, between executions

of TimerFcn .

• Running Indicates whether the timer is currently executing.

• StartDelay Specifies the delay, in seconds, between the start

of the timer and the first execution of the function specified

in TimerFcn .

• StartFcn Function the timer calls when it starts.

• StopFcn Function the timer calls when it stops.

• TasksToExecute Specifies the number of times the timer

should execute the function specified in the TimerFcn
property.

• TimerFcn Timer callback function.

• UserData User-supplied data.

More deails about ExecutionMode . The duration of the lag

depends on what other processing Matlab happens to be doing

at the time.

singleShot
T i m e r e x e c u t e s

start lag TimerFcn timer stops
----|---------|------+------------------|

start
delay
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Here are the other three cases:

delay
--|----|------------------------------------------- --
start

fixedSpacing:
|lag|TimerFcn|<---- period ---->|lag|TimerFcn|

fixedDelay:
<---- period ---->

|lag|TimerFcn| |lag|TimerFcn|

fixedRate:
<---- period ---->

|lag|TimerFcn| |lag|TimerFcn|

Here is a code for the bouncing squre using timer objects.

function test55
global min_x max_x min_y max_y

hf = figure;
% Can stop the square by clicking in the window
% outside the plot area (stop_go).
% When we close the window clean_up is executed.

set(hf, ’ButtonDownFcn’, @stop_go, ...
’DeleteFcn’, @clean_up)

hold off

x = 3 * [0 1 1 0]’ + 15; % same as before
y = 3 * [0 0 1 1]’ + 15;
h = fill(x, y, ’r’);
axis equal
min_x = 0; max_x = 30; min_y = 0; max_y = 51;
axis([min_x max_x min_y max_y])
set(gca, ’xtick’, [], ’ytick’, [])
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% Create timer and define properties
t = timer;
set(t, ’TimerFcn’, @my_update, ’StartDelay’, 0, ...

’TasksToExecute’, Inf, ’Period’, 0.015, ...
’ExecutionMode’, ’fixedSpacing’, ...
’BusyMode’, ’drop’);

v = [1 1];
set(t, ’UserData’, {h, v}) % store h and v in Userdata

set(hf, ’UserData’, t) % store handle to timer in figure
start(t)
% -------------------------------------------------- ----
function my_update(obj, event)
global min_x max_x min_y max_y

ud = get(obj, ’UserData’); % obj = timer
h = ud{1};
if ˜ishandle(h) % just to be sure...

disp(’no handle’)
stop(t)
delete(t)
return

end

v = ud{2};
x = get(h, ’xdata’);
y = get(h, ’ydata’);

% same as before
off_y = y(3) >= max_y || y(1) <= min_y;
if x(2) >= max_x || x(1) <= min_x

if off_y
v = -v;
set(h, ’Facecolor’, ’g’)

else
v = [-v(1), v(2)];
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set(h, ’Facecolor’, ’b’)
end

elseif off_y
v = [v(1), -v(2)];

set(h, ’Facecolor’, ’y’)
end

x = x + 0.2 * v(1);
y = y + 0.2 * v(2);

set(h, ’xdata’, x, ’ydata’, y)

set(obj, ’UserData’, {h, v})

% --------------------------------------------

function clean_up(obj, event)
disp(’clean_up’)
t = get(obj, ’UserData’); % obj = figure
run = get(t, ’Running’);
if run(1:2) == ’on’ % other is off

stop(t)
end
delete(t)

% --------------------------------------------

function stop_go(obj, event)
t = get(obj, ’UserData’); % obj = figure
run = get(t, ’Running’);
if run(1:2) == ’on’ % other is off

stop(t)
else

start(t)
end
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It does happen that the timer continues to run even though we

have removed the window (I do not know why). Typing ˆC
in the Matlab command window seems to solve the problem.

In some versions of Matlab it may be useful to switch on double

buffering (on our system it is switched on). This makes for a

more steady, flicker free, animation.

In this method, two graphics pages in the video memory are

used. While one page is displayed by the monitor, the other is

drawn. When drawing is complete, the roles of the two pages

are switched, so that the previously shown page is modified, and

the previously drawn page is shown.

>> figure(1)
>> set(1, ’DoubleBuffer’)
[ {on} | off ]

Another property that is important is Renderer . It can take

one of four values, only the first are of interest to us:

>> set(1, ’Renderer’)
[ {painters} | zbuffer | OpenGL | None ]

The meaning of the different values will be explained later in the

course. painters is a fast method for drawing simple graphics

having no light sources. zbuffer and OpenGLare used for more

complicated scenes and OpenGLis also the choice when we would

like to use the system’s graphics hardware. Matlab switches au-

tomatically (provided RenderMode is set to auto ), for example:

>> figure(1)
>> get(1, ’Renderer’)
ans = None

>> plot(rand(10, 1))
>> get(1, ’Renderer’)
ans = painters
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>> surf(rand(10))
>> get(1, ’Renderer’)
ans = painters

>> shading interp
>> get(1, ’Renderer’)
ans = OpenGL

>> opengl info

Version = 3.0.0 NVIDIA 180.51
Vendor = NVIDIA Corporation
Renderer = GeForce 9500 GT/PCI/SSE2
MaxTextureSize = 8192
Visual = 0x26 (TrueColor, depth 24, RGB mask 0xff0000
Software = false
# of Extensions = 157

Driver Bug Workarounds:
OpenGLBitmapZbufferBug = 0
OpenGLWobbleTesselatorBug = 0
OpenGLLineSmoothingBug = 0
OpenGLClippedImageBug = 1
OpenGLEraseModeBug = 0

>> opengl software
>> opengl info

Version = 1.5 Mesa 6.0.1
Vendor = Brian Paul
Renderer = Mesa X11
MaxTextureSize = 2048
Visual = 0x21 (TrueColor, depth 24, RGB mask 0xff0000
Software = true
# of Extensions = 96

Driver Bug Workarounds: etc.
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Vectors and points

Important to distinguish between point and vectors in computer

graphics, so here comes a short review. A vector is an equiva-

lence class (think set) of directed line segments that share the

same length and direction. One of the segments is a representa-

tive of the vector.

The left image shows some representatives of the vector.

P

Q

There are infinitely many representatives. A point, however, is

a unique object. P and Q are two points (right image).

Two points define a vector: v = Q − P is the vector which

starts in P and goes to Q. A point and a vector define a new

point: Q = P + v. A single point, P (or Q) does not define a

vector. A vector does not define a point, either.

P

Q

v
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A basis is a set of linearly independent vectors such that all vec-

tors (in the space) can be written as a linear combination of the

basis vectors. A vector has a coordinate representation in such

a system. The left image shows a basis. It is common to draw

the representatives starting at the same point.

Note, however, that we still do not have an origin.

Let us now forget the basis for a while, and instead introduce a

special, fix point, the origin, O.

O

P
v

Given the origin we can get a 1-1 correspondence between vec-

tors and points by using the representative starting in O and

ending in the P (Sw. ortsvektor). In the right image v corre-

sponds to the point P .

A coordinate system is an origin together with a basis. A point

and a vector has a coordinate representation in such a system.

We will use ON-systems (orthogonal and normalized basis).
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Let e1, e2 and e3 be a basis in 3D. A point, P , can be written

P = pxe1 +pye2 +pze3 +O. P −O is the vector which is a linear

combination of the basis. pxe1 + pye2 + pze3.

A vector, v, can be written v = vxe1 + vye2 + vze3. Formally:

P = [e1, e2, e3, O]








px
py
pz
1








and v = [e1, e2, e3, O]








vx
vy
vz
0








Coordinates with four components (three in 2D) are called

homogeneous coordinates. This is how it looks in 2D:

O

P
v

e
1

e
2

One advantage with homogeneous coordinates is that a trans-

lation can be written as a matrix-vector product (i.e. not only

linear mappings). This leads to a unified treatment of simple

mappings. Homogeneous coordinates are also used when deal-

ing with perspective projections.
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In computer graphics it is common to change coordinate sys-

tems. Suppose we would like to produce the following image

(the coordinate system should not be included).
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A cumbersome way is to create absolute coordinates

for the corners of the polygon.

x = [ 8 10 10 9 8]; % initial position
y = [-1 -1 1 2 1];
fill(x, y, ’k’) % draw one polygon
hold on
x = [7.3149 9.3149 ... ]; % new coordinates
y = [2.4442 2.4442 ... ];
fill(x, y, ’k’) % draw the next polygon

More convenient is to design ONE polygon in a “design coordi-

nate system”, using so-called modeling coordinates.

−1 0 1

−1

0

1

2
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We draw the polygons by translating the coordinates:

x = [-1 1 1 0 -1]; % nice x and y
y = [-1 -1 1 2 1]; % using modeling coordinates
for k = 1:16 % number of polygons

dx = ...; dy = ...; % translate
fill(dx + x, dy + y, ’k’)
hold on

end

The above is the normal way in Matlab, but in most, low level,

graphics systems one would do like this instead:

for k = 1:16
make a temporary translation of the coordinate
system to where the polygon should be drawn

draw_polygon() % draw using modeling coordinates

translate back
end

draw polygon knows only about the modeling coordinates.

To move points (using dx and dy) or to move a coordinate

system are two sides of the same coin.

We will look at this in more detail later on.

Note, also that we no longer talk about functions. We do not

plot y = f(x). Instead we create sets of points and these points

can be given different interpretations.

plot(x, y) % solid curve
plot(x, y, ’o’) % separate points
fill(x, y, ’k’) % polygon
etc.
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Some transformations

We would like to transform points given in homogeneous

coordinates. What types of transformations do we need?

Scaling, rotation and translation. Linear transformations are

not sufficient, since they map the origin onto the origin (which

excludes translation). We need an affine transformation (linear

plus translation). Using homogeneous coordinates we can write

the transformation as a matrix-vector multiply, where the matrix

is given by:

M =

[
A t

0 1

]

A is a 3 × 3-matrix in the 3D-case, and t is a 3 × 1-matrix.

A point, P2, in 2D and a point, P3, in 3D can be written:

P2 =





x

y

1



 , P3 =








x

y

z

1








Let p denote the x, y-part, the x, y, z-part in the 3D-case. Then

P2 =

[
p

1

]

, P3 =

[
p

1

]

Let us see how M transforms a point. P is a 2D- or 3D-point.

MP =

[
A t

0 1

] [
p

1

]

=

[
Ap+ t

1

]

Ap corresponds to a linear part and +t gives a translation. We

get a pure translation by setting A = I (the identity) and a pure

linear transformation (e.g. scaling, rotation) by taking t = 0.
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Example: Show that the inverse transformation, M−1, exists

when A is nonsingular, and that:

M−1 =

[
A t

0 1

]−1

=

[
A−1 −A−1t

0 1

]

M can be factored as:
[
A t

0 1

]

=

[
I t

0 1

] [
A 0

0 1

]

=

[
A 0

0 1

] [
I A−1t

0 1

]

So M can be written as a product of a linear transformation

followed by a translation (which is no surprise). The reverse is

true, if A−1 exists.

Let us see how M transforms a straight line. Use s as parameter

and write the line in the following form:

L(s) = P + sW

where P is a point and W is a vector. How do we write a vector

in homogeneous coordinates? We change the 1 to a 0. W can

be interpreted as wxe1 + wye2 + wze3 + 0 · O, so a vector is a

linear combination of the basis vectors. We wrote a point, in

homogeneous coordinates, as: wxe1 + wye2 + wze3 + 1 · O. A

point is a vector plus a point, in other words.

M maps a vector this way (w is the coordinate part):
[
A t

0 1

] [
w

0

]

=

[
Aw

0

]

Note that t is not included. It is not meaningful to translate a

vector.
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Our line is mapped as follows:
[
A t

0 1

]

(P + sW ) =

[
A t

0 1

] [[
p

1

]

+ s

[
w

0

]]

=

[
Ap+ t

1

]

︸ ︷︷ ︸
point

+s

[
Aw

0

]

︸ ︷︷ ︸
new direction

If Aw = 0 (A is singular and w ∈ N (A)) the whole line is

mapped to a single point.

Exercise: show that M maps planes onto planes and planar

polygons onto planar polygons.

A translation example in 2D

We would like to translate the unit square so that the lower left

corner ends up in (1, 1). It is sufficient to look at how the corners

are translated, since we have seen that straight lines are mapped

onto straight lines. Here are the corners in homogeneous coor-

dinates: 



0

0

1



 ,





1

0

1



 ,





1

1

1



 ,





0

1

1





We take A = I and t = [1, 1]T , and apply the transformation,

M , on all four corners at the same time:




1 0 1

0 1 1

0 0 1





︸ ︷︷ ︸
M





0 1 1 0

0 0 1 1

1 1 1 1





︸ ︷︷ ︸
corners

=





1 2 2 1

1 1 2 2

1 1 1 1





︸ ︷︷ ︸
transformed corners

M−1 is given by taking t = [−1,−1]T , which is in

correspondence with our intuition (I hope).

Exercise: suppose we make a series of translations (one M -

matrix for each). What is the M -matrix for the combined

transformation.
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Some scalings

For a pure scaling we set t = 0 and A to a diagonal matrix with

scale factors. Let us double the width of the unit square. The

matrix is (in 2D):

M =





2 0 0

0 1 0

0 0 1





The matrix

M =





2 0 0

0 2 0

0 0 1





doubles the lengths of both sides and

M =





0.5 0 0

0 2 0

0 0 1





halves the width and doubles the height etc.
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Two sides of the same coin

Example: let us study how M transforms an arbitrary point P :

M =





1 −1 1

1 1 1

0 0 1



 , P =





px
py
1



 , MP =





px − py + 1

px + py + 1

1





This can be written in the following way:

MP = M










px





1

0

0





︸ ︷︷ ︸
e1

+py





0

1

0





︸ ︷︷ ︸
e2

+1





0

0

1





︸ ︷︷ ︸
O










=

pxM





1

0

0





︸ ︷︷ ︸

e′
1

+pyM





0

1

0





︸ ︷︷ ︸

e′
2

+1M





0

0

1





︸ ︷︷ ︸

O′

= pxe
′
1 + pye

′
2 + 1O′

So, MP , can be interpreted as using the original coordinates

for P , but in the transformed coordinate system {e′
1, e

′
2,O′} =

{Me1,Me2,MO}.

So, in the first interpretation we change the point’s

coordinates, but keep the original coordinate system.

The second interpretation keeps the original coordinates for the

point, but we transform the coordinate system.

In this particular example the new coordinate system is given

by:

e′
1 =





1

1

0



 , e′
2 =





−1

1

0



 , O′ =





1

1

1




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This image shows how P , with px = py = 1, is transformed. MP

has coordinates (1, 3). The dashed lines show the transformed

coordinate system.

0 1 2

0

1

2

3

O

O’

e
1
’

e
2
’

e
1

e
2

MP

Another example: A translation produces the new system:

(e1, e2, e3, t + O) since the translation of the basis vectors gives

the same basis.

Let us look at a few more complicated examples, involving

rotations.
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Rotations in 2D

We would like to rotate points an angle ψ, ccw (counter clock-

wise) around the origin. Here is M :

M =





cosψ − sinψ 0

sinψ cosψ 0

0 0 1





We can simplify the analysis of M by looking at how the coor-

dinate system is transformed. Since M is linear (no translation)

the origin is mapped onto the origin. So if we take a point at

the end of each coordinate axis we can see how the coordinate

system is transformed.

M =





cosψ − sinψ 0

sinψ cosψ 0

0 0 1









1 0

0 1

1 1



 =





cosψ − sinψ

sinψ cosψ

1 1





The dashed lines gives a rotated system. px, py are the original

coordinates.

ψ

p
x

p
y

Rotated point

MP

cos ψ

sin ψ

−sin ψ

cos ψ
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Combined transformations

Let us study M = TR and M = RT where T is a translation

and R is a rotation. Set C = R(1 : 2, 1 : 2). We get:

RT =

[
C 0

0 1

] [
I t

0 1

]

=

[
C Ct

0 1

]

TR =

[
I t

0 1

] [
C 0

0 1

]

=

[
C t

0 1

]

Both products have the same structure, but in the RT -case, the

translation vector has been multiplied by C, i.e. t has

been rotated.

The following images show RT and TR acting on the unit

square. The dotted unit squares shows the situation after the

first step of the transformations has been applied. The dashed

lines show the final result. As usual it is sufficient to look

at the corners.

−1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

3
R T P

−1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

3
T R P

158

Suppose we would like to rotate the unit square around an

arbitrary point (not just around the origin). It is easy to perform

the transformation in three steps.

Pick (1, 1) as the point (the upper right corner of the square).

Let T translate this point to the origin (t = [−1,−1]T ). The

following sequence gives the requested transformation: M =

T−1 R T . In words: translate the point of rotation to the origin,

rotate around the origin, translate back.

Note that T−1 corresponds to a translation with t = [1, 1]T .

The following image shows the steps. I have increased the

linewidth in each step.
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OpenGL and transformations

Let us return to the RT , TR-example and see how this is

done in OpenGL (at least in principle, all the details will come

later). Suppose we do the following function calls in OpenGL

(... marks parameters that we skip for the time being):

Call Matrix operation

glLoadIdentity(); M = I // M = Model matrix
glRotatef(...); M = M * R // affects coming
glTranslatef(...); M = M * T // points

glVertex3fv(point); // plot(M * point) (roughly)

First we note that OpenGL uses post-multiplication, every new

transformation matrix is multiplying M from the right. Pre-

multiplication would multiply M from the left. So, after the

calls, M = RT even though we made the Rotate first and the

Translate after.

To get M = TR we must first call Translate and then

Rotate. So why this strange order (post and not pre)? The

reason is that post is the correct order if we take the view of

transforming coordinate systems rather than points.

The following image shows how the coordinate systems are trans-

formed (the same example as before, but now with coordinate

systems and not squares/points). The original system is dashed,

the next one (after the first transformation) is dotted and the

last is plotted using solid lines.
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In the first image M = RT , so the order of the OpenGL-calls

are Rotate, Translate. The dotted system is rotated relative the

original. The solid has been translated relative the rotated system.

The unit square is drawn using the last system.

When M = TR Translate is called first and then Rotate. The

dotted system has been translated, and the next system has been

rotated relative to the newly translated system. The unit square

is drawn using the last system.
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A common problem

Suppose we have drawn an object (like in the house-example)

in a nice coordinate system centered on the origin. We would

like to place copies in different positions in the plane. Sup-

pose the object should be placed in the four positions (1, 0, 0),

(0, 1, 0), (−1, 0, 0) and (0,−1, 0). Assume that our C-routine,

DrawObject() draws the object.

Will the following code sequence give the required result?

glLoadIdentity();
glTranslatef(1, 0, 0); // x = 1, y = 0 (z = 0)
DrawObject();

glTranslatef(0, 1, 0); // x = 0, y = 1 (z = 0)
DrawObject();

etc.

The answer is no! The second glTranslate can be interpreted

relative to the translated system (made by the first Translate).

The second object will be drawn in (1, 1, 0), in other words.

It would be possible to, in the second glTranslate, correct for

the first and write glTranslatef(-1, 1, 0); . This will be

rather complicated if we have many transformations.

A better alternative is to save the old coordinate system (the

old M) and make a temporary change. OpenGL has three ma-

trix stacks (for different kinds of transformations). We are going

to use the stack for the GL MODELVIEW-matrix (in which M is a

part).
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glMatrixMode(GL_MODELVIEW); // Choose type of matrix
glPushMatrix(); // Save current M
glTranslatef(1, 0, 0); // x = 1, y = 0 (z = 0)
DrawObject();
glPopMatrix(); // Fetch saved M

glPushMatrix(); // Save current M
glTranslatef(0, 1, 0); // x = 0, y = 1 (z = 0)
DrawObject();

etc.

Transformations in 3D

Here are the most common transformations in 3D. S = scaling,

T = translation.

S =








sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1







, T =








1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1








Rx = rotation ccw the angle ψ around the x-axis (when we look

along the negative x-axis). Analogous for Ry and Rz.

Let c = cosψ and s = sinψ.

Note that we have the number one for the axis.

Rx =








1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1







, Ry =








c 0 s 0

0 1 0 0

−s 0 c 0

0 0 0 1







, Rz =








c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1








To make more complicated transformations we can combine the

above. Here is an example where we want to rotate the square

around the dashed axis.
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x
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A few exercises

• Find the M -matrix that maps the rectangle, with corners in

(1, 1), (3, 3), (2, 4) and (0, 2), onto the unit square.

• Find the M -matrix which maps the quadrilateral, with

corners in (0, 0), (1, 0), (2, 1) and (1, 1), on the unit square.

This is an example of a shear transformation.

• Let R(ψ) be a rotation matrix in 2D. Why is it true that

R(ψ)R(ϕ) = R(ψ + ϕ)?

Use this equality to prove the additions laws:

sin(ψ + ϕ) = sinψ cosϕ+ cosψ sinϕ etc.

• Find the M -matrix which mirrors the plane in the y-axis (i.e.

the point (x, y) is mapped onto (−x, y)).
• Do the same for the plane x = c (c is a constant).

• WhichM -matrices keep distances between (arbitrary) points?

• Which M -matrices preserve angles between vectors?

• Suppose we have two sets P and Q where each set contains

three distinct points. Is there always an M -matrix which

maps P onto Q?

(Hint: think in geometrical terms.)

• Write a Matlab program that creates the image on the next

page. The program should start with a square and then

transform it. The second image contains two images of the

above kind, on with the rotation R(ψ) and the other with

R(−ψ).

• Use recursion in Matlab to draw some type of the Sierpinski

triangle (last page).
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Projections

Orthografic (parallel) projection

Perspective projection
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set(gca, ’Projection’, ’orthographic’, ... % first plot
’CameraPosition’, [-10 -1 2])}

set(gca, ’Projection’, ’perspective’, ... % second plot
’CameraPosition’, [-10 -1 2])}
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Projections, the modelview matrix

Transformations in a simple OpenGL-program.

// Define the projection
// Orthografic in this case

glMatrixMode(GL_PROJECTION); // Projection matrix
glLoadIdentity(); // Matrix = I
glOrtho(-1,3, -1,3, 0,4); // Multiply

...
// Place the eye (camera).
// gluLookAt(eye_pos, look_at, up_direction)

glMatrixMode(GL_MODELVIEW); // Modelview matrix
glLoadIdentity(); // Matrix = I
gluLookAt(1,0,1, 0,0,0, 0,1,0); // Multiply

later in the program

// Create the transformation for coming points
glTranslatef(2, 0, 0); // transformations
glRotatef(... // etc.

// Points, affected by the above transformations
glColor3f(1, 0, 0); // Choose colour
glBegin(GL_QUADS); // Rectangle

glVertex3f(0, 0, 0); // Define corners
glVertex3f(1, 0, 0); // that are sent
glVertex3f(1, 1, 0); // through the
glVertex3f(0, 1, 0); // graphics pipeline

glEnd();

// We can modify CT (Current Transformation)
glTranslatef(1, 1, -1); // multiplies M

// and define new objects
glBegin(GL_QUADS);

...
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The eye is initially in the origin looking along the negative z-

axis. The up-direction is along the positive y-axis. We can only

see part of the room, the view volume, which is specified using

glOrtho (for an orthografic projection) or by gluPerspective
(for a perspective projection). There are other routines as well.

glOrtho takes the following parameters:

glOrtho(x_min, x_max, y_min, y_max, near, far)

The view volume is a box (rectangular parallelepiped).

Here is an example. I have created a square window and

made the call:

glOrtho(-1,3, -1,3, 0,4);

gluLookAt has not been called so the eye remains in the initial

position. The image contains four squares and a coordinate sys-

tem placed in the origin. So initially the eye is located in the

origin and is looking at the red square. Here is the plot window.
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This Matlab-plot shows the situation from another direction.

The view volume is marked with dashed lines.

(x_max, y_max)

Far plane

x

y

Near plane

z

(x_min, y_min)

View volume

In this example the read square lies in the “near plane”. If

we increase near the near plane is moved away from the eye

(more negative z). Part of the scene will clipped away (one talks

about the near clipping plane, as well). In the same way we

get clipping if we move the “far plane” towards the eye (if we

decrease far ).

We can get clipping in the x- and y-directions as well.

To see something more than the red square we can move the

objects or, equivalently, move the eye.
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Here is the window after the following call:

gluLookAt(2,2,2, 0,0,0, 0,1,0);

Note that the view volume is “attached” to the eye (like one has

glued the view volume to the front of ones head). The volume

is not “deep” enough, one corner is clipped.

Here is a Matlab illustration, from an other angle:
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Let us decrease the volume (increase near and decrease far) even

further (note the use of transparency in Matlab, help alpha ):

float d = 2 * sqrt(3) - 2 / sqrt(3);
glOrtho(-1,3, -1,3, d+0.05, 3.7);
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The transformation of points correspond to matrix multiplica-

tions which generate the model matrix, M (each transformation

updates M). How does gluLookAt work? We can change the

view in two (equivalent) ways.

• We move the eye but not the points.

• We move the points but not the eye. This corresponds to

extra modeling transformations.

So suppose we set the view first and then apply modeling trans-

formations. This can be seen a matrix multiplication using a

view matrix, V , computing M = VM . Note that only the

product, VM , is stored, and we refer to the product as the

modelview matrix. Let us look at two simple examples.

gluLookAt(0,0,1, 0,0,0, 0,1,0);

The eye should be placed in (0, 0, 1) and look at the origin,

(0, 0, 0).

The up direction is (0, 1, 0) (the y-axis). We can generate this

view by translating all points by (0, 0,−1) (one step along the

negative z-axis). The view matrix, V , should consequently be:

1 0 0 0
0 1 0 0
0 0 1 -1
0 0 0 1

We can check that is the case, using the following code sequence:
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...
GLenum error; // to be on the safe side
float V[16]; // memory for V
char format[] = "%5.1f %5.1f %5.1f %5.1f\n";

glMatrixMode(GL_MODELVIEW); // choose MV-matrix
glLoadIdentity(); // MV = I

gluLookAt(0,0,1, 0,0,0, 0,1,0); // multiply
glGetFloatv(GL_MODELVIEW_MATRIX, V); // fetch V

// note, stored in Fortran order, column-wise
printf(format, V[0], V[4], V[8], V[12]);
printf(format, V[1], V[5], V[9], V[13]);
printf(format, V[2], V[6], V[10], V[14]);
printf(format, V[3], V[7], V[11], V[15]);

error = glGetError(); // problems?
if ( error != GL_NO_ERROR )

printf("glGetError = %d\n", error);
...

% gcc modelview.c -lGL -lglut
% a.out

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 -1.0
0.0 0.0 0.0 1.0

I will talk more about glGetError when we come to the OpenGL

lectures.
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Let us now analyze the call:

gluLookAt(1,0,1, 0,0,0, 0,1,0);

The eye should be placed in (1, 0, 1), a translation as above, but

we also make a rotation 45◦ around the y-axis. Moving points, we

first make the rotation −45◦ ccw (i.e. 45◦ cw) looking along the

negative y-axis. Then we perform the translation (0, 0,−√
2).

Let us do this in Matlab:

>> T = eye(4);
>> T(3, 4) = -sqrt(2); % translation

>> a = -pi / 4; % angle
>> c = cos(a);
>> s = sin(a);
>> R = [c 0 s 0 % rotation

0 1 0 0
-s 0 c 0

0 0 0 1];

>> V = T * R % note the order

V =
0.7071 0 -0.7071 0

0 1.0000 0 0
0.7071 0 0.7071 -1.4142

0 0 0 1.0000

which is in accordance with the printout from the OpenGL-

program.
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In the examples above, M = I, so let us set both matrices.

glLoadIdentity();
gluLookAt(1,0,1, 0,0,0, 0,1,0); % changing V

...

glTranslatef(1, 1, 1); % changing M

We continue using our V from the Matlab-program.

>> M = eye(4); M(1:3, 4) = [1 1 1]’
M =

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

>> V * M
ans =

0.7071 0 -0.7071 0.0000
0 1.0000 0 1.0000

0.7071 0 0.7071 0.0000
0 0 0 1.0000

which is OK as well.

One can set the matrix as well:

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(matrix_data); // sets MV
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We choose perspective projection by:

gluPerspective(view_angle, aspect_ratio, near, far);

where view angle is the field of view angle, in degrees, in the y

direction aspect ratio is the ratio of x (width) to y (height).

near and far as before.

COP

View

plane

Front

clipping

plane

Back

clipping

plane

View volume
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On its way to the screen a point will undergo several

transformations. The point is sent through a graphics pipeline.

A somewhat simplified picture, and only for orthografic

projections, looks like this:

• The point is first multiplied by the modelview matrix. Note

that this matrix can be changed at a later stage.

These, later, changes do not affect our point. The current

matrix is often called CT (Current Transformation). We send

a point through the pipeline by using glVertex .

• The next step is multiplication with the projection matrix

which has been created by glOrtho (or gluPerspective ).

This matrix transforms the point so that they reside in the

standard cube ((-1, 1) in each dimension).

This step is more complicated for perspective projections.

The direction of the z-axis is reversed, so that increasing

values of z correspond to a larger distance from the eye.

After this step the objects are usually deformed, but that is

fixed in the last step.

• Clipping (removal of parts outside the standard cube) is the

next step. The clipping has been made easier since we can

cut against the sides of a cube.

• The last step is to map the standard cube onto a 3D “view-

port”, where x and y correspond to a rectangular part of the

screen, and z lies in [0, 1]. glViewport sets up the viewport;

more about this later.
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An example of a projection matrix. Suppose we have made the

call:

glOrtho(0,1, -1,5, 0,4);

The projection matrix, P , should map the view volume onto the

standard cube. The first step is to make a translation (the centre

of the view volume should be mapped to the origin) and then a

scaling so that all sides has length two.

In our example, the view volume is defined by: 0 ≤ x ≤ 1,

−1 ≤ y ≤ 5 and −4 ≤ z ≤ 0. So the following transformation

should work:

T = eye(4); T(1:3, 4) = [-0.5; -2; 2] % translate

and then scale

S = diag([2 1/3 -1/2 1]) % -1/2, reversal of z-axis

The product S * T is what OpenGL produces as well:

GL_PROJECTION_MATRIX
2 0 0 -1
0 0.333 0 -0.667
0 0 -0.5 -1
0 0 0 1

On the next page I have plotted the unit square using the view

volume above and without moving the eye. The window was

400x400 pixels and the viewport had the same dimension as the

window.

We can see that the square is deformed.
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Let us set the viewport: glViewport(20, 20, 60, 360); .

The lower left corner of the viewport is 20 pixels to the right

and above the lower left corner of the window. The width of

the viewport is 60 pixels and the height is 360. So the ratio

between height and width is six, which is the same ratio we had

in glOrtho , 0 ≤ x ≤ 1, −1 ≤ y ≤ 5. This causes the square to

get correctly scaled.
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Removing hidden objects
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we are looking along the negative z−axis

The basic painter’s method:

1. compute the centre of mass (for example) for each polygon

2. sort the polygons according the z-coordinates of the centres

3. paint the polygons, in order of increasing z-coordinates
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The depth buffer (z-buffer) method. We have a matrix (z-buffer)

containing the distances from a point to the eye and a

“framebuffer” (image memory) where we store the pixels.

set all element in the z-buffer to the distance to
the back clipping plane

for each polygon
for each pixel, with coords. (x, y, z), in the polygon

if z < z_buffer(x, y) then
z_buffer(x, y) = z
framebuffer(x, y) = the colour in (x, y, z)

end if
end

end

In Matlab we can choose between several methods:

>> h = figure;
>> set(h, ’Renderer’)
[ {painters} | zbuffer | OpenGL | None ]

None gives no rendering at all.

Here are some pros and cons with the different methods.

painters : fast for simple figures, users vector graphics (lineto,

moveto), good for PostScript, gives high resolution. Cannot

handle light, transparency or 24-bit colour surfaces. Can draw

incorrect figures (example next page).

zbuffer : uses bitmap (raster) graphics, faster than painter’s

(when complex figures), can use a lot of memory, can cope with

light but not transparency.

opengl : uses bitmap (raster) graphics, the fastest for complex

scenes (tries to use the machine’s graphics hardware), can handle

both light and transparency, but not Phong shading (later).
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opengl sometimes renders images in an incorrect way.

A disadvantage with both zbuffer and opengl is that the

PostScript files can be very large.

>> peaks % a demo-command that draws a surface
>> set(1,’renderer’)
[ {painters} | zbuffer | OpenGL | None ]
>> print -depsc peak_paint.eps

>> set(1,’renderer’, ’zbuffer’)
>> print -depsc peak_z.eps

>> set(1,’renderer’, ’opengl’)
>> print -depsc peak_ogl.eps

>> !ls -s peak *
6384 peak_ogl.eps 432 peak_paint.eps 6384 peak_z.eps

So the raster images require more than fifteen time as much

space. It is possible to change the print-resolution (help print ,

see the -r option).

Note that opengl gives much faster graphics, on the math-

machines. Very useful if we want to rotate a complex image,

for example. The following images show one major disadvan-

tage with the painters algorithm in Matlab.
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set(h, ’Renderer’, ’painters’)

set(h, ’Renderer’, ’zbuffer’)
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A few words about colours

The eye has two kinds of receptor cells. The cones are colour-

sensitive and the rods that cannot distinguish colour nor see fine

details. Each eye has 6 ·106−7 ·106 cones, each with its on nerve

cell, making it possible to see fine details.

The cones are concentrated in a small area, the fovea, in the

centre of the retina. The fovea, also called the “yellow spot”

is less than 1 square millimeter.

The number of rods is 75 · 106 − 150 · 106, and many rods are

attached to one nerve cell. The rods are spread out over the

retina surrounding the fovea. The rods are use for night vision,

and they will not be of interest in the following discussion.

Humans have three types of cones, sensitive to yellowish-green

light (Long wavelength), bluish-green (Medium) and blue-violetish

(Short) respectively. The last type is much less sensitive.

The peak wavelengths are 564 nm, 534 nm, and 420 nm

respectively.

This (trichromatism) is the reason it is sufficient with three

types of phosphors in a television tube and why we can use the

RGB-system of colours in computer graphics.

Phosphor should not mixed up of with Phosphorus, one of the

elements (symbol P). A typical phoshor is zinc sulfide with a

few ppm of copper. When bombarded by electrons this phos-

phor will produce a green colour.

For more details: http://en.wikipedia.org/wiki/Phosphor .

Not all animals have three types of cones, chickens have as many

as 12 kinds of receptors, for example.
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Not all humans have a complete set of cones; colour blindness.

About 10% of males and 1% of females have some form of

deficiency in their colour vision. The most common is a lack

of receptors for the L-cones (protanopia) or for the M-cones

(deuteranopia). This makes it hard to distinguish between red

and green.

Note that even people with a full set of cones are less sensitive

to blue. This is one reason why it is bad to present fine detail

(e.g. small text) in blue on a black background. This is, unfor-

tunately, not so uncommon on the web, and it makes for hard

reading.

The RGB-system is the most common colour system in com-

puter graphics. A colour is described by the amounts of the

primary colours, red, green and blue. The minimum amount

is zero and if the maximum amount is one, the RGB-triple

[1,0,0] corresponds to red. [0,0,0] is black and [1,1,1] is white.

[0.9,0.9,0.9] is light gray etc.

There are other colour systems. In the HLS-system we use hue

(the type of colour from the spectrum), lightness and saturation

(the intensity of the colour, the purity) instead.

Of more interest, in this course, is the CMY-system. Cyan,

Magenta and Yellow are the so called complementary colours of

red, green and blue. Complementary, in the sense that

cyan+red=magenta+green=yellow+blue all equal white.

So the RGB-triples for cyan is [0,1,1], magenta has [1,0,1] and

yellow [1,1,0].

The RGB-system is an additive colour system, we add R, G

and B, to black, to get our colour. In a subtractive system, like

CMY, we start with white light and remove colours (think of

using a filter) to produce the colour.
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To see how this works let us take the CMY-triple [0.4,0.5,0.2].

The corresponds to the RGB-triple [1,1,1]-[0.4,0.5,0.2]=[0.6,0.5,0.8].

To describe the “subtraction” we let white light pass through

three filters.

The first has the CMY-triple [0.4,0,0] (corresponding to RGB

[0.6,1,1], looks like light cyan). This filter will remove 0.4 of red.

The next filter has CMY [0,0.5,0] (RGB [1,0.5,1], light magenta)

and it removes 0.5 of green. The last filter, finally, has CMY

[0,0,0.2] (RGB [1,1,0.8], light yellow) removes 0.2 of blue. The

resulting colour is RGB [0.6,0.5,0.8] (a kind of grayish purple, I

think it looks like).

This is interesting when we, later, are going to look at the dif-

fuse reflection of light. Suppose white light is reflected from a

non-shiny surface, having the RGB-colour [0,1,1]. The reflected

light is void of red. (Reflection from shiny surfaces tend to be

white, regardless of the colour of the surface.)

This is used in printing, where the CMYK-system is common.

K stands for black (you can find the etymology below). Mixing

cyan-coloured pigments into a colourless paint will remove the

red colour component from the incoming white light and reflect

green and blue. Mixing C, M and Y would, in theory, remove

all the light giving a black surface. So why is a separate black

ink used for printing?

There are several reasons, according to Wikipeda: the mix of

CMY becomes “a dark murky color”. Using so much ink would

make the paper wet, requiring longer times for drying and high

quality paper. It is easier to write details (text) using black,

rather than having to mix three inks. Black ink may be cheaper.
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There are problems mixing colour systems, since physical de-

vices such as a monitor or printer may have different colour

ranges (usually called the colour gamut of the device). The

colour gamut of a printer is usually a subset of that of a monitor.

The primaries R, G and B may different on different monitors,

as well. It is not uncommon that a colour image looks different

on two different systems.

Even if an RGB-colour on the monitor is representable on the

printer the relationship may be complicated. There are commer-

cial systems, colour samples on paper with a unique code (like

when you buy a new car or wallpaper; the systems, for printing,

are not free, however). On can pick the colours one needs and

tell the printer the codes. The printer should know how to pro-

duce the correct colours given the codes.

On the math-computers we have so called 24-bit colour (often

called true colour). Each pixel is represented by three bytes,

one each for red, green and blue. The total number of different

colours is (28)3 = 224 = 16 777 216. Each byte can store an

unsigned integer between 0 and 255. So white is represented

by the RGB-triple [255,255,255].

On older systems a colour look-up table (CLUT) was often used.

Think of the CLUT as being a matrix, with three columns, one

for each of the primaries. The number of rows equals the number

of colours (a power of two, so 64, 128 or 256 colours, perhaps).

The pixels in the image store a row index, into the CLUT (so

this is often called indexed colour). Using 256 rows in the CLUT

makes the required memory for the image smaller (only one byte

per pixel instead of three).
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One, very noticeable drawback is that each application (pro-

gram) usually has its own CLUT. When one moves the mouse

between windows, different CLUTs are used, but since a partic-

ular CLUT is used for all the windows on the screen there will

be a lot of colour flashes.

Some etymology (with web-sources):

magenta: 1860, in allusion to the Battle of Magenta, in Italy,

where the French and Sardinians defeated the Austrians in 1859,

because the brilliant crimson aniline dye was discovered shortly

after the battle.... www.etymonline.com

About K for black: In printing, a key plate was the plate which

printed the detail in an image. When printing color images by

combining multiple colors of inks, the colored inks usually did

not contain much image detail. The key plate, which was usually

impressed using black ink, provided the lines and/or contrast of

the image... www.wikipedia.org

Gamut: Medieval Latin gamma, lowest note of a medieval scale

(from Late Latin, 3d letter of the Greek alphabet)

1: the whole series of recognized musical notes

2: an entire range or series “ran the gamut from praise to con-

tempt” www.m-w.com
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Shading models

Say we want to draw a green billiard ball. Here are some example

showing increasing levels of realism. Wire frame (left image),

hidden surface removal (right).

Adding light: flat shading (left image), one colour for each

polygon. We can smooth out the colours: Gouraud- or Phong-

shading. Add highlights, “specular light” (right image).
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Shading does nor mean “shadows”, but it means to color so that

the shades, of colour, pass gradually from one to another.

We would like to mimic different surface textures and mate-

rials: balls for billiards, tennis. Steel, copper etc. OpenGL does

not support the rendering of shadows, or realistic reflection and

refraction. If you have such needs look at the links (raytracing).

OpenGL does the light computation for each polygon and then

each pixel at a time. Shadows, reflection take too much time,

and are faked, but some physics is used.

In the following image the green * marks the light source. Note

that the sphere, to the left, gets as much light as the one to the

right, even though the left one is hidden.

Normal vectors will be important as will the location of the

eye and the direction of the incoming light. We can make the

computations for each of the primaries separately and then add

the resulting components at the end.
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Two types of light sources:

• Point sources (can shine in all directions, like the Sun, or

in a limited cone, like a spotlight). We can have distant

light sources (the Sun) or local (a table lamp). It is faster

to do the computations for distant light sources since only

direction and not actual distance has to be considered.

• Ambient light (surrounding) gives a general level of light in

the scene. This light source has not position or direction;

light is spread equally in all directions. Since OpenGL does

not handle the reflection, refraction etc. of light in a realistic

manner it must be faked. Without ambient light we get sharp

contrasts in the scene. Too much ambient gives a watered

down, insipid look.

Fr̊an Merriam-Webster: www.m-w.com
Etymology: Latin ambient-, ambiens, present participle of am-

bire to go around, from ambi- + ire to go – more at

ISSUE.

Date: 1596

: existing or present on all sides : ENCOMPASSING

We do not set the colour using RGB-vectors, instead there are

intensities for the light sources and material properties (reflec-

tion coefficients) for the objects (points) in the scene.

The ambient light has intensity Ia, really one for each of the

primaries, so s̊a Iar, Iag och Iab. Let Ia stand for one of them.

Each corner of each polygon has a reflection coefficient for

ambient light ρa (or rather ρar, ρag och ρab). The corner gets

the light contribution ρaIa (for each primary). The colours of

the corners will later be used to colour the whole surface of the

polygon.
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We now look at light having a direction, and we will see how

much is reflected to the eye.

(a) (b) (c)

(a) shows specular reflection (billiard ball)

(b) shows diffuse reflection (tennis ball). The reflected light is

spread equally in all directions.

(c) shows transparency and refraction. Transparency can be

simulated in OpenGL and Matlab.

We start with diffuse reflection. Since the light is spread equally

in all direction the position of the eye does not affect the light

computation (as long as the eye sees the front of the polygon).

The position of the polygon relative to the light source is of

importance, however.
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0

0.2

0.4
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width

width

w
idth

normal

ψ

Incoming light of constant width

Suppose that the ray has width wr. It should be spread out over

an interval, of length wx = wr/ cosψ, along the x-axis.
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The intensity of the light, along the x-axis, is proportional to

1/wx i.e. to cosψ. So if the incoming light has intensity Id, the

reflected light has intensity ρdId cosψ (for each primary).

This is called Lambert’s law.

We can use vectors to compute cosψ.

Let us only consider solid objects having outward normals. Note

that OpenGL does not compute normals for us (Matlab does)

so we have to fix them.

Let L be the normalized direction to the light source, and let

n be the normal to the surface in the point where the ray hits,

then cosψ = L · n.

If L · n < 0 the backside of the polygon is hit by the light, but

according to our assumption we cannot see that side, so the

intensity becomes:

ρdIdmax [L · n, 0]

It is common to take ρa = ρd.

More etymology:

Main Entry: specular

Etymology: Latin specularis of a mirror, from speculum

Date: 1661

: of, relating to, or having the qualities of a mirror
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Next, specular reflection. If we have a perfectly polished surface

and a spotlight is located in the L-direction, the eye will see a

reflected ray only if it is located along r.

n
rL

v
r

v
i

Real-life surfaces are not perfect, so a more realistic model will

show light also in the vicinity of the r-direction. The amount of

reflected light should decrease when we move away from r.

The Phong reflection model (Bui Tuong Phong, b. Vietnam,

19??-1998) tries to capture this behaviour. The intensity of the

reflected light is

ρsIs(r · v)f

r is as above and v is the normalized direction to the eye. f is

the “specular reflection coefficient” and it measures how much

the light is spread. A large f gives a small spread of light and a

small f gives a large spread. OpenGL approximates the angle,

by using the angle between n and L + v (which is ψ/2 if all

the vectors lie in the same plane). This makes it unnecessary to

compute r (faster).

L

n
v, eye

r

p
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This is how the intensity varies with f :

The following image shows, from right to left, specular, diffuse

and ambient. The last sphere is rendered using all three.

The colour of the light matters as well. If we use red light on

a green sphere (using only diffuse), it will be black. The reason

an object is green is because it reflects green light.

If we have a local light source (not the Sun, say) the distance is

taken into account. The intensity of the source should decay as

1/r2 (where r is the distance), but this does not look

realistic, so the programmer can set up a fake decay rate:

1/(a+ br + cr2) (a, b and c can be adjusted).
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We are now ready to add together the intensities. We should

add over all light sources and for the three primaries: s̊a:

I =
ρaIa + ρdIdmax [L · n, 0] + ρsIsmax

[
L+v

||L+v|| · n, 0
]f

distance

It is possible to add a general ambient source, which is not bound

to any point. There is also “emissive” color; an object can glow,

for example. Finally there is a factor for spotlights, which emit

light in a cone.

We have now computed a colour in each corner, and it is time

to colour the whole polygon, pixel by pixel. This can be done

in several ways. If we use the same colour for all the pixels, one

talks about flat shading. In this case we use one normal for the

whole polygon. The surface gets a faceted appearance.

To create smooth shading we must create more normals (by

calling glNormal ). Suppose we have one normal in each corner.

In Matlab there is support for Gouraud shading and for Phong

shading. OpenGL only supports Gouraud shading.

Suppose this is the polygon, with corners a-d:

c-----------d
/ \

p1/------ p ------\p2
/ \

a-------------------b

When colouring the polygon OpenGL works pixel-row by pixel-

row (scan lines). Suppose pixel p should be coloured. In Gouraud

shading we use linear interpolation of the intensities in a and c

to get a value in p1. Similarly the intensities in b and d are

combined to form a value in p2. Finally, the intensities in p1

and p2 are combined to give the final value in p.
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Phong shading gives a more realistic result, but it takes more

time to compute. Here new normals are computed in p1 and

p2 using linear interpolation (as for the intensities in Gouraud

shading). Using linear interpolation we compute a new normal

in p. This new normal is used for doing the light computation

in pixel p.

In this image one can (on the screen at least) see that Phong

shading gives a less jagged highlight.
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Normals in Matlab

When we create polygons and surfaces in Matlab, the normals

will be created for us. Consider the following code:

>> [X, Y, Z] = sphere(10); % type sphere for the code
>> h = surf(X, Y, Z, ones(size(X)));
>> get(h) % part of the output

XData = [ (11 by 11) double array]
YData = [ (11 by 11) double array]
ZData = [ (11 by 11) double array]
FaceLighting = flat
EdgeLighting = none
AmbientStrength = [0.3]
DiffuseStrength = [0.6]
SpecularStrength = [0.9]
SpecularExponent = [10]
SpecularColorReflectance = [1]
VertexNormals = [ (11 by 11 by 3) double array]

% Run this code...
hold on
N = get(h, ’VertexNormals’);

d = 0.5;
for j = 1:11

for k = 1:11
x = X(j, k); y = Y(j, k); z = Z(j, k);
n = [N(j, k, 1) N(j, k, 2) N(j, k, 3)];
n = d * n / norm(n); % not normalized
plot3([x, x+n(1)], [y, y+n(2)], [z, z+n(3)], ’k’)

end
end
view(-3.5, 28)
axis equal
axis off
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Not quite the normals we would like. Matlab produces normals

to the polygons (it seems) but we would like to have the normals

of the sphere. Like this:

...
for j = 1:11

for k = 1:11
N(j, k, 1) = X(j, k);
N(j, k, 2) = Y(j, k);
N(j, k, 3) = Z(j, k);

end
end

set(h, ’VertexNormals’, N)

One cannot see any difference, however.

By setting the normals to a random matrix produces differences

(when light has been switched on):

>> set(h, ’VertexNormals’, randn(size(N)))
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Why does the surface look smooth with Gouraud- and Phong

shading? This is because we have one normal in each point, so

the polygons coming together in a point share this normal. This

gives a continuous variation over the edges.

This is not quite the case when we use the fill3 -command.

Here is an example. I have reused the cylinder example.

The first plot uses surf (and light etc). The lines are the

normals (length 0.5).

The second plot uses fill3 . I have reversed the direction of

some normals. The four normals for one polygon have the same

direction, so this gives something looking like flat shading.

In the third plot, I use the same number of normals as in the

second, but they have all been adjusted. This looks similar to

the surf -plot.

The only problem with surf is where the cylinder is closed along

a “seam”. The normals, on adjacent polygons along the seam,

have different directions which gives rise to a difference in colour.

So, to get a perfect result we should adjust the normals along

the seam so that they have the same direction.
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Colour and light in Matlab

Let us start without light and look at colour only. Matlab sup-

ports something like indexed colour as well as 24-bit colour.

First something about indexed colour.

When we make a simple plot with mesh or surf, surf(X,Y,Z) ,

the colour is set by the height (z-value) in the following way.

Each window has a Colormap -property (like the CMAP we dis-

cussed earlier). The default value is a 64x3 RGB-matrix. The

entries are double precision numbers in [0,1] (not [0,255] in this

case).

The smallest- and largest z-value are stored in a two-element

vector [cmin, cmax] . Each axis-object stores such an array in

its CLim-property. The index, cmi , into the CMAP for a specific

c-value (c = z in this case), is given by the following expression:

cmi = fix((c-cmin) / (cmax-cmin) * cm_length) + 1

cm length is the number of entries in the CMAP and fix rounds

towards zero.

It is possible to change [cmin, cmax] using the caxis -command.

This may be useful if we gradually add objects to a plot and

would like to avoid changing colours (we must know zmin and

zmax in advance). It may be useful when we have several axis

(subplots) in one figure, as well. It is easy to change CMAP,

colormap(CMAP) . CMAP does not have to have 64 entries.

colormap(’default’) sets the current figure’s CMAP to the

default, JET. There are 13 builtin functions that generate CMAPs

as well, such as pink , copper , hot , summer.
See the documentation for a complete list.
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>> C = copper(4) % a small CMAP
C =

0 0 0
4.1667e-01 2.6040e-01 1.6583e-01
8.3333e-01 5.2080e-01 3.3167e-01
1.0000e+00 7.8120e-01 4.9750e-01

>> colormap(C) % changes the figure immediately

>> colormap(copper(128)) % we don’t have to use C

There is even a CMAP-editor, help colormapeditor (the Java-

gui must be switched on). brighten is another command.

Suppose we supply an extra matrix in the surf-command:

surf(X,Y,Z,C) . In this case caxis contains the min- and max

of C and the c-values in the formula above are the C(j, k) -

elements.

The colorbar -command places a colour bar in the plot. This

provides a connection between colour and the numerical values

in the C-matrix (or the z-values if no C is present).

Now for 24-bit colour. We can type surf(X,Y,Z,C) , where C
is a 3D-matrix. C(:,:,1) contains the red component and the

size should coincide with the coordinate data X etc. Here is a

silly example:

>> [X, Y, Z] = peaks; % get some data
>> C(:, :, 1) = ones(size(X));
>> C(:, :, 2) = ones(size(X));
>> C(:, :, 3) = zeros(size(X));
>> surf(X, Y, Z, C) % gives a yellow surface
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Let us finally look at light and shading in Matlab. It resembles

OpenGL, but it is not always quite clear (to me) how it works.

OpenGL is simple in the sense that everything is specified in the

OpenGL standard.

[X, Y] = meshgrid(-2:0.2:2);
Z = X . * exp(-X.ˆ2 - Y.ˆ2);

figure(1)
h = surf(X, Y, Z);

% Here are some of the properties.
% Matlab has ONE AmbientStrength etc. and not
% one for every primary. To a certain extent this
% can be adjusted using the colour data.
%
color = [1 1 1];
set(h, ...

’FaceColor’, color, ...
’EdgeColor’, ’none’, ...
’EdgeLighting’, ’phong’, ...
’FaceLighting’, ’phong’, ...
’AmbientStrength’, 0.23, ...
’DiffuseStrength’, 0.28, ...
’SpecularStrength’, 0.77, ...
’SpecularExponent’, 90)

lh1 = light(’Position’, [-10 -4 4], ...
’Style’, ’Infinite’);

lh2 = light(’Position’, [ 10 0 4], ...
’Style’, ’Local’);

get(lh1)
...

Position = [-10 -4 4]
Color = [1 1 1]
Style = infinite
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There are some commands that set these properties for us. Let

us look at what they do when we have plotted a surface with

surf (slightly different things are done for a mesh since it does

not fill the polygons, which surf does). This is what happens

internally:

facecolor edgecolor
shading flat: flat none
shading interp: interp none
shading faceted: flat black

facelighting edgelighting
lighting flat: flat none
lighting gouraud: gouraud none
lighting phong: phong none
lighting none: none none

The material -command sets the reflection coefficients. It can

be used in several ways, e.g.

material shiny
material([ka kd ks])
material([ka kd ks n sc])
and it sets (part of) AmbientStrength, DiffuseStrength, Specu-

larStrength, SpecularExponent and SpecularColorReflectance.

It is possible to use shading interp without using light. What

it means is that a Gouraud-procedure is used to colour the inside

of a polygon.

The best way to understand what happens is to try:
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[X, Y] = meshgrid(-2:0.2:2, -2:0.2:2);
Z = X . * exp(-X.ˆ2 - Y.ˆ2);

figure(1)
surf(X, Y, Z);
shading flat % flat shading

figure(2)
surf(X, Y, Z);
shading faceted % flat shading with mesh lines

figure(3)
surf(X, Y, Z);
shading interp % Gouraud shading

figure(4)
surf(X, Y, Z);
shading interp % Gouraud shading

light % default light
lighting phong % changes face- och edgelighting

% [rho_a rho_d rho_s spec_exp]
material([0.4 0.6 0.5 30])

% material metal
% material dull
% material shiny
% material default
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The back and front of polygons

A quote from the manual:

“The default value for BackFaceLighting is reverselit . This

setting reverses the direction of the vertex normals that face

away from the camera, causing the interior surface to reflect

light towards the camera. Setting BackFaceLighting to unlit
disables lighting on faces with normals that point away from the

camera.”

[X, Y, Z] = sphere(20);
Z(X <= 0 & Y <= 0) = NaN; % TRICK!
color = [1 0.5 0.1];

figure(1)
hold off
h = surf(X, Y, Z);
set(h, ’AmbientStrength’, 0.0, ... % NOTE

’DiffuseStrength’, 1.0, ...
’SpecularStrength’, 0.5, ...
’FaceColor’, color, ...
’EdgeColor’, color, ...
’FaceLighting’, ’phong’, ...
’EdgeLighting’, ’phong’)

hold on

light_pos = [0 -1 2];
plot3(light_pos(1), light_pos(2), light_pos(3), ’ * ’)
light(’Position’, light_pos)
axis equal

figure(2) etc.
set(h, ’AmbientStrength’, 0.0, ...

etc.
’BackFaceLighting’, ’unlit’) % NOTE!
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% Default is reverselit
figure(3) etc.
set(h, ’AmbientStrength’, 0.8, ... % NOTE!

etc.
’BackFaceLighting’, ’unlit’)
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More 3D plot commands

Now that we have seen how to use more fancy graphics it is

time to list some of the remaining 3D-plot commands. They

can, essentially, be divided into two groups.

If we have a scalar quantity, like pressure or temperature,

defined in (x, y, z), we can use tools like isosurfaces or slices. If,

on the other hand, a vector (velocity) is defined in each point,

we would usually use some type of stream lines or arrows.

One cannot do justice to these functions using transparencies.

Many of the commands require lighting, transparency, and the

z-buffer. Also the description in the manual requires 45 pages.

My suggestion is that you try them, which is not hard work.

Almost all the commands have one or more examples at the end

of the help text. So just cut-and-paste!

Here is a list taken directly from the manual:

Functions for scalar Data

contourslice Draw contours in volume slice planes

isocaps Compute isosurface end-cap geometry

isocolors Compute the colors of isosurface vertices

isonormals Compute normals of isosurface vertices

isosurface Extract isosurface data from volume data

patch Create a patch (multipolygon) graphics object

reducepatch Reduce the number of patch faces

reducevolume Reduce the number of elements in a

volume data set

shrinkfaces Reduce the size of each patch face

slice Draw slice planes in volume

smooth3 Smooth 3-D data

surf2patch Convert surface data to patch data

subvolume Extract subset of volume data set
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Functions for Vector Data

coneplot Plot velocity vectors as cones in 3-D vector fields

curl Compute the curl and angular velocity of a

3-D vector field

divergence Compute the divergence of a 3-D vector field

interpstreamspeed Interpolate streamline vertices from

vector-field magnitudes

streamline Draw stream lines from 2-D or 3-D vector data

streamparticles Draw stream particles from

vector volume data

streamribbon Draw stream ribbons from vector volume data

streamslice Draw well-spaced stream lines from

vector volume data

streamtube Draw stream tubes from vector volume data

stream2 Compute 2-D stream line data

stream3 Compute 3-D stream line data

volumebounds Return coordinate and color limits

for volume (scalar and vector)

To use these routines the coordinates must usually be gridded

(as if produced by meshgrid ).
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About OpenGL, according to

http://www.opengl.org/about/overview/
OpenGL is the premier environment for developing portable,

interactive 2D and 3D graphics applications. Since its introduc-

tion in 1992, OpenGL has become the industry’s most widely

used and supported 2D and 3D graphics application program-

ming interface (API), bringing thousands of applications to a

wide variety of computer platforms...

4.010 What is GLU? How is it different from OpenGL?

If you think of OpenGL as a low-level 3D graphics library, think

of GLU as adding some higher-level functionality not provided

by OpenGL. Some of GLU’s features include:

... Specialty transformation matrices for creating perspective

and orthographic projections, positioning a camera, and selec-

tion/picking. Rendering of disk, cylinder, and sphere primitives

...

3.010 What is GLUT? How is it different from OpenGL?

Because OpenGL doesn’t provide routines for interfacing with

a windowing system or input devices, an application must use a

variety of other platform-specific routines for this purpose. The

result is nonportable code.

Furthermore, these platform-specific routines tend to be full-

featured, which complicates construction of small programs and

simple demos.

GLUT is a library that addresses these issues by providing a

platform-independent interface to window management, menus,

and input devices in a simple and elegant manner.
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Some OpenGL-examples

How can we create the following image using OpenGL and C?

After having reshaped the window:

Here is the C-program. If you have not seen C before, see the

Diary. The line numbers are not part of the program.
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1 // I’m using C++-comments // in this code.
2 #include <GL/glut.h> // includes gl.h, glu.h as well
3 #include <stdlib.h> // For void exit(int)
4

5 void Display(); // Prototypes
6 void MyInit();
7 void Reshape(int, int);
8 void KeyHandler(unsigned char, int, int);
9

10 // argc = argument count >= 1 (command name first)
11 // argv = arg vector (array of pointers to char)
12

13 int main(int argc, char * argv[])
14 {
15 glutInit(&argc, argv);
16

17 // use RGB-color and not indexed color
18 glutInitDisplayMode(GLUT_RGB);
19

20 // width = 500, height = 300 pixels
21 glutInitWindowSize(500, 300);
22

23 // (0, 0) upper-left corner of screen
24 glutInitWindowPosition(10, 10);
25 glutCreateWindow("My first curve"); // title
26

27 // the following calls define three callbacks
28 glutDisplayFunc(Display); // at re-displays
29 glutReshapeFunc(Reshape); // change in size
30 glutKeyboardFunc(KeyHandler); // keypress
31

32 MyInit(); // my own initializations
33 glutMainLoop(); // wait for events
34 return 0;
35 }
36

37
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38 void MyInit()
39 {
40 glClearColor(1, 1, 1, 0); // white to erase
41

42 // set up projection matrix
43 glMatrixMode(GL_PROJECTION);
44 glLoadIdentity(); // matrix = I
45

46 // 2D orthographic projection
47 // x_min, x_max, y_min, y_max
48 gluOrtho2D(0, 2, -1, 1);
49

50 // set the modelview matrix to I
51 glMatrixMode(GL_MODELVIEW);
52 glLoadIdentity();
53 }
54 void Display()
55 {
56 float x;
57 // clear color buffer, i.e. erase
58 glClear(GL_COLOR_BUFFER_BIT);
59

60 glColor3f(0, 0, 1); // blue
61 glBegin(GL_LINE_STRIP); // draw solid curve
62 glVertex2f(0, 1); // define point
63 glVertex2f(1.9, -0.9); // define point
64 glEnd(); // end of curve
65

66 // Note that glColor is in effect for all
67 // points defined by glVertex2f.
68 glColor3f(1, 0, 0); // new color
69 glPointSize(5); // larger points
70 glBegin(GL_POINTS); // draw points
71 for(x = 0; x < 1.99; x += 0.1)
72 glVertex2f(x, 1 - x); // define point
73 glEnd(); // end of GL_POINTS
74
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75 glFlush(); // force drawing
76 }
77

78 void Reshape(int w, int h) // new size in pixels
79 {
80 int border = 20; // a frame around the curve
81

82 // area where we draw the curve, positive
83 int size_of_curve;
84 int low_left_x, low_left_y; // viewport
85

86 if ( w > h ) {
87 if ( h < 2 * border ) border = 0;
88 size_of_curve = h - 2 * border; // >= 0
89 low_left_x = 0.5 * (w - size_of_curve);
90 low_left_y = border;
91 } else {
92 if ( w < 2 * border ) border = 0;
93 size_of_curve = w - 2 * border;
94 low_left_x = border;
95 low_left_y = 0.5 * (h - size_of_curve);
96 }
97

98 glViewport(low_left_x, low_left_y,
99 size_of_curve, size_of_curve);

100 }
101

102 void KeyHandler(unsigned char key, int x, int y)
103 {
104 if (key == ’q’ || key == 27)
105 exit(0);
106 }
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5-8: Prototypes.

13: argv and argc are not used in our case.

33: We never return from glutMainLoop .

40: Color values are floats, but we are using the automatic con-

version between int and float in this case. The last values is the

alpha-value (for transparency).

54: Display is called to draw the image. Called after Reshape.

58: Fill using the color defined on line 40.

60: 3f = three floats. There are 32 different glColor -routines,

e.g. glColor3fv which takes a float vector with three elements

glColor3f(0.0, 0.0, 1.0); is OK as well.

61: glBegin defines how the glVertex -calls should be inter-

preted, e.g. like points on a curve or like separate points. Com-

pare Matlab, plot(x, y) and plot(x, y, ’o’) . There are:

GL POINTS, GL LINES, GL LINE STRIP, GL LINE LOOP, GL TRIANGLES,
GL TRIANGLESTRIP, GL TRIANGLEFAN,
GL QUADS, GL QUADSTRIP, and GL POLYGON.
See the man-page for glBegin for details.

78: Called when a window is created and when it is modified

in size. We must rescale things so that the curve is not de-

formed.

A viewport is rectangular area of the window

x, y, width, height .
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This is the idea behind the values. We get two cases. If w is

larger than h, the new width and height, of the window:

------------------------------
| border (x2, y2) |
| +--------+ |
| | | |
| | curve | |
| | | |
| +--------+ |
| (x1, y1) border |
------------------------------

size_of_curve = h - 2 * border (size of square)
y1 = border
x1 = w / 2 - size_of_curve / 2
x2 = x1 + size_of_curve
y2 = y1 + size_of_curve

Similarly when w is less than h.

102: This routine is called whenever we press a key and when

the mouse is placed in the window. (x, y) is the position of

the mouse, in pixels, (0, 0) = upper left. We exit the program

if q or escape is pressed. escape has character code 27.
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A typical OpenGL manual page:

% man glvertex (in edited form)

Misc. Reference Manual Pages GLVERTEX()

NAME
glVertex2d, glVertex2f, glVertex2i, glVertex2s,
glVertex3d, glVertex3f, glVertex3i, glVertex3s,
glVertex4d, glVertex4f, glVertex4i, glVertex4s,
glVertex2dv, glVertex2fv, glVertex2iv, glVertex2sv,
glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,
glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv
- specify a vertex

C SPECIFICATION
void glVertex2d( GLdouble x, GLdouble y )
void glVertex2f( GLfloat x, GLfloat y )
void glVertex2i( GLint x, GLint y )

...
void glVertex3d( GLdouble x, GLdouble y, GLdouble z )
void glVertex3f( GLfloat x, GLfloat y, GLfloat z )

...
PARAMETERS
x, y, z, w Specify x, y, z, and w coordinates of a

vertex. Not all parameters are present
in all forms of the command.

C SPECIFICATION
void glVertex2dv( const GLdouble * v )
void glVertex2fv( const GLfloat * v )

...
void glVertex3dv( const GLdouble * v )
void glVertex3fv( const GLfloat * v )

...
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const protects the elements in the array from change.

TE’s comment.

PARAMETERS
v Specifies a pointer to an array of two, three, or

four elements. The elements of a two-element array
are x and y; of a three-element array, x, y, and z;
and of a four-element array, x, y, z, and w.

DESCRIPTION
glVertex commands are used within glBegin/glEnd pairs
to specify point, line, and polygon vertices. The
current color, normal, and texture coordinates are
associated with the vertex when glVertex is called.

When only x and y are specified, z defaults to 0.0 and
w defaults to 1.0. When x, y, and z are specified, w
defaults to 1.0.

NOTES
Invoking glVertex outside of a glBegin/glEnd pair
results in undefined behavior.

SEE ALSO
glBegin, glCallList, glColor, glEdgeFlag, glEvalCoord,
glIndex, glMaterial, glNormal, glRect, glTexCoord
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A careful OpenGL programmer uses the OpenGL types (I have

not), e.g.:

void Display(void)
{

GLfloat color[3] = {0, 0, 1}, x;

glClear(GL_COLOR_BUFFER_BIT);
glColor3fv(color);

glBegin(GL_LINE_STRIP);
for(x = 0; x < 1.99; x += 0.1)

glVertex2f(x, 1 - x);
glEnd();

...

However, looking in /usr/include/GL/gl.h one sees that:

typedef unsigned int GLenum;
typedef unsigned char GLboolean;
typedef unsigned int GLbitfield;
typedef signed char GLbyte;
typedef short GLshort;
typedef int GLint;
typedef int GLsizei;
typedef unsigned char GLubyte;
typedef unsigned short GLushort;
typedef unsigned int GLuint;
typedef float GLfloat;
typedef float GLclampf;
typedef double GLdouble;
typedef double GLclampd;
typedef void GLvoid;
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Here is a simple 3D-example. Reshape and KeyHandler are

unchanged from the previous example (and are not included).

1 #include <GL/glut.h>
2 #include <stdlib.h>
3

4 void Display();
5 void MyInit();
6 void Reshape(int, int);
7 void KeyHandler(unsigned char, int, int);
8 void DrawCoordSys();
9 void DrawSquares();

10

11 int main(int argc, char * argv[])
12 {
13 glutInit(&argc, argv);
14 // switch on Z-buffer: GLUT_DEPTH
15 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH);
16 glutInitWindowSize(300, 300);
17 glutInitWindowPosition(10, 10);
18 glutCreateWindow("A 3D-example");
19 glutDisplayFunc(Display);
20 glutReshapeFunc(Reshape);
21 glutKeyboardFunc(KeyHandler);
22 MyInit();
23 glutMainLoop();
24 return 0;
25 }
26

27

28 void Display()
29 {
30 // clear color- and Z-buffer (depth buffer)
31 glClear(GL_COLOR_BUFFER_BIT | // NOT ||
32 GL_DEPTH_BUFFER_BIT);
33

34

35
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36 DrawSquares(); // draw the squares
37 DrawCoordSys(); // draw a coord syst.
38

39 glFlush();
40 }
41

42 void MyInit()
43 {
44 glClearColor(1, 1, 1, 0);
45 glEnable(GL_DEPTH_TEST); // enable Z-buffer
46

47 glMatrixMode(GL_PROJECTION);
48 glLoadIdentity();
49 glOrtho(-2, 2, -2, 2, 0, 3); // view volume
50

51 glMatrixMode(GL_MODELVIEW);
52 glLoadIdentity();
53 gluLookAt(1,1,1, 0,0,0, 0,1,0); // place eye
54 }
55

56 void DrawCoordSys()
57 {
58 float color[] = {0, 0, 0}, p[] = {0, 0, 0};
59 char xyz[] = {’x’, ’y’, ’z’};
60 int axis;
61

62 glLineWidth(2);
63 for(axis = 0; axis <= 2; axis++) {
64 color[axis] = 1;
65 glColor3fv(color);
66 color[axis] = 0; // back to black
67

68 glBegin(GL_LINE_STRIP);
69 glVertex3fv(p);
70 p[axis] = 1; glVertex3fv(p);
71 glEnd();
72
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73 glColor3fv(color);
74 p[axis] = 1.1; glRasterPos3fv(p);
75 glutBitmapCharacter(GLUT_BITMAP_9_BY_15,
76 xyz[axis]);
77 p[axis] = 0;
78 }
79 }
80 void DrawSquares()
81 {
82 // red unit square at z = 0.5
83 glColor3f(1, 0, 0);
84 glBegin(GL_POLYGON);
85 glVertex3f(0, 0, 0.5);
86 glVertex3f(1, 0, 0.5);
87 glVertex3f(1, 1, 0.5);
88 glVertex3f(0, 1, 0.5);
89 glEnd();
90

91 // blue unit square at z = -0.5
92 glColor3f(0, 0, 1);
93 glBegin(GL_POLYGON);
94 glVertex3f(0, 0, -0.5);
95 glVertex3f(1, 0, -0.5);
96 glVertex3f(1, 1, -0.5);
97 glVertex3f(0, 1, -0.5);
98 glEnd();
99 }

It is possible to call glColor once for every glVertex . The

polygon is then coloured using interpolation, provided smooth

shading is on, which is the default (glShadeModel(GL SMOOTH)).
If one has switched on flat shading (glShadeModel(GL FLAT) )
the colour of the first vertex in the polygon is used to colour the

whole polygon.
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Handling the mouse

...
void MouseHandler(int, int, int, int);

int main(int argc, char * argv[])
{

...
glutMouseFunc(MouseHandler);

...
}

void MouseHandler(int button, int state, int x, int y)
{
/ *

button: one of GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON,
or GLUT_RIGHT_BUTTON. state is either GLUT_UP or
GLUT_DOWN indicating whether the callback was due to
a release or press respectively.

If a menu is attached to a button for a window,
mouse callbacks will not be generated for that
button. (x, y) = (0, 0) upper-left

* /
....

}

If the display should be redrawn call glutPostRedisplay(); .

Do not call Display(); directly.

The next page shows how rotations work. main and DrawCoordSys
have not been included.

We create a square window: glutInitWindowSize(300, 300); .
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1 #include <GL/glut.h>
2 void MouseHandler(int, int, int, int);
3 void Display();
4 void MyInit();
5 void DrawCoordSys();
6

7 void MyInit()
8 {
9 glClearColor(1, 1, 1, 0);

10 glEnable(GL_DEPTH_TEST);
11

12 glMatrixMode(GL_PROJECTION);
13 glLoadIdentity();
14 gluPerspective(20, 1, 1, 10);
15

16 glMatrixMode(GL_MODELVIEW);
17 glLoadIdentity();
18 gluLookAt(7,3,5, 0,0,0, 0,1,0);
19 }
20 void
21 MouseHandler(int button, int state, int x, int y)
22 {
23 if ( state == GLUT_UP ) {
24 switch ( button ) { // new statement
25 case GLUT_LEFT_BUTTON :
26 glRotatef(90, 1, 0, 0); // Rx
27 break; // NOTE!
28 case GLUT_MIDDLE_BUTTON :
29 glRotatef(90, 0, 1, 0); // Ry
30 break;
31 case GLUT_RIGHT_BUTTON :
32 glRotatef(90, 0, 0, 1); // Rz
33 break;
34 }
35 glutPostRedisplay();
36 }
37 }

232

38

39 void Display()
40 {
41 glClear(GL_COLOR_BUFFER_BIT |
42 GL_DEPTH_BUFFER_BIT);
43 DrawCoordSys();
44 glFlush();
45 }

14: The gluPerspective arguments are:

“field of view angle” (in degrees) in the y-direction.

“aspect ratio” that determines the field of view in the

x-direction.

The aspect ratio is the ratio of x (width) to y (height).

“distance from the viewer” to the near clipping plane (> 0).

“distance from the viewer” to the far clipping plane (> 0).

21: When clicking on the mouse we get the following

coordinate systems:

y x
| |
|--- x --- x |--- z --- z

/ /| / /|
z y | y x |

z y

Initially After Rx After Ry After Rz
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The next program contains several new OpenGL-constructs.

Double buffering, lighting and materials.

The program draws two spheres (radius one), a red centered

on the origin and a green centered on (2, 0, 0). A light is placed

at (5, 0, 0). When + is pressed the spheres rotate around the

origin in a ccw fashion, and when - is pressed they rotate the

other way. By using a menu we can make the light follow the

spheres or to be stationary.

1 #include <GL/glut.h>
2 #include <stdlib.h>
3

4 void Display();
5 void MyInit();
6 void KeyHandler(unsigned char, int, int);
7 void MenuHandler(int); // For menus
8 void CreateObject();
9 int rotating_light = 0; // global variable

10

11 int main(int argc, char * argv[])
12 {
13 glutInit(&argc, argv);
14

15 // GLUT_DOUBLE = double buffering
16 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH |
17 GLUT_DOUBLE);
18

19 glutInitWindowSize(500, 500);
20 glutCreateWindow("Spheres");
21 glutKeyboardFunc(KeyHandler);
22 glutCreateMenu(MenuHandler); // Menu
23 glutAddMenuEntry("Rotating light", 1);
24 glutAddMenuEntry("Stationary light", 2);
25 glutAddMenuEntry("Quit", 3);
26 glutAttachMenu(GLUT_RIGHT_BUTTON); // for example
27

28 glutDisplayFunc(Display);
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29 MyInit();
30 glutMainLoop();
31 return 0;
32 }
33 void Display()
34 {
35 glClear(GL_COLOR_BUFFER_BIT |
36 GL_DEPTH_BUFFER_BIT);
37

38 CreateObject(); // my own routine
39 glutSwapBuffers(); // double buffering
40 }
41 void MyInit()
42 {
43 float
44 light_pos[] = {5, 0, 0, 0},
45 light_ambient[] = {0.2, 0.2, 0.2, 1},
46 light_diffuse[] = {1, 1, 1, 1},
47 light_specular[] = {1, 1, 1, 1};
48

49 glClearColor(1, 1, 1, 0);
50 glMatrixMode(GL_PROJECTION);
51 glLoadIdentity();
52 gluPerspective(45, 1, 1, 100);
53

54 glMatrixMode(GL_MODELVIEW);
55 glLoadIdentity();
56 gluLookAt(0,0,10, 0,0,0, 0,1,0);
57

58 // set up ambient, diffuse, and specular
59 // components for light 0
60

61 glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
62 glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
63 glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
64

65 glEnable(GL_LIGHTING); // switch on lighting
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66 glEnable(GL_LIGHT0); // at least 8 lamps
67

68 // set the position of light0
69 glLightfv(GL_LIGHT0, GL_POSITION, light_pos);
70

71 // switch on smooth shading; the other
72 // alternative is GL_FLAT
73 glShadeModel(GL_SMOOTH);
74

75 glEnable(GL_DEPTH_TEST);
76 }
77 void CreateObject()
78 {
79 float // material properties (refl. coeff.)
80 white_rc[] = {1, 1, 1, 1},
81 red_rc[] = {1, 0, 0, 1},
82 green_rc[] = {0, 1, 0, 1},
83 spec_exp = 100;
84

85 // define material properties for front face
86 glMaterialfv(GL_FRONT, GL_AMBIENT, white_rc);
87 glMaterialfv(GL_FRONT, GL_DIFFUSE, red_rc);
88 glMaterialfv(GL_FRONT, GL_SPECULAR, white_rc);
89 glMaterialf (GL_FRONT, GL_SHININESS, spec_exp);
90

91 // create the polygons and normals for a
92 // sphere; radius, resolution along
93 // longitudes and latidudes
94

95 glutSolidSphere(1, 20, 20);
96

97 // the translate should be temporary
98 glPushMatrix();
99 glTranslatef(2, 0, 0);

100 glMaterialfv(GL_FRONT, GL_DIFFUSE, green_rc);
101 glutSolidSphere(1, 20, 20);
102 glPopMatrix();
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103 }
104 void KeyHandler(unsigned char key, int x, int y)
105 {
106 float light_pos[] = {5, 0, 0, 0};
107

108 if (key == ’q’)
109 exit(0);
110 else if (key == ’+’)
111 glRotatef(3, 0, 1, 0); // Ry, 3 degrees
112 else if (key == ’-’)
113 glRotatef(-3, 0, 1, 0); // Ry, -3 degrees
114 else
115 return;
116

117 // The position of a light is affected by M, so...
118 if ( rotating_light ) // Transform by M
119 glLightfv(GL_LIGHT0, GL_POSITION, light_pos);
120 else { // Stationary light
121 glPushMatrix();
122 glLoadIdentity(); // Do NOT multiply by M
123 glLightfv(GL_LIGHT0, GL_POSITION, light_pos);
124 glPopMatrix();
125 }
126

127 glutPostRedisplay(); // update image
128 }
129 void MenuHandler(int id) // id = menu alternative
130 {
131 if (id == 1)
132 rotating_light = 1; // global variable
133 else if (id == 2)
134 rotating_light = 0;
135 else if (id == 3)
136 exit(0); // Quit
137 }
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45-etc: Define light properties.

If last element in light pos = 0, skip the actual distance to the

light source, just look at the direction. If the sphere is centered

on (8, 0, 0) the light still comes from the right. If the compo-

nent is 1 the position is taken into account and a sphere centered

on (8, 0, 0) is lit from the left.

The fourth element in light ambient etc. is for transparent

materials.

121-: If we do not move the light, it will always come from

the right.
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More on animation

In the previous example we used double buffering to get a smooth

animation (line 17, 41). This should be used in the planet-lab

as well, but a difference is that the planets should move on their

own, we should not have to press any buttons.

To fix that we define an “idle-callback”, a callback that OpenGL

executes when it is idle.

We set the callback by glutIdleFunc(idle callback) ,

where idle callback , is our callback routine. In this routine

one updates the positions of the Earth and Moon and then calls

glutPostRedisplay() .

It is possible to solve the updating problem in several ways.

In some solutions it is necessary for the callback to “remember”

values between calls. We can do that by using global variables.

Another alternative is to use static variables. Here are two silly

examples.

#include <stdio.h>

void idle_func();

int remember_me = 0; // global variable (in this file)

int main(int argc, char * argv[])
{

idle_func(); idle_func(); idle_func();
return 0;

}

void idle_func()
{

remember_me++;
printf("remember_me = %d\n", remember_me);

}
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Here is another way:

#include <stdio.h>

void idle_func();

int main(int argc, char * argv[])
{

idle_func(); idle_func(); idle_func();
return 0;

}

void idle_func()
{

static int remember_me = 0; // NOTE static

remember_me++;
printf("remember_me = %d\n", remember_me);

}

Both solutions will produce the following printout:

remember_me = 1
remember_me = 2
remember_me = 3

One difference between these programs is the remember me is

local to the function in the second case, but accessible to all

functions in the first program.
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A hint on debugging

...

void Display()
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
... draw stuff

// You find CheckErr.c in the directory:
// /chalmers/groups/thomas_math/VIS/OpenGL/
CheckErr();

}

void KeyHandler(unsigned char key, int x, int y)
{

if (key == ’q’ || key == 27) {
exit(0);

} else {
glPushMatrix(); // mistake, no matching Pop

glTranslatef(0.1, 0, 0);

glutPostRedisplay();
}

}

After 32 calls we get GL STACKOVERFLOW.
Changing to glPopMatrix(); gives GL STACKUNDERFLOWafter
the first call.

Here comes CheckErr :
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void CheckErr()
{

int err;
char errors[7][21] =

{ "GL_INVALID_ENUM", "GL_INVALID_VALUE",
"GL_INVALID_OPERATION", "GL_STACK_OVERFLOW",
"GL_STACK_UNDERFLOW", "GL_OUT_OF_MEMORY",
"GL_TABLE_TOO_LARGE" };

err = -1;
switch (glGetError()) {
case GL_NO_ERROR:

break; // do nothing
case GL_INVALID_ENUM:

err = 0;
break;

case GL_INVALID_VALUE:
err = 1;
break;

case GL_INVALID_OPERATION:
err = 2;
break;

case GL_STACK_OVERFLOW:
err = 3;
break;

case GL_STACK_UNDERFLOW:
err = 4;
break;

case GL_OUT_OF_MEMORY:
err = 5;
break;

case GL_TABLE_TOO_LARGE:
err = 6;

}

if (err >= 0) printf("%s\n", errors[err]);
}
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OpenDX och ParaView

We end the course with two visualization systems that have more

advanced graphics than Matlab. These systems have no support

for computations (apart from very simple ones), and the user

has to supply the plot-data using files.

In previous versions of the course the focus was on OpenDX,

but this year we will use ParaView. See the old PDF-file from

the Diary for more about OpenDX.

Let us have a look at OpenDX before we start with ParaView.

OpenDX, www.opendx.org , is an open version of IBM’s

“Visualization Data Explorer”.

Some, but not all, important points:

• Advanced tools for visualization of 3D-data.

• Takes longer to learn than Matlab, but you can do more.

Often faster.

• Modules are connected using a GUI, graphical programming.

Visual Program Editor, VPE.

• Input from files (not variables as in Matlab).

• The modules transform the input and sends it to the next

module.

• Supports several input formats. Using the “Data Prompter”-

program simple inputs can be handled (e.g. uniform, gridded

input).

• Lots of documentation. Many demo programs. Few simple

examples. Should read a book (or take this course :-)

David Thompson, Jeff Braun, Ray Ford,

OpenDX: Paths to Visualization. Consists of a sequence of

solved visualization problems.

http://www.vizsolutions.com .

Here is a short example (an extract from the old course) to give

you an idea of how one uses OpenDX.
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We would like to visualize data of the form w = f(x, y, z).

It is possible to remove part of the data (everything on one side

of a plane). We use the module ClipPlane. It takes the data, a

point in the plane and a normal defining the clip plane.

Everything on the side of the plane (in the direction of the

normal) is removed.

Here is a related construct. The MapToPlane-module creates

an arbitrary cutting plane through 3D-space and interpolates

data values onto it. The plane is defined by a point a normal,

just as the ClipPlane. Using the Vector interactors we can move

to plane.

I have combined MapToPlane with Isosurface. I have also

added Colorbar which draws a scale (as in Matlab). Finally there

is Caption which corresponds to Matlab’s title.

Here is the program

244

and here is a (bad) version of the resulting image.

For more details see the old handouts. The rest of the chapter

deals with ParaView.

245



ParaView

Here are a few sentences from www.paraview.org :

Overview:

ParaView is an open-source, multi-platform application designed

to visualize data sets of size varying from small to very large.

The goals of the ParaView project include the following:

• Develop an open-source, multi-platform visualization

application.

• Support distributed computation models to process large

data sets.

• Create an open, flexible, and intuitive user interface.

• Develop an extensible architecture based on open standards.

ParaView runs on distributed and shared memory parallel as

well as single processor systems and has been successfully tested

on Windows, Mac OS X, Linux and various Unix workstations,

clusters and supercomputers. Under the hood, ParaView uses

the Visualization Toolkit as the data processing and rendering

engine and has a user interface written using Qt R©.

The ParaView project started started in 2000 as a collaborative

effort between Kitware Inc. and Los Alamos National Labora-

tory. The initial funding was provided by a three year contract

with the US Department of Energy ASCI Views program. To-

day, ParaView development continues as a collaboration between

Kitware, Sandia National Labs, CSimSoft, Los Alamos National

Lab, Army Research Lab and others.

There is a set of books available from Kitware Inc. providing

details about VTK and ParaView. In this course it is sufficient

to study the “ParaView 3 tutorial for Supercomputing 07” (used

in the labs), and the “VTK file formats documentation“ (see the

home page for links).
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The hardest part with using OpenDX and ParaView is the

creation of the input files and this chapter will show you some

examples.

VTK supports many styles of file formats. In this course we

will use two, the legacy VTK formats and the XML formats.

From the dictionary:

Legacy: Designating software or hardware which, although

outdated or limiting, is an integral part of a computer

system and difficult to replace.

Suppose we want implement the following Matlab-program in

ParaView:

[X, Y] = meshgrid(linspace( 0, 2, 30), ...
linspace(-1, 1, 30));

surf(X, Y, X.ˆ2 + sin(3 * Y))

Here is a first step, the file ex1.vtk (the line numbers are not

part of the file). For more details see the formats-manual.

1 # vtk DataFile Version 2.0
2 Data for z = f(x, y).
3 ASCII
4 DATASET STRUCTURED_POINTS
5 DIMENSIONS 3 3 1
6 ORIGIN 0 0 0
7 SPACING 1 1 1
8

9 POINT_DATA 9
10 SCALARS name_1 float
11 LOOKUP_TABLE default
12 1 2 3 4 5 6 7 8 9

Line 1 is a header, and line 2 a title (comment). Line 3 gives the

data format for numbers (coordinates etc), see the documenta-

tion for binary formats.
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Lines 4-7 describe the dataset structure (also called the geome-

try or the topology) of the data. In our case we have grid points

in the x-y-plane. The points are (j, k), j, k = 0, 1, 2.

Finally, on lines 9-12, we have the dataset attributes, the values

of the function on the grid (the values are 1-9).

We have POINT DATA, i.e. we have defined a scalar value in each

grid point. The value is a scalar-float (i.e not a vector for exam-

ple) and we have named it, name 1. Choose meaningful names

e.g. pressure, temperature etc.

We can have several quantities, by having several groups like

10-13. Using the name, we can later pick the relevant quantity

in ParaView. On line 11 we define a colour lookup table (here

the default). One should be able to define ones own, but this

seems buggy in the present ParaView-version.

I have not included any images in the handouts, since the PDF-

files become so large. Some of the vtk -files (and corresponding

images) are available on the student computer system, so you

can try them yourself see

/chalmers/groups/thomas math/VIS/Handouts ex ParaView .

The following line denotes a missing image.

[Image]

This is how I made the [Image]. I loaded the file, choose the

“Glyph-filter”, changed the “Glyph Type” to “Sphere”,

increased the “Radius” and “Theta Resolution”. I pressed the

“Toggle Color Legend Visibility”-button. Not to waste printer-

toner, I changed the background colour (so the background text

is not very visible).
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So what is a glyph?

(Glyph from from Greek Glyphe, carved work, from

glyphein to carve.

1: an ornamental vertical groove especially in a Doric frieze

2: a symbolic figure or a character (as in the Mayan system of

writing) usually incised or carved in relief

3: a symbol (as a curved arrow on a road sign) that conveys

information nonverbally).

Looking at the image we can see that the point data is

ordered the following way:

(x1, y1) (x2, y1) (x3, y1) (x1, y2) (x2, y2) (x3, y2) (x1, y3) (x2, y3) (x3, y3)

How can we generate data in that order from Matlab? Here is

a short example:
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>> [X, Y] = meshgrid(-1:1, -1:1)

X = -1 0 1
-1 0 1
-1 0 1

Y = -1 -1 -1
0 0 0
1 1 1

>> [X(:), Y(:)]

ans =
-1 -1 % (x_min, y_min)
-1 0 % (x_min, y_min + dy)
-1 1 % (x_min, y_min + 2 dy)

0 -1 % (x_min + dx, y_min)
0 0 % (x_min + dx, y_min + dy)
0 1 % (x_min + dx, y_min + 2 dy)
1 -1 % (x_min + 2 dx, y_min)
1 0 % (x_min + 2 dx, y_min + dy)
1 1 % (x_min + 2 dx, y_min + 2 dy)

>> X = X’; % Not what we want, so transpose
>> Y = Y’;
>> [X(:), Y(:)]
ans =

-1 -1 % (x_min, y_min)
0 -1 % (x_min + dx, y_min)
1 -1 % (x_min + 2 dx, y_min)

-1 0 % (x_min, y_min + dy)
0 0 % (x_min + dx, y_min + dy)
1 0 % (x_min + 2 dx, y_min + dy)

-1 1 % (x_min, y_min + 2 dy)
0 1 % (x_min + dx, y_min + 2 dy)
1 1 % (x_min + 2 dx, y_min + 2 dy)
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Here comes a Matlab-program that produces a suitable datafile

for ParaView. In a real application, we may have a Fortran/C/C++-

code that produces the data.

1 % Make surface data for ParaView
2 n = 30;
3 [X, Y] = meshgrid(linspace( 0, 2, 30), ...
4 linspace(-1, 1, 30));
5 Z = X.ˆ2 + sin(3 * Y);
6

7 % Open output file
8 fid = fopen(’surf_ex.vtk’, ’w’);
9

10 % Write a header and a comment
11 fprintf(fid, ’# vtk DataFile Version 2.0\n’);
12 fprintf(fid, ’z = xˆ2 + sin(3 y)\n’);
13

14 % Data type and type of grid
15 fprintf(fid, ’ASCII\n’);
16 fprintf(fid, ’DATASET STRUCTURED_POINTS\n’);
17

18 % Here comes the data. First the nodes.
19 fprintf(fid, ’DIMENSIONS %d %d 1\n’, n, n); % z = 1
20 fprintf(fid, ’ORIGIN 0 -1 0\n’);
21

22 % spacing not used for z
23 spacing = X(1, 2) - X(1, 1); % i.e. 2 / (n - 1)
24 fprintf(fid, ’SPACING %e %e %e\n’, ...
25 spacing, spacing, spacing);
26

27 fprintf(fid, ’POINT_DATA %d\n’, n * n);
28 fprintf(fid, ’SCALARS z float\n’);
29 fprintf(fid, ’LOOKUP_TABLE default\n’);
30 fprintf(fid, ’%e\n’, Z’); % Note, transpose
31

32 fclose(fid); % close file
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In ParaView the data will show up as a flat coloured plane (where

the colours correspond to the Z-values). To produce heights

from the Z-values we use two filters, “Clean to Grid” followed

by “Warp(scalar)”. The first filter (quoting the help):

It also converts the data set to an unstructured grid. You

may wish to do this if you want to apply a filter to your

data set that is available for unstructured grids but not

for the initial type of your data set (e.g., applying warp

vector to volumetric data).

and the second

The Warp (scalar) filter translates the points of the in-

put data set along a vector by a distance determined by

the specified scalars. This filter operates on polygonal,

curvilinear, and unstructured grid data sets containing

single-component scalar arrays.

The vector is (0, 0, 1) in this case. The warp-filter has a “Scale

Factor” so one can exaggerate (scale) the z-direction.

Another filter, which we can apply directly on the data,

is “Contour”.

[Image]
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If we make a mistake in the VTK-file, we get an error message in

a separate window “Output Message”. As an example, if we give

two, instead of three, numbers in the DIMENSIONS-statement we

get the following error message:

ERROR: In /home/berk/Work/ReleaseBuilds/ParaView3/
VTK/IO/vtkStructuredPointsReader.cxx, line 131
vtkStructuredPointsReader (0x8ca9d18):
Error reading dimensions!

I have fetched a pre-compiled binary, that is the reason for the

absolute path.

It may be instructive to look at the source, to see the origin of

the message. Fetching and unpacking vtk-5.2.0.tar.gz from

http://www.vtk.org/get-software.php we look at the C++-

file VTK/IO/vtkStructuredPointsReader.cxx

% wc -l vtkStructuredPointsReader.cxx
533 vtkStructuredPointsReader.cxx

if ( ! strncmp(this->LowerCase(line), "dimensions",10) )
{
int dim[3];
if (!(this->Read(dim) &&

this->Read(dim+1) &&
this->Read(dim+2)))

{
vtkErrorMacro(<<"Error reading dimensions!");
this->CloseVTKFile ();
this->SetErrorCode( vtkErrorCode::FileFormatError );
return 1;
}

vtkErrorMacro is line 131.

253



In the following VTK-file we construct a tiny vector field in 3D.

You should use more points in a real application. You could

have SCALARS-data as well.

# vtk DataFile Version 2.0
Vector field in 3D.
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 3 3 3
ORIGIN 0 0 0
SPACING 1 1 1

POINT_DATA 27
VECTORS vec float
1 2 3

etc.

One could use the “Stream Tracer” and “Generate Tubes” filters

to visualize the flow. [Image]

In the previous examples every node (point) has a quantity

(scalar or vector) associated with it. In some applications it is

more natural to associate a value with an area or volume

(a so-called cell). A biologist may count the number of bugs,

plants etc. per km2 or number of fish per km3.

Here comes a 2D-example using cell-data with scalar values.

1 # vtk DataFile Version 2.0
2 A 2D cell example
3 ASCII
4 DATASET STRUCTURED_POINTS
5 DIMENSIONS 4 4 1
6 ORIGIN 0 0 0
7 SPACING 1 1 1
8

9 CELL_DATA 9
10 SCALARS name float
11 LOOKUP_TABLE default
12 1 2 3 4 5 6 7 8 9
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Line 5 defines a 4 × 4 point grid so with 3 × 3 cells, i.e. nine

values on line 9. A plot gives a checkerboard pattern (in color).

[Image]

Here is a 3D-example with 3× 3× 3 cells, i.e cubes. The central

cube is number 14, having the value −1 on line 13. The data

can be inspected using the Clip filter, for example. [Image]

1 # vtk DataFile Version 2.0
2 A 3D cell example
3 ASCII
4 DATASET STRUCTURED_POINTS
5 DIMENSIONS 4 4 4
6 ORIGIN 0 0 0
7 SPACING 1 1 1
8

9 CELL_DATA 27
10 SCALARS name float
11 LOOKUP_TABLE default
12 1 2 3 4 5 6 7 8 9
13 10 11 12 13 -1 15 16 17 18
14 19 20 21 22 23 24 25 26 27

Here is a 2D cell example where we associate a vector with each

cell. Using the “Cell Centers” and “Glyph”-filters, we get arrows

starting in the center of each cell (square). [Image]

1 # vtk DataFile Version 2.0
2 A 2D cell, vector, example
3 ASCII
4 DATASET STRUCTURED_POINTS
5 DIMENSIONS 4 4 1
6 ORIGIN 0 0 0
7 SPACING 1 1 1
8

9 CELL_DATA 9
10 VECTORS vec float
11 1 0 0 1 0 0 1 0 0
12 0 1 0 0 1 0 0 1 0
13 0 0 1 0 0 1 0 0 1
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In the next example we create a more complicated geometry

which is not quite so regular. Let us make a simple model of

the surface of a house. We use triangles to construct the surface

(compare the surface mesh in a finite element computation).

We use point data from now on.

This primitive drawing shows the numbering of the points.

8 -------- 9 Top of roof
|\ |\

6 --------- 7
|/ |/ Roof level
4 --------- 5

2 --------- 3
/ / Ground level

0 --------- 1

1 # vtk DataFile Version 2.0
2 A house
3 ASCII
4 DATASET POLYDATA
5

6 POINTS 10 float
7 0 0 0 2 0 0 0 1 0 2 1 0
8 0 0 1 2 0 1 0 1 1 2 1 1
9 0 0.5 1.5 2 0.5 1.5

10

11 TRIANGLE_STRIPS 2 20
12 10 0 4 1 5 3 7 2 6 0 4
13 8 4 8 5 9 7 8 6 4
14

15 POINT_DATA 10
16 SCALARS name float
17 LOOKUP_TABLE default
18 11 12 13 14 15 16 17 18 19 20
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On lines 6-9 we list the 10 coordinates for the points that define

the corners of the triangles. The walls are made using one tri-

angle strip (saves space compared to separate triangles), line 12.

The points are numbered in a zig-zag-order, the first point hav-

ing index zero. The roof is defined on line 13. The numbers on

line 11 denote number of strips and number of integers in lines

12, 13. The first number on line 12 (13) denotes the numbers of

points in the strip.

By using “Surface With Edges”, using “Glyph” with “Glyph

Type = Sphere”, “Scalar Mode=scalar”, clicking in “Edit” and

setting “Set Scale factor=0.01” we get the following [Image].

Here comes an example of an unstructured grid composed by

tetrahedrons. We reuse the points from the house example.

I used Matlab to construct the tetrahedrons, here is a code

segment. x , y and z , contain the coordinates from the house.

...
% Tesselate the volume using tetrahedrons. T is an
% n_tetra x 4 matrix with indices into x, y and z.

T = delaunay3(x, y, z, [])

n_tetra = size(T, 1);
C = jet(n_tetra); % some colours

% Explode the view by moving the tetrahedrons
% from the centre
xm = mean(x);
ym = mean(y);
zm = mean(z);
d = 0.1; % scale factor

% P is used to extract corners in the four faces
% of a tetrahedron
P = [1 2 3; 1 2 4; 1 3 4; 2 3 4];
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for k = 1:n_tetra
xmT = mean(x(T(k, :))); % centre of tetrahedron
ymT = mean(y(T(k, :)));
zmT = mean(z(T(k, :)));
vx = d * (xmT - xm); % translation
vy = d * (ymT - ym);
vz = d * (zmT - zm);

for j = 1:4 % plot all four faces
t = T(k, P(j, :));
fill3(x(t) + vx, y(t) + vy, z(t) + vz, C(k, :))

end
end
...

Here is the T-matrix

T =
7 3 2 1
7 2 5 1
7 3 4 2
7 4 8 2
7 6 5 2
7 8 6 2

10 8 6 5
10 7 5 9
10 7 8 5

Here is a sequence of images each with a different d-value, show-

ing an “exploded view” [Image].

Boris Nikolaevich Delaunay or Delone, 1890-1980, was one of

the first Russian mountain climbers and a Soviet/Russian

mathematician (according to Wikipedia).
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What is the difference, with respect to visualization, between

the two houses (the first and the second)?

Filter First house Second house

none surface volume

contour curves surfaces

clip surface volume

slice curve surface

Here comes the vtk-file:

1 # vtk DataFile Version 2.0
2 A tesselated house
3 ASCII
4 DATASET UNSTRUCTURED_GRID
5

6 POINTS 10 float
7 0 0 0 2 0 0 0 1 0 2 1 0
8 0 0 1 2 0 1 0 1 1 2 1 1
9 0 0.5 1.5 2 0.5 1.5

10

11 CELLS 9 45
12 4 6 2 1 0
13 4 6 1 4 0
14 4 6 2 3 1
15 4 6 3 7 1
16 4 6 5 4 1
17 4 6 7 5 1
18 4 9 7 5 4
19 4 9 6 4 8
20 4 9 6 7 4
21

22 CELL_TYPES 9
23 10 10 10 10 10 10 10 10 10
24

25 POINT_DATA 10
26 SCALARS name float
27 LOOKUP_TABLE default
28 11 12 13 14 15 16 17 18 19 20
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Line 4 has been changed from the first version. Lines 6-9 are

unchanged. I have replaced the 2D triangle strips with 3D

tetrahedrons, lines 11-23. The rest of the file is unchanged.

Line 11 starts the description of the corners of the tetrahedrons,

there are nine tetrahedrons and 45 (9 · 5) numbers are required

to describe them. Line 12, 4 6 2 1 0 , says that the coordi-

nates of the four (the first 4) corners are given by 6:th, 2:d, 1:th

and 0:th point (indices start at zero). To get the correct indices

I had to subtract one from the T-matrix produced by delaunay3 .

Lines 22-23 describe the type of cells. We have nine tetrahe-

drons, which are identified by number ten (see the formats-

manual for the numbers). [Image]

Suppose you want to visualize data produced by w = f(x, y, z),

and where you are using Matlab to produce the w-values. It is

better to use ndgrid instead of meshgrid as will be explained

below.

>> [X, Y, Z] = ndgrid(0:0.1:1, 10:2:40, -1:0.1:1);
>> W = X.ˆ2 + (0.05 * (Y - 10)).ˆ2 + Z.ˆ2;
>> w = W(:);
>> save -ascii wdata w % for example

To understand how the values are stored in the file we look at a

much smaller example.

>> [X, Y, Z] = ndgrid(0.1:0.1:0.3, -1:1, 20:10:40)

X(:,:,1) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000

X(:,:,2) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000
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X(:,:,3) =
0.1000 0.1000 0.1000
0.2000 0.2000 0.2000
0.3000 0.3000 0.3000

Y(:,:,1) =
-1 0 1
-1 0 1
-1 0 1

Y(:,:,2) =
-1 0 1
-1 0 1
-1 0 1

Y(:,:,3) =
-1 0 1
-1 0 1
-1 0 1

Z(:,:,1) =
20 20 20
20 20 20
20 20 20

Z(:,:,2) =
30 30 30
30 30 30
30 30 30

Z(:,:,3) =
40 40 40
40 40 40
40 40 40

So we get 3D-matrices and from the next page we see that when

W is computed, x varies faster than y which changes faster than

z. Had I used meshgrid the order would have been y, x, z, which

is less regular.
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>> [X(:), Y(:), Z(:)] % I have added blank lines
ans =

0.1000 -1.0000 20.0000 % (x1, y1, z1)
0.2000 -1.0000 20.0000 % (x2, y1, z1)
0.3000 -1.0000 20.0000 % (x3, y1, z1)

0.1000 0 20.0000 % (x1, y2, z1)
0.2000 0 20.0000 % (x2, y2, z1)
0.3000 0 20.0000 % (x3, y2, z1)

0.1000 1.0000 20.0000 % (x1, y3, z1)
0.2000 1.0000 20.0000 % (x2, y3, z1)
0.3000 1.0000 20.0000 % (x3, y3, z1)

0.1000 -1.0000 30.0000 % (x1, y1, z2)
0.2000 -1.0000 30.0000 % etc.
0.3000 -1.0000 30.0000

0.1000 0 30.0000
0.2000 0 30.0000
0.3000 0 30.0000

0.1000 1.0000 30.0000
0.2000 1.0000 30.0000
0.3000 1.0000 30.0000

0.1000 -1.0000 40.0000
0.2000 -1.0000 40.0000
0.3000 -1.0000 40.0000

0.1000 0 40.0000
0.2000 0 40.0000
0.3000 0 40.0000

0.1000 1.0000 40.0000
0.2000 1.0000 40.0000
0.3000 1.0000 40.0000
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A more general format, using XML

XML, “Extensible Markup Language”, is a language which can

be used to transport and store data. It can be used to create

markup languages, such as HTML (a language defining how text

and images should be displayed). Note that HTML was

designed to display data defining the size and position of text

for example. XML does not know about layout.

In this XML-example we define our own tags to structure

some data.

<?xml version="1.0" encoding="iso-8859-1" ?>
<!-- This is a comment. -->
<!-- The first line is an XML declaration, defining

version and encoding -->
<course>
<student>
Thomas Ericsson
</student>
<student>
Karin Andersson
</student>
</course>

XML is case sensitive, <student>Thomas Ericsson</Student>
is illegal.

In the following example we use our own attributes as well:

<?xml version="1.0" encoding="iso-8859-1" ?>
<course>
<student sex="male"> <!-- " " or ’ ’ -->
Thomas Ericsson
</student>
<student sex="female">
Karin Andersson
</student>
</course>
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This is all we need to know about XML (but one can learn more).

Here comes a simple data file, xml ex.vtr (note vtr ), in XML-

format. The line numbers are not part of the file.

The file describes a RectilinearGrid (line 2), like the following

Matlab example:

x = [-1 2]; y = [2 4]; z = [0 1 4];
[X, Y, Z] = ndgrid(x, y, z);

1 <?xml version="1.0" encoding="iso-8859-1" ?>
2 <VTKFile type="RectilinearGrid" version="0.1">
3

4 <RectilinearGrid WholeExtent="0 1 0 1 0 2">
5 <Piece Extent="0 1 0 1 0 2">
6

7 <PointData>
8 <DataArray type="Float32" Name="temperature">
9 1 2 3 4 5 6 7 8 9 10 11 12

10 </DataArray>
11 </PointData>
12

13 <Coordinates>
14 <DataArray type="Float32" NumberOfComponents="1">
15 -1 2
16 </DataArray>
17 <DataArray type="Float32" NumberOfComponents="1">
18 2 4
19 </DataArray>
20 <DataArray type="Float32" NumberOfComponents="1">
21 0 1 4
22 </DataArray>
23 </Coordinates>
24

25 </Piece>
26 </RectilinearGrid>
27 </VTKFile>

Here is an [Image].
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WholeExtent , on line 4, gives indices (corresponds to indices in

the x , y and z-arrays in the Matlab example). It is possible to

have more than one piece, so one particular Piece Extent can

be a subset of WholeExtent .

Lines 7-11 define a temperature, say. Lines 13-23 define what

corresponds to the Matlab arrays. It is possible to use addi-

tional keywords, and NumberOfComponets is not necessary (de-

fault one). The indentation is not necessary.

In the following example comes an input file for a structured

grid. Think of producing a grid using Matlab’s ndgrid , and

then perturbing the points, but not so much that cells overlap

or

intersect. In this file I have reproduced the rectilinear grid

using a structured grid (which is a waste).

1 <?xml version="1.0" encoding="iso-8859-1" ?>
2

3 <VTKFile type="StructuredGrid" version="0.1">
4 <StructuredGrid WholeExtent="0 1 0 1 0 2">
5 <Piece Extent="0 1 0 1 0 2">
6 <PointData>
7 <DataArray type="Float32" Name="temp">
8 1 2 3 4 5 6 7 8 9 10 11 12
9 </DataArray>

10 </PointData>
11

12 <!-- x varies fastest, then y and last z -->
13 <Points>
14 <DataArray type="Float32" NumberOfComponents="3">
15 -1 2 0
16 2 2 0
17 -1 4 0
18 2 4 0
19 -1 2 1
20 2 2 1
21 -1 4 1
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22 2 4 1
23 -1 2 4
24 2 2 4
25 -1 4 4
26 2 4 4
27 </DataArray>
28 </Points>
29 </Piece>
30 </StructuredGrid>
31 </VTKFile>

Note that the keyword is StructuredGrid , that

NumberOfComponents="3" and that filename ends in .vts .

One can perturb the coordinates and still have a structured grid.

If we perturb the point sufficiently we do not get a structured

grid, the points can be in arbitrary positions and we get an un-

structured grid. Here comes the house-example again, but this

time in XML-format.

1 <?xml version="1.0" encoding="iso-8859-1" ?>
2

3 <VTKFile type="UnstructuredGrid" version="0.1">
4 <UnstructuredGrid>
5 <Piece NumberOfPoints="10" NumberOfCells="9">
6

7 <PointData>
8 <DataArray type="Float32" Name="temperature">
9 11 12 13 14 15 16 17 18 19 20

10 </DataArray>
11 </PointData>
12

13 <Cells>
14 <DataArray type="Int32" Name="connectivity">
15 6 2 1 0 6 1 4 0 6 2 3 1
16 6 3 7 1 6 5 4 1 6 7 5 1
17 9 7 5 4 9 6 4 8 9 6 7 4
18 </DataArray>
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20 <DataArray type="Int32" Name="offsets">
21 4 8 12 16 20 24 28 32 36
22 </DataArray>
23

24 <DataArray type="UInt32" Name="types">
25 10 10 10 10 10 10 10 10 10
26 </DataArray>
27 </Cells>
28

29 <Points>
30 <DataArray type="Float32" NumberOfComponents="3">
31 0 0 0 2 0 0 0 1 0 2 1 0
32 0 0 1 2 0 1 0 1 1 2 1 1
33 0 0.5 1.5 2 0.5 1.5
34 </DataArray>
35 </Points>
36

37 </Piece>
38 </UnstructuredGrid>
39 </VTKFile>

The offsets -array contains the indices into the connectivity -

array for the end of each cell. For some reason the offsets start

at one (and not zero).

Finally an animation example, a cube that moves to the right

changing colour at the same time. We store a sequence of

frames, using a rectilinear format, one frame in each file. The

file animation.pvd is a main file referring to the frame-files. In

a real application we would probably have more frames (50-100

say).
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1 <?xml version="1.0"?>
2 <VTKFile type="Collection" version="0.1">
3 <Collection>
4 <DataSet timestep="1" file="1.vtr"/>
5 <DataSet timestep="2" file="2.vtr"/>
6 <DataSet timestep="3" file="3.vtr"/>
7 <DataSet timestep="4" file="4.vtr"/>
8 <DataSet timestep="5" file="5.vtr"/>
9 </Collection>

10 </VTKFile>

Here is the first frame-file, 1.vtr :

1 <?xml version="1.0" encoding="iso-8859-1" ?>
2 <VTKFile type="RectilinearGrid" version="0.1">
3

4 <RectilinearGrid WholeExtent="0 1 0 1 0 1">
5 <Piece Extent="0 1 0 1 0 1">
6 <PointData>
7 <DataArray type="Float32" Name="temp">
8 1 1 1 1 1 1 1 1
9 </DataArray>

10 </PointData>
11 <Coordinates>
12 <DataArray type="Float32"> 0 1 </DataArray>
13 <DataArray type="Float32"> 0 1 </DataArray>
14 <DataArray type="Float32"> 0 1 </DataArray>
15 </Coordinates>
16 </Piece>
17 </RectilinearGrid>
18 </VTKFile>

in the next frame frame, I change temp and the x-coordinates.

Even easier is to create files having names like a1.vtr , a2.vtr ,

a3.vtr etc. (must be a letter first) and then just mark the group

of files when using the Open-alternative in the File-menu.
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Textures

Sometimes one can increase the level of realism by using

textures. A texture is a matrix with colour values, e.g. an im-

age. In one lab you are going to simulate the Sun-Earth-Moon

system, using textures for the Earth and Moon. Textures are

common in computer games, e.g. a brick wall in a castle would

be drawn using a texture instead of drawing brick by brick. A

texture could be the result of a computation as well, a procedural

texture. Graphics cards have support for working with textures.

The default behaviour (can be changed) is that the colour of

the texture will be mixed with the colour of the pixels

in a polygon.

An image is made up by a finite set of pixels (often called texels

in this context) but using some form of interpolation OpenGL

will provide the colour in an arbitrary point in the texture:

texture(s, t). s and t are two coordinates, 0 ≤ s, t ≤ 1 (usually).

We need to map the texture onto a surface, e.g. a rectangle.

In the lab we will map a texture onto a sphere. We do this by

giving an (s, t)-pair for every (x, y, z) on the surface. So the

code may look something like

... compute s, t, x, y and z

glTexCoord2f(s, t);
glVertex3f(x, y, z);

OpenGL must be able to change the size of the texture, e.g. if

we change the size of the window. More about that later on.

To create the texture we need to know how it should be

stored. My examples assume that every texel is represented by

an RGB-triple, each colour consisting of an unsigned byte. The

datatype in OpenGL is GLubyte . In the GL-header file, gl.h , it

says typedef unsigned char GLubyte; .
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In the manual page for glTexImage2D it says:

The first element corresponds to the lower left corner of the tex-

ture image. Subsequent elements progress left-to-right through

the remaining texels in the lowest row of the texture image, and

then in successively higher rows of the texture image. The final

element corresponds to the upper right corner of the texture

image.

Here is the order if the width is 3 and the height is 2.

3 4 5
0 1 2

If we store the RGB-triples in sequence in an one-dimensional

array it would look like this.

r(0) g(0) b(0) texel 0
r(1) g(1) b(1) texel 1
r(2) g(2) b(2) texel 2
r(3) g(3) b(3) texel 3
r(4) g(4) b(4) texel 4
r(5) g(5) b(5) texel 5

The colours are stored in byte order in memory, so an array

Glubyte vec[2 * 3 * 3]; would work like this:

vec[0] <-> red(0)
vec[1] <-> green(0)
vec[2] <-> blue(0)
vec[3] <-> red(1)

etc.

Another way is to use a matrix. In C the rightmost dimension

varies fastest then comes the columns and last the rows, so like

this:
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Glubyte mat[2][3][3];

mat[0][0][0] // red
mat[0][0][1] // green
mat[0][0][2] // blue
mat[0][1][0] // red
mat[0][1][1]
mat[0][1][2]
mat[0][2][0]
mat[0][2][1]
mat[0][2][2]

mat[1][0][0] Next row
mat[1][0][1]
mat[1][0][2]
mat[1][1][0]
mat[1][1][1]
mat[1][1][2]
mat[1][2][0]
mat[1][2][1]
mat[1][2][2]

Usually we would have much larger textures than this. Small

textures may, in fact, lead to problems. It used to be that the

width and height had to be powers of two. Some implementa-

tions require even numbers and perhaps a minimum size. One

reason for this is performance. Some machines have hardware

that is far more efficient at moving data to and from the frame-

buffer if the data is aligned on two-byte, four-byte, or eight-byte

boundaries in processor memory.

The default alignment is four, and in our example one row occu-

pies 3 ·3 = 9 bytes, leading to misaligned rows (and an incorrect

image on the screen). If we pad the matrix

Glubyte tex[2][4][3];

keeping the values of height and width, it works. Another way

is to change the alignment by the following calls:
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glPixelStorei(GL_PACK_ALIGNMENT, 1);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

Here comes a small example where we construct the textures

using a function. First a routine MakeTexture which is called

from main (before glutMainLoop is called).

void MakeTexture()
{

int width = 3, height = 2;
GLubyte mat[height][width][3],

vec[3 * width * height];

// loops are an alternative :-)
mat[0][0][0] = mat[0][0][1] = mat[0][0][2] = 50;
mat[0][1][0] = mat[0][1][1] = mat[0][1][2] = 100;
mat[0][2][0] = mat[0][2][1] = mat[0][2][2] = 150;

mat[1][0][0] = mat[1][0][1] = mat[1][0][2] = 250;
mat[1][1][0] = mat[1][1][1] = mat[1][1][2] = 200;
mat[1][2][0] = mat[1][2][1] = mat[1][2][2] = 150;

vec[0] = vec[1] = vec[2] = 150;
vec[3] = vec[4] = vec[5] = 200;
vec[6] = vec[7] = vec[8] = 250;

vec[9] = vec[10] = vec[11] = 150;
vec[12] = vec[13] = vec[14] = 100;
vec[15] = vec[16] = vec[17] = 50;

// For all future pixel operations
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
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glBindTexture(GL_TEXTURE_2D, 100);
// Done for each texture
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER ,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height,

0, GL_RGB, GL_UNSIGNED_BYTE, mat);

glBindTexture(GL_TEXTURE_2D, 200);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER ,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height,

0, GL_RGB, GL_UNSIGNED_BYTE, vec);

glEnable(GL_TEXTURE_2D);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);
}

Note that we normally would not change the alignment.

glBindTexture gives the texture, to be defined, a name (a

positive integer, 100 in this case).

We do not usually have an image that contains the same num-

ber of texels as the number of pixels in the rectangle (polygon).

glTexParameteri is used to define what should happen if the

rectangle is smaller or larger than the texture.

GL TEXTUREMIN FILTER defines the function which is used when

the texture must be minified. GL TEXTUREMAGFILTER defines

the function which is used when the texture must be magnified.

273



When texture(s, t) is needed, GL NEARESTtells OpenGL to

use colour from the nearest pixel (in || ||1) in the original image.

Another choice is GL LINEAR. This uses a weighted average of

the four texture elements that are closest to the center of the

pixel being textured.

GL NEARESTis generally faster than GL LINEAR, but can

produce textured images with sharper edges because the

transition between texture elements is not as smooth.

In glTexImage2D we finally make the image data available to

the OpenGL-system. The parameters are: GL TEXTURE2D
defines the type of the texture, level specifies the level of detail.

Level 0 is the base level.

GL RGBspecifies the number of colours in the texture (we could

have written 3). width and height obvious. It is possible to

have a border around the texture, we say that its width is zero.

This GL RGBspecifies the format of the data (mat and vec con-

tain RGB-triples), and GL UNSIGNEDBYTE is the type. Finally

comes an address to the data.

glEnable enables texturing.

The last call (which is unnecessary, since I have chosen the

default value) says that the colour of the textures should be

mixed with the colour of the object.

So the resulting red (ambient + diffuse + specular) component,

for example, in a pixel becomes rs · rt, where rs is the red

component originating from the ordinary shading computation

and rt is the red component from the texture.

In the Display -routine below we bind the two textures to two

rectangles. In this simple program lighting is not used, so the

textures will modulate the colour white, set by

glColor3f(1, 1, 1); .
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The call of glBindTexture picks the 100-texture. The pairs

of calls to glTexCoord2f and glVertex3f defines the mapping

between image and rectangle. Note that we can deform the im-

age by changing the mapping.

void Display()
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1, 1, 1);

glBindTexture(GL_TEXTURE_2D, 100);
glBegin(GL_POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(0.0, 0.0, 0.5);
glTexCoord2f(1.0, 0.0); glVertex3f(1.0, 0.0, 0.5);
glTexCoord2f(1.0, 1.0); glVertex3f(1.0, 1.0, 0.5);
glTexCoord2f(0.0, 1.0); glVertex3f(0.0, 1.0, 0.5);

glEnd();

glBindTexture(GL_TEXTURE_2D, 200);
glBegin(GL_POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(0.5, 1.1, 0.5);
glTexCoord2f(1.0, 0.0); glVertex3f(2.0, 1.1, 0.5);
glTexCoord2f(1.0, 1.0); glVertex3f(2.0, 2.0, 0.5);
glTexCoord2f(0.0, 1.0); glVertex3f(0.5, 2.0, 0.5);

glEnd();

glFlush();
}

Here is part of the window (since I used grayscale in the images

it is easy to interpret the result). The origin is in the lower left

corner of the leftmost black rectangle.
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Let us try a harder example. We are going to wrap an OpenGL-

logo on a cylinder. The cylinder is symmetric around the y-

axis. An additional problem is that we are going to use light, so

the program has to compute normals. Just to see that I have

produced the image in the correct way the program puts the

image on a rectangle as well. I used xv to transform the image,

from gif to PBM/PGM/PPM (ascii) (as it says in xv ). I named

the file opengl.ppm and the first lines look like:

P3
# CREATOR: XV version 3.10a-jumboFix+Enh of 20050501
220 97
255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

220 97 is the dimension (which I could have read in). It is hard-

coded in the code. As it turns out I have to reverse the rows

when reading the lines (or the logo will be upside-down). First

comes the resulting image and then parts of the program.
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void MakeTexture()
{

int r, g, b, row, col, width = 220, height = 97;
char c;
GLubyte logo[height][width][3];
FILE * fp;

if ((fp = fopen("opengl.ppm", "r")) == NULL) {
printf("Problems opening opengl.ppm.\n");
exit(1);

}

row = 0;
do { // skip the header

fscanf(fp, "%c", &c);
if ( c == ’\n’ ) row++;

} while ( row < 4 );
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for (row = height - 1; row >= 0; row--) // reverse
for (col = 0; col < width; col++) {

fscanf(fp, "%d %d %d", &r, &g, &b);
logo[row][col][0] = r;
logo[row][col][1] = g;
logo[row][col][2] = b;

}

fclose(fp);

glBindTexture(GL_TEXTURE_2D, 100);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER ,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height,

0, GL_RGB, GL_UNSIGNED_BYTE, logo);
glEnable(GL_TEXTURE_2D);

}

The following routine is called from Display (as is a routine

drawing a coordinate system).

void CreateObject()
{

int k;
double r, c, s, phi, d_phi, TWO_PI = 2.0 * M_PI, seg;
float white_rc[] = {1, 1, 1, 1}, spec_exp = 100;

glMaterialfv(GL_FRONT, GL_AMBIENT, white_rc);
glMaterialfv(GL_FRONT, GL_DIFFUSE, white_rc);
glMaterialfv(GL_FRONT, GL_SPECULAR, white_rc);
glMaterialf (GL_FRONT, GL_SHININESS, spec_exp);

glBindTexture(GL_TEXTURE_2D, 100);
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// Draw a rectangle
glNormal3f(1, 0, 0); // Note
glBegin(GL_POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(0.0, 1.5, 2.0);
glTexCoord2f(1.0, 0.0); glVertex3f(0.0, 1.5, -2.0);
glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 3.5, -2.0);
glTexCoord2f(0.0, 1.0); glVertex3f(0.0, 3.5, 2.0);

glEnd();

// Draw a cylinder
seg = 10;
d_phi = TWO_PI / seg;
r = 2;

glBegin(GL_QUAD_STRIP);
for (k = 0; k <= seg; k++) {

phi = k * d_phi;
c = cos(phi);
s = sin(phi);
glNormal3f(s, 0, c); // Note
c * = r;
s * = r;
glTexCoord2f(k / seg, 0.0); glVertex3f(s, 0, c);
glTexCoord2f(k / seg, 1.0); glVertex3f(s, 2, c);

}
glEnd();

}

In order to understand the last loop we first read the manual

page for glBegin . It says the following about GL QUADSTRIP:

GL QUADSTRIP Draws a connected group of quadrilaterals. One

quadrilateral is defined for each pair of vertices presented after

the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadri-

lateral n. N/2-1 quadrilaterals are drawn. ...
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So if we have vertices numbered 1, 2, 3, etc., this is the way they

are used to define the quadrilaterals.

2 4 6
o-------o-------o---
| | |
| | |
o-------o-------o---
1 3 5

So the first quadrilateral (n = 1) is defined by vertices 1, 2, 4, 3

(2n-1, 2n, 2n+2, and 2n+1).

Now to the cylinder. [sinϕ, 0, cosϕ] describes a circle in the

x-z-plane. [sinϕ, 2, cosϕ] is another circle at y = 2. Since we

are alternating between y = 0 and y = 2, we get the correct

order for using GL QUADSTRIP.
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When textures are used in computer games, for example, it may

be interesting to repeat a texture. To put a wallpaper on a wall

it may be sufficient to define a small part of the pattern. The

repetition happens automatically if we use texture coordinates

outside [0, 1], texture(1.2, 3.4) becomes texture(0.2, 0.4) (leaving

the fractions). To change this behaviour we can ask for clamping

instead; using one image but stretching the pixels on the edges.

The following code

glBindTexture(GL_TEXTURE_2D, 100);
glBegin(GL_POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(0.0, 0.0, 0.5);
glTexCoord2f(3.0, 0.0); glVertex3f(1.0, 0.0, 0.5);
glTexCoord2f(3.0, 2.0); glVertex3f(1.0, 1.0, 0.5);
glTexCoord2f(0.0, 2.0); glVertex3f(0.0, 1.0, 0.5);

glEnd();

will produce two image-rows with three image-columns (so our

original image occurs six times).
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Another way (mipmapping) to solve the minification problem is

to let OpenGL build a sequence of images in decreasing sizes.

This must be used in the planet-lab, otherwise the Moon-texture

will flicker (it looks like small electric flashes).

“mip” is an acronym for multum in parvo, which is Latin for

something like “much in little”.

This is what it may look like in the lab:

glBindTexture(GL_TEXTURE_2D, 100);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

// New
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER ,

GL_LINEAR_MIPMAP_NEAREST);

// You have to set width, height and texture
gluBuild2DMipmaps ( GL_TEXTURE_2D, GL_RGB,

width, height,
GL_RGB, GL_UNSIGNED_BYTE,
texture );

GL LINEAR MIPMAPNEAREST(looks best, I think) picks the

mipmap that most closely matches the size of the pixel being

textured and uses the GL LINEAR criterion to produce a texture

value.
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