

Computer graphics concepts, such as transformations and shading models, necessary to use and understand the graphics software. A sufficient amount of C to finish the the computer assignments.

Organization

Lectures and computer assignments. The assignments, which make up a substantial part of the course, consist of several problems where the student will use Matlab, OpenGL and ParaView to solve different visualization problems.
The problems are fetched from numerical analysis and applied mathematics.

The assignments vary in difficulty. Some are routine tasks (would take me minutes) while others require a bit of programming.

Literature

Lecture notes, articles and manuals.
Reference literature: F S Hill, S M Kelley, Computer Graphics using OpenGL, 3d ed., Pearson, 2008 or Edward Angel, Interactive Computer Graphics, A Top-Down Approach with OpenGL, Pearson Education 2008, 5rd ed.

The topic of these titles are not strictly visualization, they are standard computer graphics books.
See http: //www.opengl.org/documentation/books for more titles. On the next page I will list more literature.

Examination
Compulsory computer assignments and take-home exam.
We have two lectures and two labs per week. See the schedule on www. Show me your solutions to the assignments at lab-times. You do not have to hand in any reports.

Some typical visualization problems

The primary goal of Scientific Visualization, is to provide insight into scientific data. We often need a deeper understanding of a phenomenon, need to draw conclusions, make predictions. (Computer) graphics can (often) give us the help we need, after all:
"An image says more than a thousand words (or numbers)"
Scientific visualization usually has a natural physical or mathematical representation or background. We may want to visualize the flow of air around aircraft or the roots of an equation. When visualizing the data, we would probably make an outline of the aircraft and draw a coordinate system for our roots. [Image]

A related area is information visualization. It is less common with a physical background and it may not even be important. A classical example is Harry Beck's map of the London underground (1931). [Image]
See http://en.wikipedia.org/wiki/Harryßeck for example.
Previous maps based on the actual layout, the geography, of the underground had not worked well. Beck's map, on the other hand, leaves the physical reality behind and shows the order of stations, where lines cross etc. It captures what is essential for the traveler.

Another example is given by business graphics (pie charts etc.), e.g. visualizing the number of admitted and graduated students for different programmes at Chalmers/GU.

More books from my shelf

Here comes a list of books which I collected with this course in mind. For other books, see the references on the home page. Some E-books are available via the Chalmers library home page. Finally there are man-pages and PDF-manuals.

- S. K. Card, J. D. Mackinlay, B. Shneiderman, Readings in Information Visualization: Using Vision to Think Morgan Kaufmann, 1999.
- C. D. Hansen, C. R. Johnson (eds.), Visualization Handbook av Johnson, Academic Press, 2004.
- R. Spence, Information Visualization, Addison-Wesle, 2001.
- D. Thompson, J. Braun, R. Ford, OpenDX: Paths to Visualization, 2nd ed. 2004, http://www.vizsolutions.com
- D. A. Norman, The Design of Everyday Things, Basic Books, 2002.
- C. Ware, Information Visualization Perception for Design, Elsevier, 2004.
- M. K. Agoston, Computer Graphics \& Geometric Modeling, Implementation and Algorithms, Springer, 2004. There is one Computer Graphics and Geometric Modeling: Mathematics, which I do not have.
- S. R Buss, 3D Computer Graphics: A Mathematical Introduction with OpenGL, Cambridge UP, 2003.
- H. C. Hege, K. Polthier (eds.), Mathematical Visualization, Algorithms, Applications and Numerics, Springer, 1998.
- J. O'Rourke, Computational Geometry In C, Cambridge UP, 1998.
- D. F. Rogers, An Introduction to Nurbs: With Historical Perspective Morgan Kaufmann, 2000.
- A. Unwin, M. Theus, H. Hofmann, Graphics of Large Datasets, Springer, 2006. To the math-library.

This course will deal with scientific visualization.
You have already dealt with this in previous classes. Plotting the graph of a scalar function of a scalar variable, plot (x, y) provides almost a complete understanding of the function.

There are however harder visualization problems, where we only get a partial understanding, e.g. looking at $w=f(x, y, z)$, given a function f. [Image] Understanding $w=f(x, y, z, t)$ completely may be hopeless.

Another cause of problems may be the amount of data.
Computers are fast, and when a program has executed a few hours the output can be enormous, several Gbytes.
To visualize this amount of data may be difficult, but a thousand numbers may be hard enough.

It is not always easy to say what is a meaningful image. Tastes differ as does the ability to interpret 3D-plots, for example. So this course will show different ways of visualizing data, but there is rarely a unique solution to a visualization problem (or to the assignments).

Use your imagination. If one plot is not that helpful there may be another, better, way to visualize the data. Trial and error may be a successful method.

An example, the cosine function

In Matlab it is possible to compute $\cos z$ where z is a complex number. Suppose we would like to understand how this function behaves. Since we know a lot of mathematics we can easily list several properties.

Let a, b be real numbers, then

$$
\begin{gathered}
\cos (a+i b)=\frac{e^{i(a+i b)}+e^{-i(a+i b)}}{2}=\cdots= \\
\frac{\left(e^{b}+e^{-b}\right) \cos a}{2}-i \frac{\left(e^{b}-e^{-b}\right) \sin a}{2}
\end{gathered}
$$

If $z \in C$ then the following is true, for example:

$$
\cos (z+2 \pi)=\cos z, \quad \cos z=\cos (-z), \quad \cos \bar{z}=\overline{\cos z}
$$

So, it is sufficient to study $0 \leq \operatorname{Re}(z) \leq 2 \pi$ and $\operatorname{Im}(z) \geq 0$.
For large b

$$
|\cos z| \approx \frac{e^{b}|\cos a-i \sin a|}{2}=\frac{e^{b}}{2}
$$

In a real application it may not be possible to use mathematics this way. Perhaps the function is too complicated, or perhaps worse, we may not have an expression for the function. We may have to rely on a computer program that returns $f(z)$ for a given z.

The visualization of $\cos z$ is still a bit hard since we are dealing with four real dimensions. Here are a few alternatives (not all good).

A similar idea is to plot $|\cos z|$ as before but to let the colour show the argument, so if $\cos z=r e^{i \varphi}$ we use colour for φ and height for $r=|\cos z|$.

The obvious first try, plot $|\cos z|$ as a function of $(\operatorname{Re}(z), \operatorname{Im}(z))$.

In Matlab this would be in colour, where the colour corresponds to $|\cos z|$.

It captures some of the behaviour: periodicity, what happens for large $\operatorname{Im}(z)$. We have lost the sign information, and introduced corners (like $x \rightarrow|x|$).
On the other hand, this image may be exactly what we need. It is possible to use more fancy graphics, no grid but a smooth surface using light etc. [Image]

The next image was done with Matlab's cplxmap-command. It plots $\operatorname{Re}(\cos (z))$ as a function of $(\operatorname{Re}(z), \operatorname{Im}(z))$. The colour is used for $\operatorname{Im}(\cos (z))$. I have added a color bar. I have a problem with this plot. The shape of the surface dominates over the colour information.

In the next plot we do not loose any space-dimension. A grid in the $(\operatorname{Re}(z), \operatorname{Im}(z))$-plane is mapped onto $(\operatorname{Re}(\cos z), \operatorname{Im}(\cos z))$. We see the periodicity in a new way. Lines with constant imaginarypart seem to be mapped onto closed curves.

The plot is not quite truthful. Matlab tries to fill out the window, which may cause different scaling between the axes (a circle may look like an ellipse). After correction, axis equal, we see some new features.

It seems like we have right angles between the curves in the right diagram. So are the angles in the z-grid preserved? Yes. Those who have read complex analysis may recognize this as a special case of a more general theorem. cos is a conformal mapping and hence preserves angles (whenever the derivative is non-zero).

One drawback with this plot is that is hard to know what line corresponds to which $\cos z$-curve. Perhaps we could use some interaction with the mouse, clicking on a line in the left window would make the corresponding curve in the right window blink, change colour or something.

picking

We end with two images where we plot $\operatorname{Re}(\cos z)$ and $\operatorname{Im}(\cos z)$ in two windows or together in one. [Image]. Several other alternatives remain.

Starting Matlab
> matlab -help

Here is an edited list:

-h\|-help	- Display arguments.
-nodisplay	- Do not display any x commands. The
	MATLAB desktop will not be started.
	However, unless
	-nojvm is also provided the Java
-nosplash	virtual machine will be started.
	- Do not display the splash screen
-nodesktop	during startup.
	- Do not start the MATLAB desktop.
	Use the current terminal for
	commands. The Java virtual
-nojvm	machine will be started.
	- Shut off all Java support by not
	starting the Java virtual machine.
	In particular the MATLAB
	desktop will not be started.

I use matlab -nodesktop

To get short help, type help command For more help use the GUI (Graphical User Interface) or doc command There are thick PDF-manuals available (through the GUI) as well. Start Help and click on MATLAB, choose Printable (PDF) Documentation. The basic graphics manual is 679 pages and the 3Dmanual an additional 212 pages.

For this to work you have to tell MATLAB what browser you are using. Netscape is default (and we do not have it). This is one way to fix it (not necessary in Matlab 2009b):

Now to another problem, mesh generation in 3D. The difficulty is not the number of dimensions this time, but the huge amount of data.

Discretize (divide into small volume elements) the air in the box and outside the aircraft. Mesh generation (using m3d, an ITM-project, Swedish Institute of Applied Mathematics) on one RS6000 processor:
wed may 29 12:54:44 metdst 1996 So this is old stuff
thu may 30 07:05:53 metdst 1996
183463307 may $213: 46$ s2000r.mu
tetrahedrons in structured mesh: 4520413
tetrahedrons in unstructured mesh: 4811373
Does the program work? Does it refine the mesh it the right places? Make nice images for the annual report (and for those supplying the money). [Image] (several).

There are of course many other visulization problems. Here are a few [Image] showing a simulation of an open cavity problem. Others will turn up on the lectures or in the labs.

11

cd

```
mkdir matlab
cd matlab
cp /chalmers/sw/sup/matlab-2008b/toolbox/
    local/docopt.m. (I have broken the line)
edit docopt.m and change line 77 in the file
        doccmd = 'netscape';
to
        doccmd = 'mozilla'; or
        doccmd = 'firefox';
```


Programming in Matlab

- A full programming language, if, for,...
- The basic datatype, a double precision matrix in several dimensions. In new Matlab-versions there are more types, such as single precision and integers.
- No type declarations. variables are created when needed.
- Interactive. Partially interpreted.
- New programming style; vector based.
- Object oriented (to some extent).
- Easy to use graphics.
- Can add toolboxes and compiled code.

A tutorial is available. Look under MATLABs help. You can also see the Matlab-book by Jönsson (Swedish).
One should learn to work with vectors and matrices instead of using loops and elements. Shorter, faster and easier to read. It is convenient to write the labs as m-files (instead of typing commands and using the history mechanism).

	Index vectors ```>> v = 0.1 + (1:7) v = 1.1 2.1 3.1 4.1 4.1 5.1 >> v(1:3:7) % 1:3:7 = [1 4 7] ans = 1.1 4.1 7.1 >> M = magic(5) M = 17 >> M(:, 2) ans = 24 5 12 18 >> M([2 5], :) ans = 23 >> M([2 5], [2 4]) ans = 5```
end is practical in constructions like these: ```>> M(:, end) ans = 15 16 22 3 >> M(end, :) ans = 11 18 25 2 % >> M(end, end) ans = 9 >> M([1 3], [end-3:end]) ans = 24``` An alternative is of course:	A bit more original is: $\gg M\left(:,\left[\begin{array}{lll} 1 & 1 & 2 \end{array}\right]\right)$ ans = Is used by meshgrid Can be computed this way:

[i, j, k] = find. . . does not do anything useful in this case. Here is an alternative using loops:

```
i = []; j = []; k = [];
for r = 1:size(A, 3)
    [row, col] = find(A(:, :, r) > 3);
    i = [i; row];
    j = [j; col];
    k = [k; r * ones(size(row))];
end
ind = [i, j, k]
ind =
\begin{tabular}{lll}
2 & 1 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2 \\
2 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 2
\end{tabular}
v = [];
for i = 1:6
    v(i) = A(ind(i, 1), ind(i, 2), ind(i, 3));
end
v
>> v
v =
    3.1000}4.4.1000 5.1000 7.1000 6.1000 8.1000 
```

 42
 Cell arrays
 An array where the elements can be of different types:

$$
\gg c\{1,1\}=\operatorname{sqrt}(2) ;
$$

$$
\gg c\{1,2\}=[12 ; 34] ;
$$

$$
\text { >> } c\{2,1\}=\text { 'Hejsan'; }
$$

$$
\text { >> } c\{2,2\}=1: 5 ;
$$

>> c

$$
c=
$$

$$
[1.4142 e+00] \quad[2 \times 2 \text { double] }
$$

'Hejsan' [1×5 double]

$$
\gg c\{1,2\}(2,2)
$$

$$
\text { ans }=
$$

>> celldisp(c)

$$
c\{1,1\}=
$$

$$
1.4142 \mathrm{e}+00
$$

$$
c\{2,1\}=
$$

Hejsan

$$
c\{1,2\}=
$$

$$
\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}
$$

$$
c\{2,2\}=
$$

$$
\begin{array}{rlrlr}
2\} & = & \\
1 & 3 & 4 & 5
\end{array}
$$

$$
\gg c c=\{1: 3, \text { 'hej'; c, eye (2) }\}
$$

$$
c c=
$$

[1×3 double] 'hej'

$$
\{2 \times 2 \text { cell }\} \quad[2 \times 2 \text { double }]
$$

$$
\gg \operatorname{cc}\{2,1\}\{1,2\}(1,:)
$$

$$
\text { ans }=
$$

$$
1 \quad 2
$$

>> $A=\left[\begin{array}{llllll}1 & -1 & 1 ; & 1 & 3 ; & 5\end{array}\right]$
A $=$
$\begin{array}{rrr}1 & -1 & 1 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ b=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right],\end{array}$
>> b = [lllll,
b =

0

1
0
$\gg x=A \backslash b$
$\mathbf{x}=$
-0.9167
-0.1667
0.7500
>> $r=b-A * x$
$r=$
1.0e-15 *
0.1110

0
0
0

```
>> C = cell(2)
```

$\mathrm{C}=$
[] []
[] []

Another data structure where we can store elements of different types is the struct (record, post in Sw). We name the element with a string and not an index.

```
>> s = struct('type', 'circle',
                    'geom', struct('c', [1 3], 'r', 1.2), ..
                            'color', [1 0 0])
s =
    type: 'circle'
    geom: [1x1 struct]
    color: [1 0 0]
>> s.type
ans =
circle
>> s.geom
ans =
    c: [1 3]
    r: 1.2000e+00
>> s.geom.c
ans =
>> s.geom.c(2)
ans =
    3
    3
```

```
>> s.color(2) = 1;
>> s.color
ans =
\begin{tabular}{lll}
1 & 1 & 0
\end{tabular}
```

One can have arrays of structs (of the same kind)

```
>> v(1).fn = 'Thomas';
>> v(1).ln = 'Ericsson';
>> v(2).fn = 'Anders';
>> v(2).ln = 'Andersson';
>> v(3).new = 'oops' % a new member
v =
1x3 struct array with fields:
    fn
    ln
    new
>> v(1).new % all the structs in the array
    % get this new member
ans =
[]
```

$\begin{array}{rlrrrrr}\gg s+0 & \% & \text { double(s) } & \text { works as well } \\ \text { ans }= \\ 65 & 97 & 98 & 99 & 68 & 100\end{array}$
>> whos
Name Size Bytes Class
s $1 \times 6 \quad 12$ char array
Grand total is 6 elements using 12 bytes
$>s=[s ; s(6:-1: 1)]$
$\mathrm{S}=$
AabcDd
dDcbaA
>> s = 'sirapiparis';
>> palin $=$ all (s == $s(e n d:-1: 1)$)
palin $=$
1
$\gg \mathrm{s}(1)={ }^{\prime} \mathrm{a}^{\prime} ;$
>> palin = all(s == s(end:-1:1))
palin =
0
$\gg \mathbf{s} 1=$ ' ABC ';
>> s2 = ' 12';
>> s1 + s2
ans $=$
$97115 \quad 117$
>> char (ans)
ans $=$
asu

There are if-statements etc.

```
>> a = 2.25;
```

>> if $a>1$
disp('a > 1')
else
disp('a <= 1')
end
a >1
$\gg \mathrm{a}=0.2$;
>> if a > 1
disp('a > 1^{\prime})
else
disp('a <= 1')
end
a $<=1$
\gg help if $\%$ for elseif etc.
$\& \&,| |$ for lazy scalar and, or.
>> $a=2.25$;
>> if a, disp('****'), end

$\gg a=0$;
>> if a, disp('****'), end

Handling characters

```
>> s = 'AabcDd'
```

s =
AabcDd

Tuning Matlab programs

The timings below are for Matlab R2009b. Matlab 6.5, and later versions, has a JIT-accelerator (Just In Time) which speeds up for-loops etc.

- Use the builtin compiled routines.

The Matlab-language is interpreted.

- Work on the matrix/vector-level, not on element-level. "New" programming style.
- Take care when using the dynamic memory allocation. Preallocate.

Some examples:

$$
\% \text { Matrix sum. } n=3000 \text { in all examples }
$$

```
for j = 1:n
        for k = 1:n
            A(j, k) = A(j, k) + B(j, k);
        end
    end
```

Takes 0.11 s .
$A=A+B ;$ requires 0.018 s.

```
clear A
for k = 1:n
    A(:, k) = x; % could have different arrays
end
```

Takes 96 seconds.

```
A = zeros(n); % preallocate
    for k = 1:n
        A(:, k) = x
end
```

Takes 0.05 s .
W is a 10000×15-matrix and \mathbf{x} is a column vector having 10000 elements.

```
Y = W * W' * x; y = W * (W' * x);
```

Takes 2.1 s
0.0006 s

Note that it may be impossible just to form $\mathbf{w} * \mathbf{W}^{\prime}$ even though $y=W *\left(W^{\prime} * x\right)$; gives no problem.

M-files and functions

- For short tests we may type commands by hand and use the history mechanism, arrow keys etc. to modify statements. Possible to use emacs-commands on the command line. Ctrl-a beginning of line, Ctrl-e end of line, Ctrl-d remove character, Ctrl-k kill (remove) the rest of the line etc. Can match the beginning of a string: im \uparrow press uparrow, matches line starting with im.
For those using the GUI there is a Command History window, as well.
- For longer tests (assignments) we create an m-file script (or a function) with an editor (e.g. Matlab's own). If the filename is name.m we execute the file by typing name in Matlab.
Scripts do not take any parameters. Matlab just reads from the file instead of reading commands from the command window. Sometimes functions are more useful or necessary. Here is a simple example. We disregard the fact that Matlab has a function for computing the median. We store the function on the file median.m If the name of the function and file are different you have to use the filename to invoke the function.
function med $=$ median (v)
\% med $=$ median (v) computes the median of
\% the elements in the vector v

```
\(\mathrm{n}=\) length(v); \(\quad\) \% number of elements in \(v\)
if \(n=0\)
    med \(=0\);
else
    s \(=\) sort (v); \(\quad\) \% is local to the function
    if \(\operatorname{rem}(n, 2)=0\)
            \(\mathrm{n} 2=\mathrm{n} / 2\);
            med \(=0.5 *(s(n 2)+s(n 2+1)) ;\) \% even
    else
            med \(=s((n+1) / 2) ; \quad\) \% odd
        end
    end
```

 51
 Let us look at the first three types. An anonymous function is created by

```
fhandle = @(argumentlist) expr
```

expr is a simple expression and @ a so-called function handle.

```
>> f = @(x) x .* exp (-x)
f =
    @ (x) x .* exp (-x)
>> f([-1 0 1] )
ans =
    -2.7183 0 0.3679
>> quadl(f, 0, 1) % integrate
ans =
    0.2642
>> sin(f(2))
ans =
    0.2674
% A cell array of functions.
% Be careful with blanks. See the manual
>> funcs = {@(x)x.*exp (-x), @ (x)x.*sin(-x), ...
                                    @ (x)x.*\operatorname{cos (-x) };}
>> for k=1:3, quadl(funcs{k}, 0, 1), end
ans =
    0.2642
ans =
    -0.3012
ans =
    0.3818
```

We can think of the parameters as being passed by "call by value", but "call by reference" is used for variables that are not changed. We could have written

```
v = sort(v); % replace v
med = 0.5 * (v(n2) + v(n2 + 1)); % even
```

This does not change the array in the calling program. The variables $n, n 2$, s and med are local to the function. We give the function a value by giving the return-variable, med, a value.

```
>> help median
    med = median(v) computes the median of
        the elements in the vector v
>> v = randn (1, 4)
v =
    -1.8092 -0.6337 -0.4533 0.2840
>> median (v)
ans =
    -0.5435
>> median([v, 5])
ans =
    -0.4533
```

There are several types of functions:

- Anonymous functions (short function not stored in a file)
- Subfunctions (several functions in one file)
- Nested functions (functions inside other functions)
- Overloaded functions (polymorphic functions)
- Private functions (functions in dir_name/private are only visible to functions in dir_name)

```
>> comm = @(A, B) A * B - B * A;
>> C = [1 2; 3 4];
>> comm(C, C')
ans =
    -5
    -3 5
% Using "external" variables
>> a = 10;
>> mul_10=@(z) a * z
mul_10 =
    @(z) a * z
>> mul_10(2)
ans =
    20
>> a = 20; % does not change the function
>> mul_10(2)
ans =
    20
```

One disadvantage with ordinary m-file functions is that they tend to produce many files. It is possible to put several functions in one file. The first function in the file, the primary function, is visible from outside, but the functions coming after, the subfunctions, are only visible to the primary function or to other subfunctions in the same file. So something like this:

```
function w = f(x, y, z)
    w = x + g(z);
function s = g(t)
    ...
    s}=
```

One can choose to ignore output arguments (new in Matlab R2009b):

```
>> [~, vv] = func(F, h, g)
vv =
    10
>> [uu, ~ ] = func(F, h, g)
uu =
    3 8
```

It is also possible to ignore input arguments (will come later).
It is possible to, inside the function, see the number of arguments.
function [out1, out2, out3] = func(in1, in2, in3, in4 n_in_arg = nargin;
n_out_arg = nargout;
if n_in_arg $==4$
...
elseif n_in_arg == 3
etc.

It is possible to have optional input (output) parameters, so the number of parameters of a function may change between calls. See the documentation for varargin and varargout for details.

Another alternative is to use nested functions,

```
function w = f(x, y, z)
    w = x + g(z);
    ...
    function s = g(t)
        s = ..
    ...
    end % necessary
end % necessary
```

Read more in the manual about scope for variables and functions.
A function can take zero or more input arguments and return zero or more output arguments.

```
function [b_plus_c, sum_A] = func(A, b, c)
    b_plus_c = b + c;
    sum_A = sum(A(:));
>> F = [ll 2;3 4]
F =
    1 2
>> h = [ll 3];g=[[2 5];
>> [uu, vv] = func(F, h, g)
uu =
        3
vv =
    10
>> z = func(F, h, g)
z=3 8
```

Global variables

Variables in functions are local to the function. We use the parameters to communicate with other routines. Another way is to use global variables.
\gg global $a \operatorname{b}$ \% In Matlab, or the calling routine
>> type func
function func
global a b \quad A matching global declaration
$a=a+1$;
$\mathrm{b}=\mathrm{b} * 10$;
$\rightarrow>\mathrm{a}=1 ; \mathrm{b}=2$;
\gg func
>> a
a $=$
2
>> b
b =
20

Persistent variables

A variable which is local to a function does not keep its value between calls. To make it keep the value, we use a persistent declaration. A persistent variable is initialised to the empty matrix.

```
>> type pers
function num_calls = pers
    persistent k % persistent num_calls does not work
    if isempty(k)
        k = 0;
    end
    k = k + 1;
    num_calls = k
```

>> pers
ans $=$
>> pers
ans $=$
2
>> pers
ans $=$
3
>> clear pers
>> pers
ans =

The clear-command takes several parameters. Here are a few.
For a full description, see the documentation.
clear removes all variables from the workspace.
clear variablesdoes the same thing.
clear global removes all global variables
clear functionsremoves all compiled M- and MEX-functions.
clear all removes all variables, globals, functions and MEX links.
clear var1 var2 ... clears the variables specified.
clear fun clears the function specified.
Clear does not affect the amount of memory allocated to the Matlab process under unix.

A few tips

Debugging: there is a Matlab-debugger, but it is usually sufficient to remove semi-colons (to print variables).
The keyboard-command is convenient when we want to stop in functions. Resume execution by typing the letters return.

```
>> y = cos(0)
y =
    1
>> cos = 8
cos =
    8
>> y = cos(0)
??? Subscript indices must either be real
    positive integers or logicals.
>> which cos
cos is a variable. % checks variable first
            % then function
>> clear cos % remove definition
>> which cos
built-in (/chalmers/sw/ ... /cos) % double method
% Even more amusing
>> cos = 1:4
cos=
    1 2 3
>> cos(1)
ans =
```

59

Some commands have been written in C while others are m-files,

```
>> type cos
cos is a built-in function.
>> which ls
/chalmers/sw/sup/matlab-7.1/toolbox/matlab/generalk.m
>> type ls % lists the m-file (not included)
>> dir % (DOS-command) faster
```

More unix-like stuff. cd, path etc. matlab and VIS are directories.

A good sequence is:
figure(1) \% create otherwise put on top
hold off
plot...
hold on
plot ...
figure(2) \% makes a new figure window

plot (\mathbf{x}, y) works as expected even if \mathbf{x} is a row vector and y is a column vector (or vice-versa).

If \mathbf{x} is a vector and \mathbf{Y} is a matrix, then $\operatorname{plot}(\mathbf{x}, \mathrm{Y})$ is equivalent to plotting plot(x, $Y(:, 1)), \ldots, \operatorname{plot}(x, Y(:, ~ e n d))$ or plot (x, $Y(1,:)), \ldots, \operatorname{plot}(x, Y(e n d,:))$ whichever lines up. If the matrix is quadratic, the columns are used.
\mathbf{x} cannot be a scalar.
It is analogous for plot (X, y).
$\operatorname{plot}(X, Y)$ where also X is a matrix plots $Y(:, k)$ as a function of $\mathbf{x}(:, k)$.

Do not forget the x-values. plot (y) is equivalent to plot (1:length (y), y).
plot (Y) is equivalent to $\operatorname{plot}(1: m, Y(:, 1)), \ldots$, plot(1:m, $Y(:, ~ e n d))$ where $m=\operatorname{size}(Y, 1)$.

Do not use screen dumps (raster images, gif, jpeg or similar) for simple plots (necessary of you add light).
>> $\log \log (x, y)$
>> grid on

One can plot with different styles, e.g. plot ($\mathbf{x}, \mathrm{y}, \mathrm{r} \mathrm{r}^{\prime}$), plot with a red dotted line. Type help plot for details.
$\gg x=0: 0.1: 10$;
>> $y=3.52441 * \exp (2 * x)$;
\gg semilogy (x, y)
>> grid on
>> print -deps semilogy.eps
\% head semilogy.eps In unix
\%!PS-Adobe-2.0 EPSF-1. 2
$\%$ Creator: MATLAB, The Mathworks, Inc.
\%\%Title: semilogy.eps
\%\%CreationDate: 09/01/ 0 22:34:29
$\% \%$ DocumentNeededFonts: Helvetica
$\%$ DocumentProcessColors: Cyan Magenta Yellow Black
$\%$ Pages: 1
$\%$ BoundingBox: $66210548592<-$ NOTE
$\% \%$ EndComments

Two y-axes.
$\gg x=$ linspace $(0,5)$;
>> $y=\exp (x)$;
>> plotyy (x, y, x, y, 'plot', 'semilogy')
>> grid on

Polar coordinates and subplot
theta $=$ linspace (0, 2 * pi);
subplot (2, 2, 1) \% 2 x 2 -matrix of plots
polar(theta, theta. $\left.{ }^{\wedge} 2\right)$
xlabel('polar(\theta, \theta^2)')
subplot (2, 2, 2)
polar(theta, cos(theta))
xlabel('polar(\theta, cos \backslash theta)')
subplot (2, 2, 3)
polar(theta, cos(theta).^2)
xlabel('polar(\theta, $\cos ^{\wedge} 2 \backslash$ theta)')
subplot (2, 2, 4)
polar(theta, sin(theta) *cos(theta))
xlabel('polar(\theta, sin\theta cos\theta)')

$\operatorname{polar}\left(\theta, \theta^{2}\right)$

polar $\left(\theta, \cos ^{2} \theta\right)$

polar($(, \cos \theta)$

polar $(\theta, \sin \theta \cos \theta)$

70

Matlab understands simple $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{E} \mathrm{T}_{\mathrm{E}} \mathrm{X}$-expressions such as:
Greek letters: \alpha, \beta, ..., \Gamma, \Xi
Index: \alpha_2^3, \alpha^\{m+n\}
Integrals: \int_a^b $f(x) d x$

Here is the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-code:

$$
\begin{gathered}
\alpha, \beta, \ldots, \Gamma, \Xi \\
\alpha_{2}^{3}, \alpha^{m+n} \\
\int_{a}^{b} f(x) d x
\end{gathered}
$$

Matlab cannot cope with more complicate expressions, such as:
\backslash sum_\{ $k=0\}^{\wedge}\{n-1\} \backslash a x^{\wedge} k=a \backslash \backslash f r a c\left\{x^{\wedge} n-1\right\}\{x-1\}, \backslash x \backslash n e 1$

$$
\sum_{k=0}^{n-1} a x^{k}=a \frac{x^{n}-1}{x-1}, x \neq 1
$$

unless ones changes the string's Interpreterproperty to latex and surrounds the string with \$ \$.
It does not always seem to work properly though, I had problems with minus-signs, for example.
text and gtext can be used to place text in a plot (as can the menu in the plot window). ginput can be used to read the position of the mouse.

Here are two other ways to use subplot
subplot(2, 2, [1 3]), title('subplot(2, 2, [1 3])')
subplot (2, 2, 2), title('subplot(2, 2, 2')
subplot ($2,2,4$), title('subplot ($2,2,4$)')

subplot(2, 2, [1 2]), title('subplot(2, 2, [1 2])')
subplot (2, 2, 3), title('subplot (2, 2, 3') subplot(2, 2, 4), title('subplot(2, 2, 4)')

One can plot complex numbers

```
>> theta = linspace(0, 2 * pi);
>> iu = sqrt(-1)
iu =
    0+ 1.0000i
>> circle = 1 + 2 * iu + 2 * exp(iu * theta);
>> plot(circle)
>> axis equal % or axis('equal'). NOT axis square
>> grid on
>> hold
Current plot held
>> plot(1 + 2 * iu, '*')
>> xlabel('real part')
>> ylabel('imaginary part')
```


A word on the axis command.
axis equal gives correct scaling, a circle does not look like an ellipse and a sphere not like an ellipsoid. Not to be confused with
with axis square makes the axis box square (regardless of the extent in x and y).
axis vis3dfreezes the aspect ratio so that plot is not deformed during rotation.
axis off turns off axis. axis on turns on axis.
It is possible to set the axis limits:
axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax].)
There are eight more options, type help axis or doc axis for more (all) details.

An example: $y=x^{2},|x| \leq 5$.

Some business graphics
Matlab can produce, bar- and area graphs. help bar, help area. There are pie charts and histograms (help pie, help hist) and a few others. Read the documentation to see the available options.

This code produces the plot on the next page:
figure (1)
subplot (221)
pie(1:5)
title('Pie')
subplot (222)
hist (randn (1000, 1))
title('Histogram')
subplot (223)
bar(1:5, [(1:5)', 2*(1:5)'], 'stacked')
axis tight
title('Bar')
subplot (224)
$x=(1: 5)^{\prime}$;
$\mathrm{Y}=\left[(1: 5)^{\prime}, 2 \star(1: 5)^{\prime}\right]$;
area (x, Y)
title('Area')

75

Here is a plot made by stem3:
\gg phi $=$ linspace $(0,2$ * pi);
>> stem3 (cos(phi), sin(phi), sin(2* phi))
>> title('stem3')

Matlab has several commands for drawing arrows, compass, feather, quiver and quiver3. These are used e.g. when drawing flow fields. Here is a quiver-example.

We start by creating a grid in the x - y-plane, using the meshgridcommand. First a word on how meshgrid works:
>> $[\mathrm{X}, \mathrm{Y}]=$ meshgrid(linspace ($-1,1,3)$)
$\mathrm{x}=$

-1	0	1
-1	0	1
-1	0	1

$\mathbf{Y}=$

$$
\begin{array}{rrr}
-1 & -1 & -1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

[X, Y] $=$ meshgrid (xvec, Y_vec) ; is another alternative. In this example we draw an arrow, $[u, v]$, that is orthogonal to the vector going from the origin to $[x, y]$. it should have the same length as well. So one choice is taking $[u, v]=[-y, x]$. here is the code:
>> [X, Y] = meshgrid(linspace (-1, 1, 10))
>> quiver (X, $Y,-Y, X)$
>> axis equal
>> title('quiver')

meshc draws the surface and contour lines, i.e. curves in the x-y-plane where $f(x, y)$ is constant. It is possible to just draw the contours using the command contour ($\mathrm{X}, \mathrm{y}, \mathrm{z}$). One can specify the number of contour lines or give the exact values where a contour line should be drawn. using contour3 it is possible to put a contour line at the correct z-level.
$\gg[\mathrm{X}, \mathrm{Y}]=$ meshgrid(-2:0.1:2);
$\gg Z=X \quad$.* $\exp \left(-X .^{\wedge} 2-Y .{ }^{\wedge} 2\right)$;
\gg contour ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 20, \quad \mathrm{k}^{\prime}$)
>> grid on
>> title('contour')

>> contour3(X, Y, Z, 20, 'k')
>> title('contour3')

The meshgrid-command is used when drawing simple surfaces as well, such as when we have a function $z=f(x, y)$. Here is an example.
$\gg[\mathrm{X}, \mathrm{Y}]=$ meshgrid(-2:0.2:2);
>> $Z=X$.* $\exp \left(-X .^{\wedge} 2-Y .^{\wedge} 2\right) ; \%$ Note elementwise
>> figure \quad new plotwindow
>> mesh (X, Y, Z)
>> figure
\gg meshc (X, Y, Z) \% Note the c in meshc

One can label the contour lines
$\gg[\mathrm{C}, \mathrm{h}]=$ contour $\left(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 10, \quad \mathrm{k}^{\prime}\right)$;
>> clabel (C, h)
>> title('Contour plot elevation labels')

A rather nice contour-command is contourf, which fills the area between contour lines with different colours. Try it!

To understand this better we can read the documentation. This is a quote from the manual:

Algorithm
Abstractly, a parametric surface is parametrized by two independent variables, i and j, which vary continuously over a rectangle; for example, $1 \leq i \leq m$ and $1 \leq j \leq n$. The three functions $x(i, j), y(i, j)$, and $z(i, j)$ specify the surface. When i and j are integer values, they define a rectangular grid with integer grid points. The functions $x(i, j), y(i, j)$, and $z(i, j)$ become three $m \times n$ matrices, X, Y, and Z. Surface color is a fourth function, $c(i, j)$, denoted by matrix C.
Each point in the rectangular grid can be thought of as connected to its four nearest neighbors.

$$
i, j-1-\left.\right|_{i+1} ^{i-1, j}-i, j+1
$$

This underlying rectangular grid induces four-sided patches on the surface. To express this another way, $[X(:) Y(:) \quad Z(:)]$ returns a list of triples specifying points in 3 -space. Each interior point is connected to the four neighbors inherited from the matrix indexing. Points on the edge of the surface have three neighbors; the four points at the corners of the grid have only two neighbors. This defines a mesh of quadrilaterals or a quad-mesh.

The line in the right part is not visible on the monitor.
It is possible to draw the cylinders using the fill3-command as well. That would, however, require more points.

The first cylinder we drew was defined by 14 points (two times seven edges). Using polygons we would need 24 points (6 polygons with four corners).

When we come to shading (colouring polygons with light present) we will notice a difference as well (with the normals). Six polygons are six different objects while the surf-cylinder is one object. We have 24 normals for the polygons and 14 for the surf-command.

Polygons do not have to be planar (all point in a plane). Consider the following polygon with four corners:

```
>> x = [lllllor;
>> Y = [0 0 1 1]';
>> z = [0 0 0 1]';
>> C = ones(size(X));
>> h = fill3(x, Y, Z, C)
```

Matlab breaks up till polygon in two triangles (i.e. two planar polygons). This is a special case of tessellation:

Etymology: Late Latin tessellatus, past participle of tessellare to pave with tesserae, from Latin tessella, diminutive of tessera : to form into or adorn with mosaic

Let us take the cylinder and close the ends. First an example where the ends are partially closed. Just to show that it is possible, we transpose all the arrays. Here
>> phi = linspace (0, 2pi, 7)'; \% Note transpose
>> $z=\operatorname{zeros}(7,1) ; 0=\operatorname{ones}(7,1)$;
$\gg c=\cos (p h i) ; \quad s=\sin (p h i) ;$
>> subplot (211)
>> surf([0 2*o 4*o 5*o], [0.5*c c c 0.5*c], ...
[$0.5 * s$ s s $0.5 * s]$, ones $(7,4)$)
>> axis equal
>> subplot (212)
>> surf([0 ○ 4*○ 4*0], [z c c z], [z s s z], ones (7,4))
>> axis equal

There is an image-toolbox. Here I am covering a surface with an image (usually called a texture, in this context, and the process is called texture-mapping). We will be using textures in the OpnGL-lab.

```
>> B = imread('te.jpg', 'jpg');
>> image(B) % to look at the image
>> axis image % correct scaling
>> [X, Y] = meshgrid(linspace(-1, 1, 10));
>> warp(X, Y, (X.^2 - Y.^2) * cos(0.1 * Y), B)
>> axis off
```


In the upper part of the windows there are buttons for zooming, rotation etc. Have a look at the Tools- and View-menus as well. Some of the remaining buttons and menus are used for editing an image (adding text, arrows etc).

There are several other plot-commands, but before we get back to those we need to have a look at Matlab's handle graphics.

Handle graphics

Plots, windows, polygons etc. are stored in a tree structure. The windows (figure) are child-nodes to the Root (which can think of as the screen: it is created by Matlab and contains data).
The axes is a child of a figure-window and the plot data is a child of the axes etc. Each node has a set of attributes, properties that can take different values.
A "figure" has a Color-property which is the colour around the drawing area in the window. The standard value of this colour is the RGB-vector [0.80 .80 .8]. Here is the tree, there are hundreds of properties in total.
UI objects -_-- Figure ---- Hidden Annotation Objects

Core objects ---- Axes ---- Group objects
Plot Objects
This layout is new for Matlab v7, in previous versions there were less talk about objects. A figure is a window in which the graphics is displayed. Figures contain menus, toolbars, userinterface objects (e.g. buttons and sliders), context menus (a menu bound to a curve for example), axes.
Annotation objects are things like arrows, rectangles and are usually created using the builtin plot editor.
Core objects are axes, image, light, line, patch, rectangle, surface, text.
Groups objects can be used to collectively refer to several axes, for example.
Plot Objects group together core objects. We will not look at all the objects in detail, so what follows is a simplified presentation. The manual contains more than 120 pages on the subject.

To see the possible alternatives for Format, we can do
>> set(0, 'Format')
[short | long | shorte | longe | shortG | longG | hex bank | + | rational | debug | shortEng | longEng]
and to change format to longe we can

```
>> set(0, 'Format', 'longE')
```

>> pi
ans $=$

$3.141592653589793 \mathrm{e}+00$

Usually we would instead type the shorter:

>> format long e

Property names are not case sensitive and we can shorten the name as long as it becomes unique.

```
>> set(0, 'uNiTs', 'centimeters')
>> set(0, 'units', 'centimeters')
>> set (0, 'uni', 'centimeters')
>> set(0, 'u', 'centimeters')
??? Error using ==> set
Ambiguous root property: 'u'.
```

Let us now look at the Children of the Root. We have only one child, the figure window. Since the handle is an integer we need not fetch it, but I have done so just to show how get works.
>> hf = get (0, 'Children') \% hf for handle to figure hf =

1
Here are a few of the properties:

```
>> get(hf)
```

 Color \(=\left[\begin{array}{lll}0.8 & 0.8 & 0.8\end{array}\right]\) \% border colour
 Colormap \(=\) [(64 by 3) double array]
 CurrentAxes \(=\) [153.009] \% handle to the axes
 DoubleBuffer \(=\) on \(\quad\) \% for animation
 IntegerHandle \(=\) on
 \% figure 1 has handle 1
 Let us look at an example. We have just started Matlab (say) and have typed the following commands:
>> format compact
>> $x=1: 10$;
>> plot(x, x.^2, 'r')
>> grid on
>> xlabel(' x^{\prime})
>> ylabel (' y^{\prime})
>> title('y = x^2')
The tree is linked together by handles (pointers). They are of type double and usually have many decimals. The handles of the figure windows are positive integers and the Root has handle zero. Using the function get we can access the value of a property for an object pointed to by the handle:
get (handle, 'PropertyName')
set (handle, 'PropertyName', value)sets the value.
Some properties are read only. get (handle) prints the values of all the properties and set (handle) displays all property names and their possible values for the object.

Let us start to inspect the Root. I have (usually) edited the output to make it shorter. My comments after \%.
This is about a third of what is printed.
>> get (0)
CurrentFigure $=$ [1] \quad \% figure 1
Diary = off
DiaryFile = diary
FixedWidthFontName $=$ Courier New
Format $=$ short \quad set with format
FormatSpacing $=$ compact $\quad \%$ set with format
ScreenDepth = [24]
ScreenSize $=\left[\begin{array}{llll}1 & 1 & 1280 & 1024\end{array}\right]$
Units $=$ pixels
Children $=[1] \quad$ \% The figure window
91

```
    NumberTitle = on % Figure 1, 2 ...
    Renderer = painters % Hidden lines removal
    Resize = on % Can freeze the size
    WindowButtonDownFen = % A Callback
    WindowButtonMotionFen = % Another
    WindowButtonUpFcn = % Another
    ButtonDownFcn = % Click over an object
    Children = [153.009] % Same as axes
    CreateFcn =
    DeleteFcn =
    Parent = [0] % Root
    Tag =
    % For us
    UserData = []
sible = on % Can hide the window
```

Let us now look at the axes. Sometime it is inconvenient to go down in the tree this way so there are functions that gives the handles directly.

```
gca Get handle to current axis.
gcf Get handle to current figure.
gcbo Get handle to current callback object.
gco Get handle to current object.
gcbf Get handle to current callback figure.
So
>> gcf
ans = 1
>> get(get(0, 'Child'), 'Child')
ans = 1.530087890625000e+02
>> gca
ans = 1.530087890625000e+02
>> ha = get(1, 'Children')
ha = 1.530087890625000e+02 % Don't write the decimals
```

```
>> get(ha)
    AmbientLightColor = [llll
    Box = on
    CameraPosition = [5.5 50 17.3205]
    CameraUpVector = [l0}
    CLim = [0 1]
    FontAngle = normal
    FontName = Helvetica
    FontSize = [10]
    FontUnits = points
    FontWeight = normal
    GridLineStyle = :
    LineWidth = [0.5]
    NextPlot = replace
    Projection = orthographic
    Position = [0.13 0.11 0.775 0.815] % llx, lly, w, h
    Title = [160.016] % made with title command
    XLabel = [155.018] % made with xlabel
    XTick = [ (1 by 10) double array]
    XTickLabel = 1 2 3 4 5 6 7 8 9 10
    Children = [154.088] % the plot data
```

Let us make the grid- and axle lines wider (not the curve), use a larger font for the ticks

```
>> set(ha, 'LineWidth', 2, 'FontSize', 16, ..
```

 'FontWeight', 'Bold')
 The title is hardly readable so lets make that larger as well:

I can change one point on the curve by typing:
>> $\mathrm{y}=\operatorname{get}(\mathrm{hp}, \quad$ 'Ydata')
$\mathrm{y}=$
$\begin{array}{llllllllll}1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81 & 100\end{array}$
>> $y(3)=100$;
>> set (hp, 'Ydata', y)
I can change the line width, but I would usually do it using the plot-command. The curve replaces the old one. The plotfunction returns the handle.

```
>> hp = plot(x, x.`2, 'r', 'LineWidth', 2)
hp =
    1.540887451171875e+02
>> get(gca, 'Child') % A new child
ans =
    1.540887451171875e+02
>> delete(hp) % deletes the curve
>> get(gca, 'Child')
ans =
    Empty matrix: 0-by-1 % no child
```

```
>> get(get(ha, 'Title'), 'String')
ans =
y = x^2
>> set(get(ha, 'Title'), 'Fontsize', 16)
```

This is not so convenient, so many commands can set the properties directly.
\gg title('y $=x^{\wedge} \mathbf{2}^{\prime},{ }^{\prime}$ Fontsize', $\left.16, ~ ' F o n t w e i g h t ', ' B o l d '\right)$
We have one level left in the tree. Let us look at a leaf (terminal node), the child to the axes.
>> hp = get(ha, 'Children')
$\mathrm{hp}=$
$1.540881347656250 e+02$
>> get (hp)
Color: [1 0 0 $]$
LineStyle: ','
LineWidth: 5.000000000000000e-01
Marker: 'none'
MarkerSize: 6 \% useful
xData: [11 $\left.2 \begin{array}{lllllllll}1 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]$
YData: [1 4 9 162536496481 100]
zData: [1x0 double] \% empty
ButtonDownFen: []
Children: [0x1 double] \% no child
Type: 'line'
UIContextMenu: []
UserData: []
Visible: 'on'
Parent: 1.530087890625000e+02

```
>> set (hp)
```

ans $=$
LineStyle: \{5x1 cell\}
Marker: $\{14 \times 1$ cell\}

It can be convenient to use structures:

```
>> prop.LineWidth = 3;
>> prop.Color = [11 0 0
prop =
    LineWidth: 3
        Color: [1 0 0]
>> set(h1, prop)
>> set(h2, prop)
```

str $=$ get (handle) ; returns a structure in str.
The field names are the property names and the field values are the corresponding values of the properties.

Properties have default, factory, values. We can see the 589 of them by typing get (0 , 'factory') (only for the root). Matlab searches for a value beginning with the current object, going up in the tree until a user-defined or factory-defined value is found. We can define our own default values, which will affect objects after the change. Say that we would like to increase the font size for axes and text, say xlabel, in general.

```
>> diary factory
                                    % diary filename
>> get(0, 'factory')
>> diary off
>> !grep -i font factory % unix; edited
    factoryAxesFontAngle: 'normal'
        factoryAxesFontName: 'Helvetica'
axes, xlabel factoryAxesFontSize: 10
title factoryAxesFontUnits: 'points'
    factoryAxesFontWeight: 'normal'
        factoryTextFontAngle: 'normal'
        factoryTextFontName: 'Helvetica'
in plot area factoryTextFontSize: 10
    factoryTextFontUnits: 'points'
    factoryTextFontWeight: 'normal'
>> get(0, 'factory')
>> !grep -i
```

97

```
>> figure(1)
% Change Factory (in the name) to Default, to set the
% default value. This works for plots in figure 1 only
>> set(1, 'DefaultAxesFontSize', 16
    'DefaultTextFontSize', 16)
% This works for all windows,
>> set(0, 'DefaultAxesFontSize', 16, ...
    'DefaultTextFontSize', 16)
To keep the defaults one can save them in ~/matlab/startup.m which is executed when Matlab starts.
reset (handle) resets the values, of the object, to the factory defaults. (so DefaultAxesFontSizeis set to 10).
To reset (remove) a specific default property, type set ( 0, ' DefaultAxesFontSize', 'remove'for example.
Sometimes we get arrays with handles:
\(\gg h p=p l o t\left(x, x .^{\wedge} 2, \quad \prime k-\prime, x, x .^{\wedge} 2, ~ ' r o '\right)\)
\(\mathrm{hp}=\)
\(1.5400 \mathrm{e}+02\)
1. \(5500 \mathrm{e}+02\)
>> get (hp, 'Type')
ans \(=\)
'line'
'line'
>> get (hp, 'Marker')
ans =
' none'
' o'
>> set (hp, 'Color', [0 1 0]) \% for all the objects
The fill-command will produce patches (polygons) etc.
```


An alternative to the above is to use the builtin plot editor (see the upper part of the window). This is convenient when you are doing an image once. I usually generate roughly the same image many times (new data, new course etc.) in which case it is more convenient to have an automatic generation in a program.

Something different: I have a command that deletes all the plotwindows (store in ~/matlab/del.mfor example)
delete (get (0, 'Children'))
One can use close allinstead.

The above stuff is good to know when you make presentations, reports etc. Graphics does not help much if the audience cannot see it.
Here is an example. I do not claim that I have chosen the best fonts etc. An alternative is to use the builtin plot editor (see the menus and buttons in the top of the window).
\% Say we are going to make a transparency for a lectur figure (1)
set (1, 'DefaultAxesFontSize', 16, ... 'DefaultTextFontSize', 16, ...
'DefaultAxesFontWeight', 'Bold',
'DefaultTextFontWeight', 'Bold')
$\mathbf{x}=\operatorname{linspace}(0,2$ * pi);
plot(x, sin(x))
hold on
grid on
\% Suppose we would like to mark min and max
$h=\operatorname{plot}\left(0.5 * \mathrm{pi} *\left[\begin{array}{ll}1 & 3\end{array}\right],\left[\begin{array}{ll}1 & -1\end{array}\right],{ }^{\prime} \mathrm{o}^{\prime}\right)$ \% 2 handles
set (h, 'LineWidth', 2, 'MarkerSize', 10)
axis ([-0.2 2*pi+0.2 -1.2 1.2])
xlabel (' \mathbf{x}^{\prime})
ylabel('sin x^{\prime})
title('A sine-curve')
text (2, 1.1, 'A maximum')
We can give the properties in the commands as well, e.g.
text (5, -1, 'A minimum', 'Fontsize', 10)which overrides the default.

If we have several curves we should add a legend.

```
>> plot(x, cos(x), '_', x, sin(x), '-.', 'Linewidth',
```

\% Default Location is NorthEast.
\% Can move the legend using the mouse as well.
>> hl $=$ legend('cos(x)', 'sin(x)', 'Location', 'Best');
>> set(hl, 'Fontsize', 16, 'Fontweight', 'Bold')
\gg set (gca, 'Fontsize', 16, 'Fontweight', 'Bold')

Looks like this:

Annotations

Once you have produced your plot you may want to add so-called annotations, things like arrows, text, lines, rectangles etc. This can be done using the annotation-function, but it is easier to use the Insert-menu in the figure-window, since you can work with the mouse instead of typing coordinates.

A nice feature is that you can save an M-file containing the code necessary to generate the figure, File/Generate M-file... (otherwise you may have to redo the annotations if you want change the image).

Another way is to save the figure in fig-format, using the Save As. . .-menu alternative.

The following sequence together with an inserted Text Arrow (the text "intersection" and an arrow pointing at the intersection between the cures), produced the M-file on the next page:
>> x = linspace (0, 1);
>> plot(x, $\left.\sin (x), r^{\prime}, x, \cos (x), b^{\prime}\right)$
>> grid
>> xlabel('x')
>> ylabel (' y^{\prime})
>> title('Intersection between $\sin \mathbf{x}$ and cos \mathbf{x}^{\prime})
Note, on the next page, that the actual data is not included in the file. The comments are produced by Matlab.

Note the use of the annotation-function.

Callbacks

It is common in Matlab-, OpenGL-, X11-programming to use callback routines. Such a routine is bound to a special event (e.g. the click of a mouse button) and the routine is called if the event occurs.
In this example a ButtonDownFen-property of a curve, is used to change the colour of a curve. When we click close (5 pixels) to the curve it will change colour from blue (standard) to red. The value of the property (the callback) is, in this example, a Matlab-command. It will be executed if we click on the curve.

```
>> x = 0:0.1:2*pi;
>> h1 = plot(x, cos(x));
>> hold on
>> h2 = plot(x, sin(x));
>> get(h1)
            ButtonDownFcn =
            CreateFcn =
            DeleteFcn =
>> set(h1, 'ButtonDownFcn', ...
            'set(h1, ''Color'', [1 0 0])')
>> get(h1)
    ButtonDownFcn = set(h1, 'Color', [1 0 0])
```

This could be used to do the picking for the complex cosine function (in the introduction).

Note, a common misconception: the callback is not executed when we define it. It is executed if/when the action is performed.

```
function createfigure(X1, YMatrix1)
%CREATEFIGURE (X1, YMATRIX1)
% X1: vector of }x\mathrm{ data
% YMATRIX1: matrix of y data
% Auto-generated by MATLAB on 16-Sep-2010 17:39:49
% Create figure
figure1 = figure;
% Create axes
axes1 = axes('Parent', figure1);
box(axes1,'on');
grid(axes1,'on');
hold(axes1,'all');
% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1);
set(plot1(1),'Color', [1 0 0]);
set(plot1(2),'Color',[0 0 1]);
% Create xlabel
xlabel('x');
% Create ylabel
ylabel('y');
% Create title
title('Intersection between sin x and cos x');
% Create textarrow
annotation(figure1,'textarrow',...
    [0.576785714285712 0.737499999999997],..
    [0.610904761904764 0.682333333333335],...
    'TextEdgeColor','none',...
    'String', {'intersection' });
```


103

Note also that the example shows unsafe programming, the variable h1 may not exist when we click on the curve. Here is a better way, using the gcbo-function (get current callback object):
>> set (h1, 'ButtonDownFen', ...

$$
\left.' \text { set (gcbo, ''Color'', [11 } 000])^{\prime}\right)
$$

All graphics objects have three properties for which you can define callback routines:

- ButtonDownFen as above.
- CreateFcn executes during object creation after all properties are set
- Deletefon executes just before deleting the object

User interface objects have a Callback property; more later on. Figures have the three callbacks above and (from the manual):

- CloseRequestronexecutes when a request is made to close the figure (by a close command, by the window manager menu, or by quitting MATLAB). Default is closereq
- KeyPressFcnexecutes when users press a key while the cursor is within the figure window.
- Resizefon executes when users resize the figure window.
- WindowButtonDownFenexecutes when users click a mouse button while the cursor is over the figure background, a disabled uicontrol, or the axes background.
- WindowButtonMotionFcnexecutes when users move the mouse within the figure window (but not over menus or title bar).
- WindowButtonUpFcnexecutes when users release the mouse button, after having pressed the mouse button within the figure.

The callback can be a Matlab command, as in the example, but also:

- a string with the name of an M-file (script or function).
- a cell array of strings (see the manual, a bit special).
- a function handle or a cell array containing a function handle and additional arguments (see the manual for the last case).

When using a function handle the callback-function must define at least two input arguments. The handle of the object generating the callback, and the event data structure (can be empty for some callbacks). Matlab passes these two arguments implicitly whenever the callback executes (it is possible to add input arguments, see the manual). Here is a simple example:

```
>> h1 = plot(x, cos(x));
>> set(h1, 'ButtonDownFcn', @my_callback)
>> type my_callback % list a file
function my_callback (handle, event_str)
% list input arguments (only in this example)
handle
event_str
% Can skip all. Must be true for all elements.
if all(get(handle, 'Color') == [1 0 0])
    set(handle, 'Color', [0 0 1])
else
    set(handle, 'Color', [1 0 0])
end
```

```
>> handle =
```

>> handle =
% clicked on the curve
% clicked on the curve
1.540119628906250e+02
event_str =
[]

```
function cos_ex (real_int, imag_int, \(n\) )
\% To save space I have not included any help

\section*{figure \% New window}
subplot (121); hold on \% to avoid hold in the loop
subplot (122); hold on
```

iu = sqrt(-1); % 50 is a bit arbitrary
im = iu * linspace(imag_int(1), imag_int(2), 50);
for re = linspace(real_int(1), real_int(2), n)
subplot(121)
h1 = plot([re re], imag_int, 'k');
subplot(122)
c = cos(re + im);
h2 = plot(real(c), imag(c), 'k');
set(h1,'UserData',h2, 'Tag',' k', 'ButtonDownFcn', @cb)
set(h2,'UserData',h1, 'Tag','k', 'ButtonDownFcn', @cb)
end
re = linspace(real_int(1), real_int(2), 50);
for im = linspace(imag_int(1), imag_int(2), n)
subplot(121)
h1 = plot(real_int, [im im], 'r');
subplot(122)
c = cos(re + iu * im);
h2 = plot(real(c), imag(c), 'r');
set(h1,'UserData',h2, 'Tag','r', 'ButtonDownFcn', @cb)
set(h2,'UserData',h1, 'Tag','r', 'ButtonDownFcn', @cb)
end
subplot(121); axis tight
subplot(122); axis tight }\mp@subsup{}{108}{

When we use the first alternative (a string) there are no required variables (we decide). An advantage with using function handles is that we, when making GUIs, can collect all the callbacks in one file, as in the following example. This is convenient since one tends to get many callbacks.
Here is the complex cosine-example again. We make a rectangular grid, in the complex plane, in a left subplot. Lines with constant real-parts are black, and lines with constant imaginary parts are red.
In the right subplot we plot the cosine of the points on the lines (using the same colours).
When we click on a red or black curve in either plot, the curve and the corresponding one in the other window, should become blue and twice as wide.
When we click on a blue curve in either plot, the curve and the corresponding one in the other window, should return to its original colour and get its original width.
When we click on a curve, a callback is called. In this callback we can find out the handle of the curve. The callback needs to find out the handle of the corresponding curve in the other plot. This can be solved in a number of ways.

- We can store the handles in a matrix, one row per pair of handles.
- subplot creates an axes object, so the figure has two axeschildren. Each child has an array of handles to line-objects. The two handle arrays are probably ordered in the same way.
- A more general approach: use the UserDataproperty of a line to store the handle of the corresponding curve (one could store more data, e.g. a cell-array). Since the callback needs to know the original colours (can be done in several ways), I have used the Tag-property to store the colour as a string, ' \mathbf{r} ' for red and ' \mathbf{k} ' for black.

Here comes the program. The user should give intervals (real and imag) the number of lines.

107

There is a reason for:

```
c = cos(re + im);
h2 = plot(real(c), imag(c), 'k');
```

If we write like this, it may not work:

$$
\mathrm{h} 2=\mathrm{plot}\left(\cos (r e+i m), \quad \mathrm{k}^{\prime}\right) ;
$$

Why? Consider the following:
>> iu $=$ sqrt (-1);
\% draws a line from $(0,0)$ to $(0,1)$ in $R^{\wedge} 2$
>> plot([0; iu])
>> hold on
\% a line from (1, 0) to (2, 1). Not what we want!
>> plot $([0 ; 1]) \%$ imag $=0$
\% equivalent to
>> plot ([1; 2], [0; 1])
\% essentially a line from (0,0) to (1,0)
>> plot ([0; 1] + eps * iu)

Here comes the callback. Note that event is not used so I choose to ignore it using a tilde (new in Matlab R2009b).

```
function cb(handle, ~) % note, in the same file
```

blue = [0 0 1];
c = get (handle, 'Color');
if all(c == blue) \% new colours, reset
\% get (handle, 'Tag') is original colour 'k' or 'r'
set (handle, 'Color', get (handle, 'Tag'), ...
'LineWidth', 1)
$h=\operatorname{get}($ handle, 'UserData'); \% other subplot
set (h, 'Color', get(h, 'Tag'), 'LineWidth', 1)
else
\% original colours, change
set (handle, 'Color', blue, 'LineWidth', 2)
set (get (handle, 'UserData'), 'Color', blue, ...
'LineWidth', 2)
end

This works well in many situations. One problem is that the inverse of \cos does not always exist. So there may be $z_{1} \neq z_{2}$ with $\cos z_{1}=\cos z_{2}$. This gives a problem with colour, clicking on z_{1} may not give the same blue colour on $\cos z_{1}$. If $\cos z_{1}$ is on top of $\cos z_{2}$ we get a blue line, otherwise we get a mix of black and blue (or no change if we have a different line width).
A more severe problem is if we click on $\cos z_{1}=\cos z_{2}$, only one line (not two) will become blue in the first plot. Which line reacts? Here is a short test;
>> $v=\left[\begin{array}{ll}0 & 1\end{array}\right]$;
>> plot(v, v, 'ButtonDownFen', '1') \%echo 1
>> hold on
>> plot(v, v, 'ButtonDownFen', '2') \% echo 2
>> ans $=$ \% clicking on the line 2
So the latest drawn line triggers the callback.

110

Finally an example where the event structure is not empty. Let us use the KeyPressFen of a figure.

```
>> figure(1)
>> set(1, 'KeyPressFcn', @key_cb)
>> type key_cb
function key_cb(handle, event)
handle
event
>> handle = 1 % pressed the a-key with the
event = % mouse in the window
    Character: 'a'
        Modifier: {1x0 cell}
                Key: 'a'
handle = 1 % pressed shift (part of writing A)
event =
    Character: ,,
        Modifier: {1x0 cell}
        Key: 'shift'
handle = 1 % two events are generated for A
event =
    Character: 'A'
        Modifier: {'shift'}
            Key: 'a'
handle = 1 % pressed left arrow
event =
    Character: ', % some garbage
        Modifier: {1x0 cell} % the key sends ^[[A
            Key: 'leftarrow' % `[ = escape
```

The following "works"; we can click on the line or on the markers.

```
>> v = linspace(0, 1, 30);
>> plot(v, v, 'ButtonDownFen', '1')
>> hold
>> plot(v, v, 'ro', 'ButtonDownFcn', '2')
>> ans = % clicking on a marker
    2
>> ans = % clicking on the line
    1
```

This may be another solution in some cases:
$\gg h 1=\operatorname{plot}(v, v, \quad$ ButtonDownFen', '1');
>> hold on
$\gg \mathrm{h} 2=\mathrm{plot}(\mathrm{v}, \mathrm{v}, \quad$ ButtonDownFen', '2');
>> set(h2, 'HitTest', 'Off') \% cannot trigger
$>$ ans $=$ \% clicked
1
>> set (h1, 'HitTest', 'Off') \% switch this of as well
When both lines are "switched off" we do not get any print out (unless we have set the ButtonDownFen of the current axes).

GUIs

It is now time to construct a more general GUI. Many things to think about when constructing a GUI, here are a few. For more references see the Diary. Some guidelines:

- No surprises! A good GUI behaves as the user expects. One should not have to hesitate when pushing a button. Nice with Undo and Cancel-alternatives.
- Consistency. Similar tasks should be done in similar ways. The user can learn principles.
- Use metaphors. A button with a magnifying glass for zooming, for example.
- Try to make the GUI self-explanatory. A user will not read manuals, perhaps not even a few lines.
- Give feedback. Did I push the button or not? Is the program running or has it crashed?
- Do not overuse strong colours, sound or movement. Keep messages readable (font, fontsize, fontweight) and clear.
- No builtin order. Modelessness. Should be able to press all buttons etc. without the program crashing. Turn off (gray out), or hide, alternatives that cannot be chosen, for example.
- Think of portability. Does the program work on another system? How does the monitor's resolution and size change the GUI? Are the sizes of buttons in pixels or cm ?
- For Matlab GUIs. The users may have done other work before running your program, so be careful with using variables and windows. When your GUI quits, just clean up after your program, do not close all the windows, for example.

Matlab provides GUIDE (GUI Design Environment). You must run the GUI-mode of Matlab to use it (so do not start with matlab -nojvm). Then type guide. I will not use guide in this lecture.

Let us make a Quit-button. When we press the button, the window, which the button resides in, should be deleted. We make the button gray with the black text, Quit, on it. uicontrol is the basic tool.

```
>> figure
>> h = uicontrol;
>> set (h)
    BackgroundColor
    Callback: string -or- function handle -or- cell array
    Enable: [ {on} | off | inactive ]
    FontName
    FontSize
    ForegroundColor
    HorizontalAlignment: [ left | {center} | right ]
    KeyPressFcn: string -or- function handle -or- cell ar
    Max
    Min
    Position
    String
    Style: [ {pushbutton} | togglebutton | radiobutton |
                checkbox | edit | text | slider | frame |
                listbox | popupmenu ]
    TooltipString
    Units: [ inches | centimeters | normalized | points
                {pixels} | characters ]
    Value
Visible: [ {on} | off ]
```

$\mathrm{hb}=$ uicontrol (...
'Style', 'pushbutton', ... \% default
'Units', 'centimeters', ...
'Position', [0.5 0.5 2 1], ...
'String', 'Quit', ...
'TooltipString', 'Close this window', ...
'BackgroundColor', [0.7 0.7 0.7],
'ForegroundColor', [0000$]$,
'Callback',
@Quit_cb);
function Quit_cb (handle, event)
\% gcbf: Get handle to current callback figure.
\% fig = gcbf returns the handle of the figure
that contains the object whose callback
is currently executing.

delete (gcbf)

Position is lower left x , lower left y , width, height.

We can choose between the following types:

- pushbutton, button with no memory
- togglebutton, on-off-button
- radiobutton, to choose the station on a radio (mutually exclusive)
- checkbox, tick choices
- edit, text that can be edited
- text, above a button. for example
- slider
- frame, rectangles that provide a visual enclosure for regions of a figure window (obsolete)
- listbox, scrollable list with alternatives
- popupmenu (does not work with -nojvm)

Some of the buttons only differ in appearance; we have to fix the functionality. A suitable button in our example is a pushbutton, which is the default. In this example we could use a string instead of a function.

```
>> type Quit_ex
```


function Quit_ex

hf = figure;
het (he, 'Name',

'Name',	'My GUI',
'NumberTitle',	'Off',
'MenuBar',	'None',
'Units',	'centimeters',
'Position',	[10, 10, 5, 3])

Here comes a toggle button. The string, on the button, should alternate between On and Off. The button has a Value-property. Matlab will automatically alternate the value of Value between 0 and 1.

```
>> type Toggle_ex
function Toggle_ex
hf = figure;
set(hf, 'Name'
    'My GUI',
    NumberTitle', 'Off', ...
    'MenuBar', 'None', '. .
    'Position', [10, 10, 5, 3])
```

\% Toggle buttons set Value to Max (default 1) when
\% they are down (selected) and Min (default 0)
\% when up (not selected).
$\mathrm{hb}=$ uicontrol(...
'Style', 'togglebutton', ...
'Units', 'centimeters', ...
'Position', [0.5 0.5 2 1], ...
'String', 'Off', ...
'BackgroundColor', [0.7 0.7 0.7], ...
'ForegroundColor', [0 0 0], ...
'Value', 0 . . . 0 Initially
'Callback', @Toggle_cb); \% Off
function Toggle_cb (handle, event)
\% If Value $=1$ when we clicked, then Value $=0$
\% in this callback.
if get (handle, 'Value')
set (handle, 'String', 'On') \% used to be Off
else
set (handle, 'String', 'Off') \% used to be On
end

A shorter version:

function Toggle_cb (handle, event)
str = \{'Off', 'On' \};
set (handle, 'String', str\{1 + get (handle, 'Value') \})
Note that str $=\left[\right.$ 'Off', \quad On']; gives one string, ${ }^{\prime}$ Offon'.
Here comes a slider, where we can set values continuously. We should put a text close to each slider. In the example we use the same callback. This is not necessary, nor is he use of the Tag.

```
>> type Slider_ex
```

function Slider_ex
hf = figure;
set (hf, 'Name', 'My GUI', 'NumberTitle', 'Off',
'MenuBar', 'None', 'Units', 'centimeters',
'Position', [10, 10, 4, 4],
'DefaultUicontrolUnits', 'centimeters'
'DefaultUicontrolBackgroundColor', $\left.\begin{array}{llll}0.7 & 0.7 & 0.7\end{array}\right]$
'DefaultUicontrolForegroundColor', [0 0 0])
uicontrol('Style', 'slider',
'Position', [0.5 0.5 3 0.7], ...
'Min', $-1, \quad . . . \%$ min value of slider
'Max', 2, ... \% max value
'Value', 1, ... \% initial value
'Tag', 'slider_1', ...
'Callback', @Slider_cb);
uicontrol('Style', 'slider',
'Position', [0.5 1.5 3 0.9],
Min', -1, 'Max', 2, 'Value' 1,
'Tag', 'slider_2',
'Callback', @Slider_cb);

118
\qquad
\% Help text. May want a different BG-colour
uicontrol('Style', 'text', 'String', 'Two sliders', ... 'FontWeight', 'Bold',...
'Position', [0.5 2.430 .5$]$)
function Slider_cb (handle, event)
\% Can have different callbacks for different
\% sliders of course. Does not do anything
\% useful.
val = get (handle, 'Value')
if get (handle, 'Tag') == 'slider_1'
disp('slider_1')
else
disp('slider_2')
end

Here comes a more sophisticated example. We take the old cosine-example (where we can click on the curves) and add some buttons and menus. We start the program by typing cos_ex_gui and get the following window:

Quit should delete the window. Reset should reset all the lines to their original colours and width. Using the left popupmenu we can choose between four functions; the plot is updated.

The next menu sets the number of grid lines; the plot is updated. Zoom in allows us the click twice in the left window to mark a smaller rectangle; the plot is updated. Reset all, resets everything (like starting over).

There should be texts above the menus.

Here is the code (>240 lines). I have had to compress it (compared to my original). All routines in one file.

```
function cos_ex_gui
% Should have better names for the global variables
% or not use global. Can use UserData of the figure.
global ha1 ha2 hm_fun hm_n fun funcs ...
    real_int imag_int n
% default values
real_int = [-1 1]; % real interval
imag_int = [-1 1]; % imag interval
n = 10; % # of grid lines
fun = 1; % choice of function
funcs = {@(z)\operatorname{cos}(z), @(z)sin(z), @(z) exp(z), @(z)z.` 2};
make_gui % create buttons etc.
make_plots % draws the grid and function(grid)
% -------------------- make_gui
function make_gui
global ha1 ha2 hm_fun hm_n funcs
```


hf = figure;

```
set (hf, 'Name', 'My GUI', 'NumberTitle', 'Off', ...
'Units', 'centimeters'
'DefaultAxesUnits', 'centimeters', ...
'DefaultUicontrolUnits', 'centimeters', ...
' DefaultUicontrolFontWeight', 'Bold',
'DefaultUicontrolBackgroundColor', ... [0.7 0.7 0.7],
'DefaultUicontrolForegroundColor', 'k')
```

ha1 $=$ subplot(121); hold on
ha2 $=$ subplot (122); hold on

```
% shrink subplots
dp = 1.2 * [0 1 0 -1];
set(ha1, 'Position', get(ha1, 'Position') + dp)
set(ha2, 'Position', get(ha2, 'Position') + dp)
% create buttons and menus
pos = [1.5 0.5 2 1]; dx = 0.5;
% Quit-button
uicontrol('Position', pos,
'String', 'Quit', ...
'TooltipString', 'close window', ...
'Callback', 'delete(gcbf)' ); % string
% Reset-button
pos(1) = pos(1) + pos(3) + dx;
uicontrol('Position', pos,
'String', 'Reset',
'TooltipString', 'reset lines',
'Callback', @reset_cb);
% Reset all-button
pos(1) = pos(1) + pos(3) + dx;
uicontrol('Position', pos,
'String', 'Reset all', ...
'TooltipString', 'reset everything', ...
'Callback', @reset_all_cb);
% Zoom-button
pos(1) = pos(1) + pos(3) + dx;
uicontrol('Position', pos,
'String', 'Zoom in',
'TooltipString', 'zoom in left plot', ...
'Callback', @zoom_cb);
122
% ----------------- reset_cb --
% Could call make_plots instead
% but this shows a different technique
h = get(handle, 'Parent'); % i.e. the figure
hc = get(h, 'Children'); % axes and uicontrol
for h = hc(:)' % for all axes and uicontrols
    if equal(get(h, 'Type'), 'axes')
        hl = get(h, 'Children'); % lines
        for hline = hl(:)' % for all lines
            set(hline, 'Linewidth', 1, ...
                'Color', get(hline, 'Tag'))
        end
    end
end
% ------------------- reset_all_cb
function reset_all_cb (handle, event)
global hm_fun hm_n fun real_int imag_int n
real_int = [-1 1]; % default values
imag_int = [llll
fun = 1;
n = 10;
set(hm_fun, 'Value', fun) % reset menus
set(hm_n, 'Value', 6)
make_plots \% redraw
```

\% Build menu-items
for fun $=1$:length(funcs)

$$
\begin{array}{ll}
t=\operatorname{char}(\text { funcs }\{\text { fun }\}) ; & \% @(z) \text { expression } \\
\left.t=t(t \sim=\prime)^{\prime}\right) ; & \% \text { rm elementwise } \\
\text { items }\{\text { fun }\}=t(5 \text { :end }) ; &
\end{array}
$$

end
\% Function menu
pos(1) $=$ pos(1) $+\operatorname{pos(3)}+d x$;
hm_fun = uicontrol('Style', 'popupmenu',
'Position', pos,
'TooltipString', 'function',
'String', items,
'Value', 1 , .. \% default
'Callback', @menu_fun_cb);
\% An alternative to cell arrays
\% n-menu (number of grid lines)
pos(1) $=\operatorname{pos}(1)+\operatorname{pos}(3)+d x$;
hm_n = uicontrol('Style', 'popupmenu', ...
'Position'
'Position', pos,
'String',
${ }^{\prime} 5|6| 7|8| 9|10| 11|12| 13|14| 15|16| 17|18| 19 \mid 20^{\prime}, ~ . . . ~$
'TooltipString', '\# of lines',
'Value', 6,
'Callback', @menu_n_cb);
\% ------------------- equal
function eq $=$ equal(s1, s2)
\% Compare two strings. used by reset_cb.
\% May be of unequal length (strcmp) and different
\% case (i in strcmpi). Blanks are significant
\% for strcmpi, so they are removed.
eq = strcmpi (s1 (s1 ~ $=$ ' '), s2 (s2 ~= ' '));
123

function $z 00$ _cb (handle, event)
\%
\% Can zoom in (but not out)
\% There is builtin support for zoom (help zoom).
global real_int imag_int

```
[re, im] = ginput(2); % no conflict with
real_int = sort(re); % clicking on lines
imag_int = sort(im); % should check the values
make_plots % redraw
```


function menu_fun_cb (handle, event)
global fun
fun = get (handle, 'Value');
make_plots \% redraw

function menu_n_cb (handle, event)
global n
$\mathrm{n}=4+$ get (handle, 'Value');
make_plots \% redraw
\% ------------------- make_plots
function make_plots
\% almost like the old version
global ha1 ha2 fun funcs real_int imag_int n
iu = sqrt (-1);

A few more words about clicking on curves.
If you choose "Data Cursor"-tool (to the right of the rotate button) you can click on an object (also in 3D) to get the coordinates.

You can change the cursor to one of several predefined:
>> set (gcf, 'Pointer', 'arrow')
\% or 'watch' etc. See the manual.
The watch-cursor is an animation under Gnome.
You can make your own cursor, as well. Create a 16×16-matrix containing 1 (black), 2 (white) and NaN (transparent).
Let us make a large X.

```
>> C = eye(16); C = C + C(:, end:-1:1);
>> C = C ./ C;
Warning: Divide by zero.
>> C(6:11, 6:11)
ans =
\begin{tabular}{rrrrrr}
1 & NaN & NaN & NaN & NaN & 1 \\
NaN & 1 & NaN & NaN & 1 & NaN \\
NaN & NaN & 1 & 1 & NaN & NaN \\
NaN & NaN & 1 & 1 & NaN & NaN \\
NaN & 1 & NaN & NaN & 1 & NaN \\
1 & NaN & NaN & NaN & NaN & 1
\end{tabular}
>> figure(1)
>> set(1, 'Pointer', 'Custom', ...
    'PointerShapeCData', C, ..
    'PointerShapeHotSpot', [8.5 8.5])
```

PointerShapeHotSpotis the pointer location.

130

We can bind a menu (context menu) to a graphical object, e.g. a curve.
figure (1)
\% Create a context menu
cmenu $=$ uicontextmenu;
$\mathbf{x}=0: 0.1: 1 ;$
$\%$ and bind it to the curve
$\mathrm{hp}=\mathrm{plot}(\mathrm{x}, \sin (\mathrm{x})$, 'UIContextMenu', cmenu);
\% Define callbacks...
cb1 $=$ 'set (hp, ''LineStyle'', ' '--'')';
cb2 $=$ 'set (hp, ''LineStyle'', ,':' ' ';
cb3 = 'set (hp, ' 'LineStyle'', ''-'')';
\% Define the menu alternatives
uimenu (cmenu, 'Label', 'dashed', 'Callback', cb1)
uimenu (cmenu, 'Label', ' dotted', 'Callback', cb2)
uimenu (cmenu, 'Label', 'solid', 'Callback', cb3)

If one RIGHT-clicks on the curve, a menu appears where we can choose between dashed, dotted and solid.

Error messages
function error_msg(msg)

```
% Inactivate all other windows using a modal
% dialogue
figure('Units', 'centimeters', ...
    'Position', [15 15 4 2]
    'Color', [1.0 0.5 0.5], ...
    'MenuBar', 'None',
    'NumberTitle', 'Off',
    'WindowStyle', 'Modal', ... % Note
    Name', 'Error' );
axis('off')
% the error message
text(0, 0.7, msg, 'FontWeight', 'Bold')
% Remove the window when we have pressed OK
uicontrol( 'Style', 'PushButton',
    'Units', 'centimeters', ...
    'Position', [0.3, 0.3, 1, 0.7], ...
    'String', 'OK',
    'Callback', 'delete(gcbf)')
```

error_msg('Nothing to plot') gives:

function load_cb (handle, event)
pos $=$ [100 100]; \% [from_left, from_top], in pixels filter $=$ '*.data';
[file_name, path_to_file] = ...
uigetfile(filter, 'title', 'Location', pos);
file_name, path_to_file \% We usually don't print

>> load_file

file_name $=$ test.data
path_to_file $=/$ users/math/thomas/

There is a function for this in Matlab:
errordlg('message', 'title', 'modal'.)
This is one of several such functions. See help or the manual.

Predefined Dialog Boxes

- dialog Create and display dialog box
- errordlg Create and display error dialog box
- helpdlg Create and display help dialog box
- inputdlg Create and display input dialog box
- listdlg Create and display list selection dialog box
- msgbox Create and display message dialog box
- pagesetupdlg Display page setup dialog box
- printdlg Display print dialog box
- questdlg Display question dialog box
- uigetdir Display standard dialog box for retrieving a directory
- uigetfile Display standard dialog box for retrieving files
- uigetpref Display dialog box for retrieving preferences
- uiputfile Display standard dialog box for saving files
- uisave Display standard dialog box for saving workspace variables
- uisetcolor Display standard dialog box for setting an object's ColorSpec
- uisetfont Display standard dialog box for setting an object's font characteristics
- waitbar Display waitbar
- warndlg Display warning dialog box

```
                    134
```


Animation in Matlab

Example: we would like to animate a square that bounces inside a rectangle. We assume that the square always hits a wall at a 45 degree angle and that no energy is lost in the contact.
Here is a simple solution:

```
function test5
global min_x max_x min_y max_y v cont
% initial position for square
x = 3 * [0 1 1 0]' + 15;
y = 3*[[0 0 1 1 [ ' + 15;
hf = figure;
set(hf, 'DeleteFcn', @clean_up)
% plot square
h = fill(x, y, 'r');
axis equal
min_x = 0; max_x = 90; min_y = 0; max_y = 31;
% boundingbox
axis([min_x max_x min_y max_y])
set(gca, 'xtick', [], 'ytick', [])
v = [1 1]; % initial direction
cont = 1;
while cont
% drawnow }\quad%\mathrm{ update screen 
    update_pos(h)
end
```

drawnow or pause is needed to flush the queue for graphics events, otherwise all the events will accumulate and nothing is plotted.

135

```
function clean_up(obj, event)
% called when we delete the window
global cont
cont = 0;
```

Another way to update the image is to use a so-called timer object. A timer object is similar to a clock that runs in parallel with ones program (a separate thread).
The clock can be set up so that it calls a callback routine at times $t_{0}, t_{0}+\delta_{t}, t_{0}+2 \delta_{t}, t_{0}+3 \delta_{t}, \ldots t_{0}$ is called start delay and δ_{t} period. Java must be enabled for this to work.
First some simple examples.

```
> t = timer('TimerFcn', 'disp(''tic'')',
                                    'ExecutionMode', 'fixedSpacing', ...
                                    'Period', 1, 'TasksToExecute', 5)
```

 Timer Object: timer-1
 Timer Settings
 ExecutionMode: fixedSpacing
 Period: 1
 BusyMode: drop
 Running: off
 Callbacks
 TimerFen: 'disp('tic')'
 ErrorFcn: ',
 StartFen: ,'
 StopFen: ',
 >> start (t)
tic
tic
tic
tic
tic

```
>> get(t, 'Running')
ans = off
>> delete(t)
% make a new timer
>> t = timer('TimerFcn', 'disp(''tic'')',
    'ExecutionMode', 'fixedSpacing', ...
    'Period', 10, 'TasksToExecute', 5);
>> start(t)
tic
>> get(t, 'Running')
ans = on
>> stop(t)
>> delete(t)
% make a new timer
>> t = timer('TimerFcn', 'disp(''tic'')', ...
    'ExecutionMode', 'fixedSpacing', ...
    'Period', 10, 'TasksToExecute', 5);
>> start(t)
tic
tic
>> delete(t)
Warning: One or more timer objects were stopped
    before deletion.
% make two new timers
>> t1 = timer('TimerFcn', 'disp(''tic_1'')', ...
    'ExecutionMode', 'fixedSpacing', ...
    'Period', 1, 'TasksToExecute', 5);
>> t2 = timer('TimerFcn', 'disp(''tic_2'')',
    'ExecutionMode', 'fixedSpacing', ...
    'Period', 1, 'TasksToExecute', 5);
```

Here are some of the most important properties of a timer object.

- BusyMode Action taken when a timer has to execute Timerfen before the completion of previous execution of TimerFin 'drop', do not execute the function. (default).
'error', generate an error.
'queue', execute function at next opportunity.
- ExecutionMode Determines how the timer object schedules timer events. 'singleShot' (default), 'fixedDelay', 'fixedRat 'fixedSpacing'.
- Period Specifies the delay, in seconds, between executions of TimerFen
- Running Indicates whether the timer is currently executing.
- StartDelaySpecifies the delay, in seconds, between the start of the timer and the first execution of the function specified in Timerfon
- Startfen Function the timer calls when it starts.
- Stopfen Function the timer calls when it stops.
- Taskstoexecute Specifies the number of times the timer should execute the function specified in the Timerfen property.
- Timerfon Timer callback function.
- UserData User-supplied data.

More deails about ExecutionMode The duration of the lag depends on what other processing Matlab happens to be doing at the time.

```
singleShot
Timererxecutes
start lag TimerFcn timer stops
start lag TimerFcn timer
    start
    delay
```

>> start(t1)
tic_1
tic_1
>> start(t2)
tic_2
tic_1
tic_2
tic_1
tic_2
tic_1
tic_2
tic_2
>> timerfind

```
Timer Object Array
    Index: ExecutionMode: Period: TimerFcn:
    1 fixedSpacing 1 'disp('tic_1')'
    fixedSpacing \(1 \quad\) 'disp('tic_2')'
>> delete (timerfind)
>> timerfind
ans \(=\)
    []
\% make a new timer
>> \(\mathrm{t}=\mathrm{timer}\left({ }^{\prime}\right.\) TimerFcn', 'disp(''tic'')',
                        'ExecutionMode', 'fixedSpacing', ...
                        'Period', 1, 'TasksToExecute', 5);
>> start (t); wait(t) \% block the command line
Possible to have 'TasksToExecute', Inf
139

Here are the other three cases:
\[
\begin{aligned}
& \text { fixedSpacing: } \\
& \text { |lag|TimerFcn|<---- period ---->|lag|TimerFcn| } \\
& \text { fixedDelay: } \\
& \text { |lag|TimerFcn| } \quad \text { |lag|TimerFcn| }
\end{aligned}
\]

\section*{fixedRate:}
\[
\begin{aligned}
& \text { <---- period ----> } \\
& \text { |lag|TimerFcn| |lag|TimerFcn| }
\end{aligned}
\]

Here is a code for the bouncing squre using timer objects.
```

function test55
global min_x max_x min_y max_y
hf = figure;
% Can stop the square by clicking in the window
% outside the plot area (stop_go).
% When we close the window clean_up is executed.
set(hf, 'ButtonDownFen', @stop_go, ...
'DeleteFcn', @clean_up)
hold off
x = 3 * [00 1 1 0 0]' + 15; % same as before
y = 3 * [0 0 1 1]' + 15;
h = fill(x, y, 'r');
axis equal
min_x = 0; max_x = 30; min_y = 0; max_y = 51;
axis([min_x max_x min_y max_y])
set(gca, 'xtick', [], 'ytick', [])

```
```

% Create timer and define properties
t = timer;
set(t, 'TimerFcn', @my_update, 'StartDelay', 0, ...
'TasksToExecute', Inf, 'Period', 0.015, ...
'ExecutionMode', 'fixedSpacing',
'BusyMode', 'drop');
v = [11 1];
set(t, 'UserData', {h, v}) % store h and v in Userdata
set(hf, 'UserData', t) % store handle to timer in figur
start(t)
% --
function my_update(obj, event)
global min_x max_x min_y max_y
ud = get(obj, 'UserData'); % obj = timer
h = ud{1};
if ~ishandle(h) % just to be sure...
disp('no handle')
stop(t)
delete(t)
return
end
v = ud{2};
x = get (h, 'xdata');
y = get (h, 'ydata');
% same as before
off_y = y(3) >= max_y || y(1) <= min_y;
if x(2) >= max_x || x(1) <= min_x
if off_y
v = -v;
set (h, 'Facecolor', 'g')
else
v = [-v(1), v(2)];
142

```
```

 set(h, 'Facecolor', 'b')
 end
 elseif off_y
v = [v(1), -v(2)];
set (h, 'Facecolor', 'y')
end
x = x + 0.2 * v(1);
y = y + 0.2*v(2);
set(h, 'xdata', x, 'ydata', y)
set(obj, 'UserData', {h, v})

```
\(\%\)
function clean_up (obj, event)
disp ('clean_up')
\(t=\) get (obj, 'UserData'); \% obj = figure
run \(=\) get ( \(t\), 'Running') ;
if run(1:2) \(==\) 'on' \(\%\) other is off
    stop (t)
end
delete ( \(t\) )
\%
function stop_go(obj, event)
\(t=\) get (obj, 'UserData'); \% obj = figure
run \(=\) get ( \(t\), 'Running') ;
if \(\operatorname{run}(1: 2)==\) 'on' \% other is off
    stop(t)
else
    start (t)
end
>> surf(rand (10))
>> get (1, 'Renderer')
ans = painters
>> shading interp
>> get (1, 'Renderer')
ans \(=\) OpenGL
>> opengl info
Version \(\quad=3.0 .0\) NVIDIA 180.51
Vendor \(\quad=\) NVIDIA Corporation
Renderer \(\quad=\) GeForce 9500 GT/PCI/SSE2
MaxTextureSize \(=8192\)
Visual \(\quad=0 \times 26\) (TrueColor, depth 24, RGB mask 0
Software \(=\) false
\# of Extensions \(=157\)
Driver Bug Workarounds:
\(\begin{array}{ll}\text { OpenGLBitmapZbufferBug } & =0 \\ \text { OpenGLWobbleTesselatorBug } & =0\end{array}\)
\(\begin{array}{ll}\text { OpenGLWobbleTesselatorBug } & =0 \\ \text { OpenGLLineSmoothingBug } & =0\end{array}\)
OpenGLLineSmoothingBug \(=0\)
OpenGLClippedImageBug \(=1\)
OpenGLEraseModeBug \(=0\)
>> opengl software
>> opengl info
Version \(\quad=1.5\) Mesa 6.0.1
Vendor \(\quad=\) Brian Paul
Renderer \(\quad=\) Mesa X11
MaxTextureSize \(=2048\)
\(\begin{array}{ll}\text { Visual } & =0 \times 21 \text { (TrueColor, depth 24, RGB mask } 0\end{array}\)
Software \(=\) true
\# of Extensions \(=96\)
Driver Bug Workarounds: etc.

\section*{Vectors and points}

Important to distinguish between point and vectors in computer graphics, so here comes a short review. A vector is an equivalence class (think set) of directed line segments that share the same length and direction. One of the segments is a representative of the vector.
The left image shows some representatives of the vector.


There are infinitely many representatives. A point, however, is a unique object. \(P\) and \(Q\) are two points (right image).

Two points define a vector: \(v=Q-P\) is the vector which starts in \(P\) and goes to \(Q\). A point and a vector define a new point: \(Q=P+\boldsymbol{v}\). A single point, \(P(\) or \(Q\) ) does not define a vector. A vector does not define a point, either.


A basis is a set of linearly independent vectors such that all vectors (in the space) can be written as a linear combination of the basis vectors. A vector has a coordinate representation in such a system. The left image shows a basis. It is common to draw the representatives starting at the same point.
Note, however, that we still do not have an origin.
Let us now forget the basis for a while, and instead introduce a special, fix point, the origin, \(\mathcal{O}\).


Given the origin we can get a 1-1 correspondence between vectors and points by using the representative starting in \(\mathcal{O}\) and ending in the \(P\) (Sw. ortsvektor). In the right image \(\boldsymbol{v}\) corresponds to the point \(P\).

A coordinate system is an origin together with a basis. A point and a vector has a coordinate representation in such a system. We will use ON-systems (orthogonal and normalized basis).

In computer graphics it is common to change coordinate systems. Suppose we would like to produce the following image (the coordinate system should not be included).


A cumbersome way is to create absolute coordinates for the corners of the polygon.
```

x = [lllllloll
% initial position
fill(x, y, 'k') % draw one polygon
hold on
x = [7.3149 9.3149 ...]; % new coordinates
y = [2.4442 2.4442 ...];
fill(x, y, 'k')
% draw the next polygon

```

More convenient is to design ONE polygon in a "design coordinate system", using so-called modeling coordinates.


We draw the polygons by translating the coordinates:
```

x = [lllllllll
y = [-1 -1 1 2 1]; % using modeling coordinates
for k = 1:16 % number of polygons
dx = ...; dy = ...; % translate
fill(dx + x, dy + y, 'k')
hold on
end

```

The above is the normal way in Matlab, but in most, low level, graphics systems one would do like this instead:
```

for k = 1:16
make a temporary translation of the coordinate
system to where the polygon should be drawn
draw_polygon() % draw using modeling coordinates
translate back
end

```
draw-polygon knows only about the modeling coordinates. To move points (using dx and dy) or to move a coordinate system are two sides of the same coin.
We will look at this in more detail later on.
Note, also that we no longer talk about functions. We do not plot \(y=f(x)\). Instead we create sets of points and these points can be given different interpretations.
\begin{tabular}{ll} 
plot \((x, y)\) & \% solid curve \\
plot \(\left(x, y, o^{\prime}\right)\) & \% separate points \\
fill \(\left(x, y, \mathbf{k}^{\prime}\right)\) & \% polygon
\end{tabular}
etc.

Example: Show that the inverse transformation, \(M^{-1}\), exists when \(\boldsymbol{A}\) is nonsingular, and that:
\[
M^{-1}=\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & -A^{-1} t \\
0 & 1
\end{array}\right]
\]
\(M\) can be factored as:
\[
\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
I & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} t \\
0 & 1
\end{array}\right]
\]

So \(M\) can be written as a product of a linear transformation followed by a translation (which is no surprise). The reverse is true, if \(A^{-1}\) exists.

Let us see how \(M\) transforms a straight line. Use \(s\) as parameter and write the line in the following form:
\[
L(s)=P+s W
\]
where \(P\) is a point and \(W\) is a vector. How do we write a vector in homogeneous coordinates? We change the 1 to a \(0 . W\) can be interpreted as \(w_{x} e_{1}+w_{y} e_{2}+w_{z} e_{3}+0 \cdot \mathcal{O}\), so a vector is a linear combination of the basis vectors. We wrote a point, in homogeneous coordinates, as: \(w_{x} e_{1}+w_{y} e_{2}+w_{z} e_{3}+1 \cdot \mathcal{O}\). A point is a vector plus a point, in other words.
\(M\) maps a vector this way ( \(w\) is the coordinate part):
\[
\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
0
\end{array}\right]=\left[\begin{array}{c}
A w \\
0
\end{array}\right]
\]

Note that \(t\) is not included. It is not meaningful to translate a vector.

\section*{Some transformations}

We would like to transform points given in homogeneous coordinates. What types of transformations do we need? Scaling, rotation and translation. Linear transformations are not sufficient, since they map the origin onto the origin (which excludes translation). We need an affine transformation (linear plus translation). Using homogeneous coordinates we can write the transformation as a matrix-vector multiply, where the matrix is given by:
\[
M=\left[\begin{array}{ll}
A & t \\
0 & 1
\end{array}\right]
\]
\(A\) is a \(3 \times 3\)-matrix in the 3 D -case, and \(t\) is a \(3 \times 1\)-matrix.
A point, \(P_{2}\), in 2 D and a point, \(P_{3}\), in 3 D can be written:
\[
P_{2}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right], \quad P_{3}=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
\]

Let \(p\) denote the \(x, y\)-part, the \(x, y, z\)-part in the 3D-case. Then
\[
P_{2}=\left[\begin{array}{l}
p \\
1
\end{array}\right], \quad P_{3}=\left[\begin{array}{c}
p \\
1
\end{array}\right]
\]

Let us see how \(M\) transforms a point. \(P\) is a 2 D - or 3D-point.
\[
M P=\left[\begin{array}{ll}
A & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
1
\end{array}\right]=\left[\begin{array}{c}
A p+t \\
1
\end{array}\right]
\]
\(\boldsymbol{A p}\) corresponds to a linear part and \(+\boldsymbol{t}\) gives a translation. We get a pure translation by setting \(A=I\) (the identity) and a pure linear transformation (e.g. scaling, rotation) by taking \(t=0\).

\section*{151}

Our line is mapped as follows:
\[
\begin{gathered}
\left.\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right](P+s W)=\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
p \\
1
\end{array}\right]+s\left[\begin{array}{c}
w \\
0
\end{array}\right]\right]= \\
\underbrace{\left[\begin{array}{c}
A p+t \\
1
\end{array}\right]}_{\text {point }}+s \underbrace{\left[\begin{array}{c}
A w \\
0
\end{array}\right]}_{\text {new direction }}
\end{gathered}
\]

If \(A w=0(A\) is singular and \(w \in \mathcal{N}(A))\) the whole line is mapped to a single point.

Exercise: show that \(M\) maps planes onto planes and planar polygons onto planar polygons.
\[
\text { A translation example in } 2 \mathrm{D}
\]

We would like to translate the unit square so that the lower left corner ends up in \((1,1)\). It is sufficient to look at how the corners are translated, since we have seen that straight lines are mapped onto straight lines. Here are the corners in homogeneous coordinates:
\[
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
\]

We take \(A=I\) and \(t=[1,1]^{T}\), and apply the transformation, \(M\), on all four corners at the same time:
\[
\underbrace{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]}_{\text {corners }}=\underbrace{\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
1 & 1 & 2 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]}_{\text {transformed corners }}
\]
\(M^{-1}\) is given by taking \(t=[-1,-1]^{T}\), which is in correspondence with our intuition (I hope).

Exercise: suppose we make a series of translations (one \(M\) matrix for each). What is the \(M\)-matrix for the combined transformation.

\section*{Some scalings}

For a pure scaling we set \(t=0\) and \(A\) to a diagonal matrix with scale factors. Let us double the width of the unit square. The matrix is (in 2D):
\[
M=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]

The matrix
\[
M=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
\]
doubles the lengths of both sides and
\[
M=\left[\begin{array}{ccc}
0.5 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
\]
halves the width and doubles the height etc.

\section*{Two sides of the same coin}

Example: let us study how \(M\) transforms an arbitrary point \(P\) :
\[
M=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad P=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right], \quad M P=\left[\begin{array}{c}
p_{x}-p_{y}+1 \\
p_{x}+p_{y}+1 \\
1
\end{array}\right]
\]

This can be written in the following way:
\[
\begin{gathered}
M P=M[p_{x} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{e_{1}}+\underbrace{p_{y}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}_{e_{2}}+\underbrace{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}_{\mathcal{O}}= \\
p_{x} \underbrace{M\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{e_{1}^{\prime}}+\underbrace{M\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}_{e_{2}^{\prime}}+\underbrace{M\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}_{\mathcal{O}^{\prime}}=p_{x} e_{1}^{\prime}+p_{y} e_{2}^{\prime}+1 \mathcal{O}^{\prime}
\end{gathered}
\]

So, \(M P\), can be interpreted as using the original coordinates for \(P\), but in the transformed coordinate system \(\left\{e_{1}^{\prime}, e_{2}^{\prime}, \mathcal{O}^{\prime}\right\}=\) \(\left\{M e_{1}, M e_{2}, M \mathcal{O}\right\}\).

So, in the first interpretation we change the point's coordinates, but keep the original coordinate system.
The second interpretation keeps the original coordinates for the point, but we transform the coordinate system.

In this particular example the new coordinate system is given by:
\[
e_{1}^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad e_{2}^{\prime}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \quad \mathcal{O}^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]

155

\section*{Rotations in 2D}

We would like to rotate points an angle \(\psi\), ccw (counter clockwise) around the origin. Here is \(M\) :
\[
M=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]
\]

We can simplify the analysis of \(M\) by looking at how the coordinate system is transformed. Since \(M\) is linear (no translation) the origin is mapped onto the origin. So if we take a point at the end of each coordinate axis we can see how the coordinate system is transformed.
\[
M=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi \\
1 & 1
\end{array}\right]
\]

The dashed lines gives a rotated system. \(p_{x}, p_{y}\) are the original coordinates.


\section*{Combined transformations}

Let us study \(M=T R\) and \(M=R T\) where \(T\) is a translation and \(R\) is a rotation. Set \(C=R(1: 2,1: 2)\). We get:
\[
\begin{gathered}
R T=\left[\begin{array}{ll}
C & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
I & t \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
C & C t \\
0 & 1
\end{array}\right] \\
T R=\left[\begin{array}{ll}
I & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
C & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
C & t \\
0 & 1
\end{array}\right]
\end{gathered}
\]

Both products have the same structure, but in the \(R T\)-case, the translation vector has been multiplied by \(C\), i.e. \(t\) has been rotated.

The following images show \(R T\) and \(T R\) acting on the unit square. The dotted unit squares shows the situation after the first step of the transformations has been applied. The dashed lines show the final result. As usual it is sufficient to look at the corners.



158

\section*{OpenGL and transformations}

Let us return to the \(R T, T R\)-example and see how this is done in OpenGL (at least in principle, all the details will come later). Suppose we do the following function calls in OpenGL (... marks parameters that we skip for the time being):
```

Call
glLoadIdentity(); M = I // M = Model matrix
glRotatef(...); M = M* R // affects coming
glTranslatef(...); M = M* T // points
glVertex3fv(point); // plot(M* point) (roughly)

```

First we note that OpenGL uses post-multiplication, every new transformation matrix is multiplying \(M\) from the right. Premultiplication would multiply \(M\) from the left. So, after the calls, \(M=R T\) even though we made the Rotate first and the Translate after.

To get \(M=T R\) we must first call Translate and then
Rotate. So why this strange order (post and not pre)? The reason is that post is the correct order if we take the view of transforming coordinate systems rather than points.

The following image shows how the coordinate systems are transformed (the same example as before, but now with coordinate systems and not squares/points). The original system is dashed, the next one (after the first transformation) is dotted and the last is plotted using solid lines.

Suppose we would like to rotate the unit square around an arbitrary point (not just around the origin). It is easy to perform the transformation in three steps.
Pick \((1,1)\) as the point (the upper right corner of the square). Let \(T\) translate this point to the origin \(\left(t=[-1,-1]^{T}\right)\). The following sequence gives the requested transformation: \(M=\) \(T^{-1} R T\). In words: translate the point of rotation to the origin, rotate around the origin, translate back.
Note that \(T^{-1}\) corresponds to a translation with \(t=[1,1]^{T}\).
The following image shows the steps. I have increased the linewidth in each step.


159


TRP


In the first image \(M=R T\), so the order of the OpenGL-calls are Rotate, Translate. The dotted system is rotated relative the original. The solid has been translated relative the rotated system. The unit square is drawn using the last system.

When \(M=\boldsymbol{T} \boldsymbol{R}\) Translate is called first and then Rotate. The dotted system has been translated, and the next system has been rotated relative to the newly translated system. The unit square is drawn using the last system.

\section*{A common problem}

Suppose we have drawn an object (like in the house-example) in a nice coordinate system centered on the origin. We would like to place copies in different positions in the plane. Suppose the object should be placed in the four positions \((1,0,0)\), \((0,1,0),(-1,0,0)\) and \((0,-1,0)\). Assume that our C-routine, DrawObject () draws the object.

Will the following code sequence give the required result?
```

glLoadIdentity();
glTranslatef(1, 0, 0); // x = 1, y = 0 (z = 0)
DrawObject();
glTranslatef(0, 1, 0); // x = 0, y = 1 (z = 0)
DrawObject();
etc.

```

The answer is no! The second glTranslate can be interpreted relative to the translated system (made by the first Translate). The second object will be drawn in \((1,1,0)\), in other words.

It would be possible to, in the second glTranslate, correct for the first and write gltranslatef(-1, 1,0\()\); This will be rather complicated if we have many transformations.

A better alternative is to save the old coordinate system (the old \(M\) ) and make a temporary change. OpenGL has three matrix stacks (for different kinds of transformations). We are going to use the stack for the GL_MODELVIEW-matrix (in which \(M\) is a part).
```

glMatrixMode(GL_MODELVIEW); // Choose type of matrix
glPushMatrix(); // Save current M
glTranslatef(1, 0, 0); // x = 1, y = 0 (z=0)
DrawObject();
glPopMatrix(); // Fetch saved M
glPushMatrix(); // Save current M
glTranslatef(0, 1, 0); // x = 0, y = 1 (z=0)
DrawObject();

```
etc

Transformations in 3D
Here are the most common transformations in 3D. \(S=\) scaling, \(T=\) translation.
\[
S=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad T=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\]
\(\boldsymbol{R}_{x}=\) rotation ccw the angle \(\psi\) around the x-axis (when we look along the negative x-axis). Analogous for \(\boldsymbol{R}_{y}\) and \(\boldsymbol{R}_{z}\).
Let \(c=\cos \psi\) and \(s=\sin \psi\).
Note that we have the number one for the axis.
\(\boldsymbol{R}_{x}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & c & -s & 0 \\ 0 & s & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \boldsymbol{R}_{y}=\left[\begin{array}{cccc}c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \boldsymbol{R}_{z}=\left[\begin{array}{cccc}c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\)
To make more complicated transformations we can combine the above. Here is an example where we want to rotate the square around the dashed axis.


Rotate around z-axis


Back around z-axis


Rotate around y-axis


Rotate around y-axis


Back around \(y\)-axis年

\section*{A few exercises}
- Find the \(M\)-matrix that maps the rectangle, with corners in \((1,1),(3,3),(2,4)\) and \((0,2)\), onto the unit square.
- Find the \(M\)-matrix which maps the quadrilateral, with corners in \((0,0),(1,0),(2,1)\) and \((1,1)\), on the unit square. This is an example of a shear transformation.
- Let \(R(\psi)\) be a rotation matrix in 2 D . Why is it true that \(\boldsymbol{R}(\psi) \boldsymbol{R}(\varphi)=\boldsymbol{R}(\psi+\varphi) ?\) Use this equality to prove the additions laws: \(\sin (\psi+\varphi)=\sin \psi \cos \varphi+\cos \psi \sin \varphi\) etc.
- Find the \(M\)-matrix which mirrors the plane in the \(y\)-axis (i.e. the point \((x, y)\) is mapped onto \((-x, y)\) ).
- Do the same for the plane \(x=c\) ( \(c\) is a constant).
- Which \(M\)-matrices keep distances between (arbitrary) points?
- Which \(M\)-matrices preserve angles between vectors?
- Suppose we have two sets \(\mathcal{P}\) and \(\mathcal{Q}\) where each set contains three distinct points. Is there always an \(M\)-matrix which maps \(\mathcal{P}\) onto \(\mathcal{Q}\) ?
(Hint: think in geometrical terms.)
- Write a Matlab program that creates the image on the next page. The program should start with a square and then transform it. The second image contains two images of the above kind, on with the rotation \(R(\psi)\) and the other with \(R(-\psi)\).
- Use recursion in Matlab to draw some type of the Sierpinski triangle (last page).

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
```

set(gca, 'Projection', 'orthographic', ... % first plot
'CameraPosition', [-10 -1 2])}
set(gca, 'Projection', 'perspective', ... % second plc 'CameraPosition', [-10 -1 2])\}

```
 \\
170
\end{tabular} & \begin{tabular}{l}

 \\
171
\end{tabular} \\
\hline \begin{tabular}{l}
Projections, the modelview matrix \\
Transformations in a simple OpenGL-program.
```

 // Define the projection
 // Orthografic in this case
 glMatrixMode (GL_PROJECTION); // Projection matrix
 glLoadIdentity(); // Matrix = I
 glOrtho(-1,3, -1,3, 0,4); // Multiply
 ...
// Place the eye (camera).
// gluLookAt(eye_pos, look_at, up_direction)
glMatrixMode (GL_MODELVIEW); // Modelview matrix
glLoadIdentity(); // Matrix = I
gluLookAt(1,0,1, 0,0,0, 0,1,0); // Multiply

```
later in the program
// Create the transformation for coming points
gltranslatef(2, 0, 0); // transformations
glRotatef(... // etc.
// Points, affected by the above transformations
glColor3f(1, 0, 0); // Choose colour
glBegin(GL_QUADS); // Rectangle
    glVertex3f(0, 0, 0); // Define corners
    glVertex3f(1, 0, 0); // that are sent
    glVertex3f(1, 1, 0); // through the
    glVertex3f(0, 1, 0); // graphics pipeline
glend();
// We can modify CT (Current Transformation)
glTranslatef(1, 1, -1); // multiplies M
// and define new objects
glBegin(GL_QUADS);
\end{tabular} & \begin{tabular}{l}
The eye is initially in the origin looking along the negative z axis. The up-direction is along the positive y-axis. We can only see part of the room, the view volume, which is specified using glortho (for an orthografic projection) or by gluperspective (for a perspective projection). There are other routines as well. \\
glortho takes the following parameters: \\
 \\
The view volume is a box (rectangular parallelepiped). \\
Here is an example. I have created a square window and made the call: \\
glortho (-1,3, -1,3, 0,4); \\
gluLookAt has not been called so the eye remains in the initial position. The image contains four squares and a coordinate system placed in the origin. So initially the eye is located in the origin and is looking at the red square. Here is the plot window.
\end{tabular} \\
\hline
\end{tabular}

This Matlab-plot shows the situation from another direction. The view volume is marked with dashed lines.


In this example the read square lies in the "near plane". If we increase near the near plane is moved away from the eye (more negative \(\mathbf{z}\) ). Part of the scene will clipped away (one talks about the near clipping plane, as well). In the same way we get clipping if we move the "far plane" towards the eye (if we decrease far).
We can get clipping in the x - and y -directions as well.
To see something more than the red square we can move the objects or, equivalently, move the eye.

Here is the window after the following call:
\[
\text { gluLookAt }(2,2,2,0,0,0,0,1,0) \text {; }
\]

Note that the view volume is "attached" to the eye (like one has glued the view volume to the front of ones head). The volume is not "deep" enough, one corner is clipped.


Here is a Matlab illustration, from an other angle:


175

The transformation of points correspond to matrix multiplications which generate the model matrix, \(M\) (each transformation updates \(M\) ). How does gluLookAt work? We can change the view in two (equivalent) ways.
- We move the eye but not the points.
- We move the points but not the eye. This corresponds to extra modeling transformations.
So suppose we set the view first and then apply modeling transformations. This can be seen a matrix multiplication using a view matrix, \(V\), computing \(M=V M\). Note that only the product, \(V M\), is stored, and we refer to the product as the modelview matrix. Let us look at two simple examples.
gluLookAt ( \(0,0,1,0,0,0,0,1,0\) ) ;
The eye should be placed in \((0,0,1)\) and look at the origin, ( \(0,0,0\) ).
The up direction is \((0,1,0)\) (the \(y\)-axis). We can generate this view by translating all points by \((0,0,-1)\) (one step along the negative z-axis). The view matrix, \(V\), should consequently be:

1000
01000
\(0 \quad 0 \quad 1 \quad-1\)
0001
We can check that is the case, using the following code sequence:


On its way to the screen a point will undergo several transformations. The point is sent through a graphics pipeline.

A somewhat simplified picture, and only for orthografic projections, looks like this:
- The point is first multiplied by the modelview matrix. Note that this matrix can be changed at a later stage.
These, later, changes do not affect our point. The current matrix is often called CT (Current Transformation). We send a point through the pipeline by using glVertex
- The next step is multiplication with the projection matrix which has been created by glortho (or gluperspective). This matrix transforms the point so that they reside in the standard cube ( \((-1,1)\) in each dimension).
This step is more complicated for perspective projections. The direction of the z -axis is reversed, so that increasing values of z correspond to a larger distance from the eye.
After this step the objects are usually deformed, but that is fixed in the last step.
- Clipping (removal of parts outside the standard cube) is the next step. The clipping has been made easier since we can cut against the sides of a cube.
- The last step is to map the standard cube onto a 3D "viewport", where \(x\) and \(y\) correspond to a rectangular part of the screen, and \(z\) lies in \([0,1]\). glviewport sets up the viewport; more about this later.


Let us set the viewport: glViewport (20, 20, 60, 360); The lower left corner of the viewport is 20 pixels to the right and above the lower left corner of the window. The width of the viewport is 60 pixels and the height is 360 . So the ratio between height and width is six, which is the same ratio we had in glortho, \(0 \leq x \leq 1,-1 \leq y \leq 5\). This causes the square to get correctly scaled.


An example of a projection matrix. Suppose we have made the call:

\section*{glortho (0,1, -1,5, 0,4);}

The projection matrix, \(P\), should map the view volume onto the standard cube. The first step is to make a translation (the centre of the view volume should be mapped to the origin) and then a scaling so that all sides has length two.

In our example, the view volume is defined by: \(0 \leq x \leq 1\), \(-1 \leq y \leq 5\) and \(-4 \leq z \leq 0\). So the following transformation should work:
\[
T=\text { eye }(4) ; T(1: 3,4)=[-0.5 ;-2 ; 2] \% \text { translate }
\]
and then scale
\[
S=\operatorname{diag}\left(\left[\begin{array}{llll}
2 & 1 / 3 & -1 / 2 & 1
\end{array}\right]\right) \%-1 / 2, \text { reversal of } z \text {-axis }
\]

The product \(\mathbf{S}\) * T is what OpenGL produces as well:
GL_PROJECTION_MATRIX
\begin{tabular}{rrrr}
2 & 0 & 0 & -1 \\
0 & 0.333 & 0 & -0.667 \\
0 & 0 & -0.5 & -1 \\
0 & 0 & 0 & 1
\end{tabular}

On the next page I have plotted the unit square using the view volume above and without moving the eye. The window was \(400 \times 400\) pixels and the viewport had the same dimension as the window.
We can see that the square is deformed.


The basic painter's method:
1. compute the centre of mass (for example) for each polygon
2. sort the polygons according the z-coordinates of the centres
3. paint the polygons, in order of increasing z-coordinates

The depth buffer (z-buffer) method. We have a matrix (z-buffer) containing the distances from a point to the eye and a "framebuffer" (image memory) where we store the pixels.
set all element in the \(z\)-buffer to the distance to the back clipping plane
```

for each polygon
for each pixel, with coords. (x, y, z), in the polygo
if z < z_buffer(x, y) then
z_buffer(x, y) = z
framebuffer (x, y) = the colour in (x, y, z)
end if
end
end

```

In Matlab we can choose between several methods:
```

>> h = figure;
>> set(h, 'Renderer')
[{painters} | zbuffer | OpenGl | None]

```

None gives no rendering at all.
Here are some pros and cons with the different methods. painters: fast for simple figures, users vector graphics (lineto, moveto), good for PostScript, gives high resolution. Cannot handle light, transparency or 24 -bit colour surfaces. Can draw incorrect figures (example next page).
zbuffer: uses bitmap (raster) graphics, faster than painter's (when complex figures), can use a lot of memory, can cope with light but not transparency.
opengl: uses bitmap (raster) graphics, the fastest for complex scenes (tries to use the machine's graphics hardware), can handle both light and transparency, but not Phong shading (later).

set (h, 'Renderer', 'painters')

set (h, 'Renderer', 'zbuffer')
188
opengl sometimes renders images in an incorrect way.
A disadvantage with both zbuffer and opengl is that the PostScript files can be very large.
```

>> peaks % a demo-command that draws a surface
>> set (1,'renderer')
[{painters} | zbuffer | OpenGL | None]
>> print -depsc peak_paint.eps
>> set(1,'renderer', 'zbuffer')
>> print -depsc peak_z.eps
>> set (1,'renderer', 'opengl')
>> print -depsc peak_ogl.eps
>> !ls -s peakt
6384 peak_ogl.eps 432 peak_paint.eps }6384\mathrm{ peak_z.eps

```

So the raster images require more than fifteen time as much space. It is possible to change the print-resolution (help print, see the \(-r\) option).

Note that opengl gives much faster graphics, on the mathmachines. Very useful if we want to rotate a complex image, for example. The following images show one major disadvantage with the painters algorithm in Matlab.

\section*{A few words about colours}

The eye has two kinds of receptor cells. The cones are coloursensitive and the rods that cannot distinguish colour nor see fine details. Each eye has \(6 \cdot 10^{6}-7 \cdot 10^{6}\) cones, each with its on nerve cell, making it possible to see fine details.
The cones are concentrated in a small area, the fovea, in the centre of the retina. The fovea, also called the "yellow spot" is less than 1 square millimeter.

The number of rods is \(75 \cdot 10^{6}-150 \cdot 10^{6}\), and many rods are attached to one nerve cell. The rods are spread out over the retina surrounding the fovea. The rods are use for night vision, and they will not be of interest in the following discussion.

Humans have three types of cones, sensitive to yellowish-green light (Long wavelength), bluish-green (Medium) and blue-violetish (Short) respectively. The last type is much less sensitive. The peak wavelengths are \(564 \mathrm{~nm}, 534 \mathrm{~nm}\), and 420 nm respectively.

This (trichromatism) is the reason it is sufficient with three types of phosphors in a television tube and why we can use the RGB-system of colours in computer graphics.

Phosphor should not mixed up of with Phosphorus, one of the elements (symbol P). A typical phoshor is zinc sulfide with a few ppm of copper. When bombarded by electrons this phosphor will produce a green colour.
For more details: http://en.wikipedia.org/wiki/Phosphor
Not all animals have three types of cones, chickens have as many as 12 kinds of receptors, for example.

Not all humans have a complete set of cones; colour blindness. About \(10 \%\) of males and \(1 \%\) of females have some form of deficiency in their colour vision. The most common is a lack of receptors for the L-cones (protanopia) or for the M-cones (deuteranopia). This makes it hard to distinguish between red and green.
Note that even people with a full set of cones are less sensitive to blue. This is one reason why it is bad to present fine detail (e.g. small text) in blue on a black background. This is, unfortunately, not so uncommon on the web, and it makes for hard reading.

The RGB-system is the most common colour system in computer graphics. A colour is described by the amounts of the primary colours, red, green and blue. The minimum amount is zero and if the maximum amount is one, the RGB-triple \([1,0,0]\) corresponds to red. \([0,0,0]\) is black and \([1,1,1]\) is white. [ \(0.9,0.9,0.9]\) is light gray etc.

There are other colour systems. In the HLS-system we use hue (the type of colour from the spectrum), lightness and saturation (the intensity of the colour, the purity) instead.

Of more interest, in this course, is the CMY-system. Cyan, Magenta and Yellow are the so called complementary colours of red, green and blue. Complementary, in the sense that cyan + red \(=\) magenta + green \(=\) yellow + blue all equal white. So the RGB-triples for cyan is \([0,1,1]\), magenta has \([1,0,1]\) and yellow [1,1,0].

The RGB-system is an additive colour system, we add R, G and B, to black, to get our colour. In a subtractive system, like CMY, we start with white light and remove colours (think of using a filter) to produce the colour.

There are problems mixing colour systems, since physical devices such as a monitor or printer may have different colour ranges (usually called the colour gamut of the device). The colour gamut of a printer is usually a subset of that of a monitor. The primaries R, G and B may different on different monitors, as well. It is not uncommon that a colour image looks different on two different systems.

Even if an RGB-colour on the monitor is representable on the printer the relationship may be complicated. There are commercial systems, colour samples on paper with a unique code (like when you buy a new car or wallpaper; the systems, for printing, are not free, however). On can pick the colours one needs and tell the printer the codes. The printer should know how to produce the correct colours given the codes.

On the math-computers we have so called 24-bit colour (often called true colour). Each pixel is represented by three bytes, one each for red, green and blue. The total number of different colours is \(\left(2^{8}\right)^{3}=2^{24}=16777216\). Each byte can store an unsigned integer between 0 and 255 . So white is represented by the RGB-triple [ \(255,255,255]\).

On older systems a colour look-up table (CLUT) was often used. Think of the CLUT as being a matrix, with three columns, one for each of the primaries. The number of rows equals the number of colours (a power of two, so 64,128 or 256 colours, perhaps).

The pixels in the image store a row index, into the CLUT (so this is often called indexed colour). Using 256 rows in the CLUT makes the required memory for the image smaller (only one byte per pixel instead of three).

To see how this works let us take the CMY-triple \([0.4,0.5,0.2]\). The corresponds to the RGB-triple \([1,1,1]-[0.4,0.5,0.2]=[0.6,0.5,0.8]\). To describe the "subtraction" we let white light pass through three filters.

The first has the CMY-triple \([0.4,0,0]\) (corresponding to RGB [ \(0.6,1,1]\), looks like light cyan). This filter will remove 0.4 of red. The next filter has CMY \([0,0.5,0]\) (RGB [1,0.5,1], light magenta) and it removes 0.5 of green. The last filter, finally, has CMY \([0,0,0.2]\) (RGB [1,1,0.8], light yellow) removes 0.2 of blue. The resulting colour is RGB \([0.6,0.5,0.8]\) (a kind of grayish purple, I think it looks like).

This is interesting when we, later, are going to look at the diffuse reflection of light. Suppose white light is reflected from a non-shiny surface, having the RGB-colour \([0,1,1]\). The reflected light is void of red. (Reflection from shiny surfaces tend to be white, regardless of the colour of the surface.)

This is used in printing, where the CMYK-system is common. K stands for black (you can find the etymology below). Mixing cyan-coloured pigments into a colourless paint will remove the red colour component from the incoming white light and reflect green and blue. Mixing C, M and Y would, in theory, remove all the light giving a black surface. So why is a separate black ink used for printing?

There are several reasons, according to Wikipeda: the mix of CMY becomes "a dark murky color". Using so much ink would make the paper wet, requiring longer times for drying and high quality paper. It is easier to write details (text) using black, rather than having to mix three inks. Black ink may be cheaper.

One, very noticeable drawback is that each application (program) usually has its own CLUT. When one moves the mouse between windows, different CLUTs are used, but since a particular CLUT is used for all the windows on the screen there will be a lot of colour flashes.

\section*{Some etymology (with web-sources):}
magenta: 1860, in allusion to the Battle of Magenta, in Italy, where the French and Sardinians defeated the Austrians in 1859, because the brilliant crimson aniline dye was discovered shortly after the battle.... www.etymonline.com

About K for black: In printing, a key plate was the plate which printed the detail in an image. When printing color images by combining multiple colors of inks, the colored inks usually did not contain much image detail. The key plate, which was usually impressed using black ink, provided the lines and/or contrast of the image... www.wikipedia.org

Gamut: Medieval Latin gamma, lowest note of a medieval scale (from Late Latin, 3d letter of the Greek alphabet)
1: the whole series of recognized musical notes
2: an entire range or series "ran the gamut from praise to contempt" www.m-w.com

\section*{Shading models}

Say we want to draw a green billiard ball. Here are some example showing increasing levels of realism. Wire frame (left image), hidden surface removal (right).


Adding light: flat shading (left image), one colour for each polygon. We can smooth out the colours: Gouraud- or Phongshading. Add highlights, "specular light" (right image).


194

Two types of light sources:
- Point sources (can shine in all directions, like the Sun, or in a limited cone, like a spotlight). We can have distant light sources (the Sun) or local (a table lamp). It is faster to do the computations for distant light sources since only direction and not actual distance has to be considered.
- Ambient light (surrounding) gives a general level of light in the scene. This light source has not position or direction; light is spread equally in all directions. Since OpenGL does not handle the reflection, refraction etc. of light in a realistic manner it must be faked. Without ambient light we get sharp contrasts in the scene. Too much ambient gives a watered down, insipid look.

Från Merriam-Webster: www.m-w.com
Etymology: Latin ambient-, ambiens, present participle of ambire to go around, from ambi- + ire to go - more at
ISSUE.
Date: 1596
: existing or present on all sides : ENCOMPASSING

We do not set the colour using RGB-vectors, instead there are intensities for the light sources and material properties (reflection coefficients) for the objects (points) in the scene.

The ambient light has intensity \(I_{a}\), really one for each of the primaries, so så \(I_{a r}, I_{a g}\) och \(I_{a b}\). Let \(I_{a}\) stand for one of them. Each corner of each polygon has a reflection coefficient for ambient light \(\rho_{a}\) (or rather \(\rho_{a r}, \rho_{a g}\) och \(\rho_{a b}\) ). The corner gets the light contribution \(\rho_{a} I_{a}\) (for each primary). The colours of the corners will later be used to colour the whole surface of the polygon.

Shading does nor mean "shadows", but it means to color so that the shades, of colour, pass gradually from one to another.

We would like to mimic different surface textures and materials: balls for billiards, tennis. Steel, copper etc. OpenGL does not support the rendering of shadows, or realistic reflection and refraction. If you have such needs look at the links (raytracing).

OpenGL does the light computation for each polygon and then each pixel at a time. Shadows, reflection take too much time, and are faked, but some physics is used.

In the following image the green * marks the light source. Note that the sphere, to the left, gets as much light as the one to the right, even though the left one is hidden.


Normal vectors will be important as will the location of the eye and the direction of the incoming light. We can make the computations for each of the primaries separately and then add the resulting components at the end.

195

We now look at light having a direction, and we will see how much is reflected to the eye.

(a)

(b)

(c)
(a) shows specular reflection (billiard ball)
(b) shows diffuse reflection (tennis ball). The reflected light is spread equally in all directions.
(c) shows transparency and refraction. Transparency can be simulated in OpenGL and Matlab.

We start with diffuse reflection. Since the light is spread equally in all direction the position of the eye does not affect the light computation (as long as the eye sees the front of the polygon). The position of the polygon relative to the light source is of importance, however.


Suppose that the ray has width \(w_{r}\). It should be spread out over an interval, of length \(w_{x}=w_{r} / \cos \psi\), along the x-axis.

The intensity of the light, along the x-axis, is proportional to \(1 / w_{x}\) i.e. to \(\cos \psi\). So if the incoming light has intensity \(I_{d}\), the reflected light has intensity \(\rho_{d} I_{d} \cos \psi\) (for each primary).
This is called Lambert's law.
We can use vectors to compute \(\cos \psi\).
Let us only consider solid objects having outward normals. Note that OpenGL does not compute normals for us (Matlab does) so we have to fix them.

Let \(L\) be the normalized direction to the light source, and let \(n\) be the normal to the surface in the point where the ray hits, then \(\cos \psi=L \cdot n\).
If \(L \cdot n<0\) the backside of the polygon is hit by the light, but according to our assumption we cannot see that side, so the intensity becomes:
\[
\rho_{d} I_{d} \max [L \cdot n, 0]
\]

It is common to take \(\rho_{a}=\rho_{d}\).

More etymology:
Main Entry: specular
Etymology: Latin specularis of a mirror, from speculum
Date: 1661
: of, relating to, or having the qualities of a mirror

This is how the intensity varies with \(f\) :
From left to right: \(f=1,10,100\)


The following image shows, from right to left, specular, diffuse and ambient. The last sphere is rendered using all three.


The colour of the light matters as well. If we use red light on a green sphere (using only diffuse), it will be black. The reason an object is green is because it reflects green light.

If we have a local light source (not the Sun, say) the distance is taken into account. The intensity of the source should decay as \(1 / r^{2}\) (where \(r\) is the distance), but this does not look realistic, so the programmer can set up a fake decay rate: \(1 /\left(a+b r+c r^{2}\right)(a, b\) and \(c\) can be adjusted).

Next, specular reflection. If we have a perfectly polished surface and a spotlight is located in the \(L\)-direction, the eye will see a reflected ray only if it is located along \(r\).


Real-life surfaces are not perfect, so a more realistic model will show light also in the vicinity of the \(r\)-direction. The amount of reflected light should decrease when we move away from \(r\).
The Phong reflection model (Bui Tuong Phong, b. Vietnam, 19??-1998) tries to capture this behaviour. The intensity of the reflected light is
\[
\rho_{s} I_{s}(r \cdot v)^{f}
\]
\(r\) is as above and \(v\) is the normalized direction to the eye. \(f\) is the "specular reflection coefficient" and it measures how much the light is spread. A large \(f\) gives a small spread of light and a small \(f\) gives a large spread. OpenGL approximates the angle, by using the angle between \(n\) and \(L+v\) (which is \(\psi / 2\) if all the vectors lie in the same plane). This makes it unnecessary to compute \(r\) (faster).


We are now ready to add together the intensities. We should add over all light sources and for the three primaries: så:
\[
I=\frac{\rho_{a} I_{a}+\rho_{d} I_{d} \max [L \cdot n, 0]+\rho_{s} I_{s} \max \left[\frac{L+v}{\|L+v\|} \cdot n, 0\right]^{f}}{\text { distance }}
\]

It is possible to add a general ambient source, which is not bound to any point. There is also "emissive" color; an object can glow, for example. Finally there is a factor for spotlights, which emit light in a cone.

We have now computed a colour in each corner, and it is time to colour the whole polygon, pixel by pixel. This can be done in several ways. If we use the same colour for all the pixels, one talks about flat shading. In this case we use one normal for the whole polygon. The surface gets a faceted appearance.

To create smooth shading we must create more normals (by calling glNormal). Suppose we have one normal in each corner. In Matlab there is support for Gouraud shading and for Phong shading. OpenGL only supports Gouraud shading.

Suppose this is the polygon, with corners a-d:


When colouring the polygon OpenGL works pixel-row by pixelrow (scan lines). Suppose pixel p should be coloured. In Gouraud shading we use linear interpolation of the intensities in a and c to get a value in p 1 . Similarly the intensities in b and d are combined to form a value in p2. Finally, the intensities in p1 and p 2 are combined to give the final value in p .

Phong shading gives a more realistic result, but it takes more time to compute. Here new normals are computed in p1 and p2 using linear interpolation (as for the intensities in Gouraud shading). Using linear interpolation we compute a new normal in \(p\). This new normal is used for doing the light computation in pixel p .

In this image one can (on the screen at least) see that Phong shading gives a less jagged highlight.


202


Not quite the normals we would like. Matlab produces normals to the polygons (it seems) but we would like to have the normals of the sphere. Like this:
```

for j = 1:11
for k = 1:11
N(j, k, 1) = X(j, k);
N(j, k, 2) = Y(j, k);
N(j, k, 3) = Z(j, k);
end
end
set (h, 'VertexNormals', N)

```

One cannot see any difference, however.
By setting the normals to a random matrix produces differences (when light has been switched on):
>> set (h, 'VertexNormals', randn(size(N)))

\section*{Normals in Matlab}

When we create polygons and surfaces in Matlab, the normals will be created for us. Consider the following code:
```

>> [X, Y, Z] = sphere(10); % type sphere for the code

```
\(\gg h=\operatorname{surf}(X, Y, Z\), ones (size(X)));
\(\gg\) get (h) \% part of the output
    XData \(=\) [ (11 by 11) double array]
    YData \(=\) [ (11 by 11) double array]
    zData \(=\) [ (11 by 11) double array]
    FaceLighting = flat
    EdgeLighting \(=\) none
    AmbientStrength \(=\) [0.3]
    DiffuseStrength \(=\) [0.6]
    SpecularStrength \(=\) [0.9]
    SpecularExponent \(=\) [10]
    SpecularColorReflectance \(=\) [1]
    VertexNormals \(=\) [ (11 by 11 by 3) double array]
\% Run this code...
hold on
N = get (h, 'VertexNormals');
\(\mathrm{d}=0.5\);
for \(j=1: 11\)
    for \(k=1: 11\)
        \(\mathbf{x}=\mathbf{X}(\mathbf{j}, \mathbf{k}) ; \mathbf{y}=\mathbf{Y}(\mathbf{j}, \mathbf{k}) ; \mathbf{z}=\mathbf{Z}(\mathbf{j}, \mathbf{k})\);
        \(n=[\mathbf{N}(\mathbf{j}, \mathbf{k}, 1) \mathrm{N}(\mathbf{j}, \mathbf{k}, 2) \mathrm{N}(\mathbf{j}, \mathrm{k}, \mathrm{3})]\);
        \(\mathrm{n}=\mathrm{d} * \mathrm{n} / \operatorname{norm}(\mathrm{n})\); \% not normalized
        plot3([x, x+n(1)], [y, y+n(2)], [z, z+n(3)], 'k')
    end
end
view (-3.5, 28)
axis equal
axis off

Why does the surface look smooth with Gouraud- and Phong shading? This is because we have one normal in each point, so the polygons coming together in a point share this normal. This gives a continuous variation over the edges.

This is not quite the case when we use the fill3-command. Here is an example. I have reused the cylinder example.

The first plot uses surf (and light etc). The lines are the normals (length 0.5).

The second plot uses fill3. I have reversed the direction of some normals. The four normals for one polygon have the same direction, so this gives something looking like flat shading.

In the third plot, I use the same number of normals as in the second, but they have all been adjusted. This looks similar to the surf-plot.

The only problem with surf is where the cylinder is closed along a "seam". The normals, on adjacent polygons along the seam, have different directions which gives rise to a difference in colour. So, to get a perfect result we should adjust the normals along the seam so that they have the same direction.



\section*{The back and front of polygons}

A quote from the manual:
"The default value for BackFaceLightingis reverselit. This setting reverses the direction of the vertex normals that face away from the camera, causing the interior surface to reflect light towards the camera. Setting BackFaceLightingto unlit disables lighting on faces with normals that point away from the camera."
[X, Y, Z] = sphere (20);
Z (X <= \(0 \& Y<=0\) ) = NaN;
\% TRICK!
color = [1 0.5 0.1];
figure (1)
hold off
\(h=\operatorname{surf}(X, Y, Z)\);
set (h, 'AmbientStrength', 0.0, ... \% NOTE
'DiffuseStrength', 1.0, ..
'SpecularStrength', 0.5, ...
'FaceColor', color, ...
'EdgeColor', color, ...
'FaceLighting', 'phong', ...
'EdgeLighting', 'phong')
hold on
light_pos = [0-1 2];
plot3(light_pos(1), light_pos(2), light_pos(3), *")
light('Position', light_pos)
axis equal
figure(2) etc.
set (h, 'AmbientStrength', 0.0,
etc.
'BackFaceLighting', 'unlit') \% NOTE!

Now that we have seen how to use more fancy graphics it is time to list some of the remaining 3D-plot commands. They can, essentially, be divided into two groups.

If we have a scalar quantity, like pressure or temperature, defined in \((x, y, z)\), we can use tools like isosurfaces or slices. If, on the other hand, a vector (velocity) is defined in each point, we would usually use some type of stream lines or arrows.

One cannot do justice to these functions using transparencies. Many of the commands require lighting, transparency, and the z-buffer. Also the description in the manual requires 45 pages. My suggestion is that you try them, which is not hard work. Almost all the commands have one or more examples at the end of the help text. So just cut-and-paste!

Here is a list taken directly from the manual:
Functions for scalar Data
\begin{tabular}{lll} 
contourslice & Draw contours in volume slice planes \\
isocaps & Compute isosurface end-cap geometry \\
isocolors & Compute the colors of isosurface vertices \\
isonormals & Compute normals of isosurface vertices \\
isosurface & Extract isosurface data from volume data \\
patch & Create a patch (multipolygon) graphics object \\
reducepatch & Reduce the number of patch faces \\
reducevolume Reduce the number of elements in a \\
& volume data set \\
shrinkfaces & Reduce the size of each patch face \\
slice & Draw slice planes in volume \\
smooth3 & Smooth 3-D data \\
surf2patch & Convert surface data to patch data \\
subvolume & Extract subset of volume data set
\end{tabular}
\% Default is reverselit
figure(3) etc.
set (h, 'AmbientStrength', 0.8, ... \% NOTE!
etc.
'BackFaceLighting', 'unlit')




Functions for Vector Data
coneplot Plot velocity vectors as cones in 3-D vector fields curl Compute the curl and angular velocity of a 3-D vector field
divergence Compute the divergence of a 3-D vector field interpstreamspeed Interpolate streamline vertices from vector-field magnitudes
streamline Draw stream lines from 2-D or 3-D vector data streamparticles Draw stream particles from vector volume data
streamribbon Draw stream ribbons from vector volume data
streamslice Draw well-spaced stream lines from vector volume data
streamtube Draw stream tubes from vector volume data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
volumebounds Return coordinate and color limits for volume (scalar and vector)
To use these routines the coordinates must usually be gridded (as if produced by meshgrid).

\section*{About OpenGL, according to}
http://www.opengl.org/about/overview/
OpenGL is the premier environment for developing portable, interactive 2D and 3D graphics applications. Since its introduction in 1992, OpenGL has become the industry's most widely used and supported 2D and 3D graphics application programming interface (API), bringing thousands of applications to a wide variety of computer platforms...
4.010 What is GLU? How is it different from OpenGL?

If you think of OpenGL as a low-level 3D graphics library, think of GLU as adding some higher-level functionality not provided by OpenGL. Some of GLU's features include:

Specialty transformation matrices for creating perspective and orthographic projections, positioning a camera, and selection/picking. Rendering of disk, cylinder, and sphere primitives
3.010 What is GLUT? How is it different from OpenGL?

Because OpenGL doesn't provide routines for interfacing with a windowing system or input devices, an application must use a variety of other platform-specific routines for this purpose. The result is nonportable code.

Furthermore, these platform-specific routines tend to be fullfeatured, which complicates construction of small programs and simple demos.

GLUT is a library that addresses these issues by providing a platform-independent interface to window management, menus, and input devices in a simple and elegant manner.

218

\section*{Some OpenGL-examples}

How can we create the following image using OpenGL and C?


After having reshaped the window:


回圆 My first cuty


Here is the C-program. If you have not seen C before, see the Diary. The line numbers are not part of the program.

219
```

void MyInit()
{
glClearColor(1, 1, 1, 0); // white to erase
// set up projection matrix
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // matrix = I
// 2D orthographic projection
// x_min, x_max, y_min, y_max
gluOrtho2D(0, 2, -1, 1);
// set the modelview matrix to I
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
}
void Display()
{
float x;
// clear color buffer, i.e. erase
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(0, 0, 1); // blue
glBegin(GL_LINE_STRIP); // draw solid curve
glVertex2f(0, 1); // define point
glVertex2f(1.9, -0.9); // define point
glEnd(); // end of curve
// Note that glColor is in effect for all
// points defined by glVertex2f.
glColor3f(1, 0, 0); // new color
glPointSize(5); // larger points
glBegin(GL_POINTS); // draw points
for(x = 0; x < 1.99; x += 0.1)
glVertex 2f(x, 1 - x); // define point
glEnd(); // end of GL_POINTS

```
// I'm using \(\mathrm{C}++\)-comments // in this code.
\#include <GL/glut.h> // includes gl.h, glu.h as well
\#include <stdlib.h> // For void exit (int)
void Display(); // Prototypes
void MyInit();
void Reshape (int, int);
void KeyHandler(unsigned char, int, int);
// argc \(=\) argument count \(>=1\) (command name first)
// argv = arg vector (array of pointers to char)
int main(int argc, char *argv[])
\{
    glutInit(\&argc, argv);
    // use RGB-color and not indexed color
    glutInitDisplayMode (GLUT_RGB) ;
    // width \(=500\), height \(=300\) pixels
    glutInitWindowSize(500, 300);
    // ( 0,0 ) upper-left corner of screen
    glutInitWindowPosition (10, 10) ;
    glutCreateWindow("My first curve"); // title
    // the following calls define three callbacks
    glutDisplayFunc(Display); // at re-displays
    glutReshapeFunc (Reshape); // change in size
    glutKeyboardFunc (KeyHandler); // keypress
    MyInit(); // my own initializations
    glutMainLoop(); // wait for events
    return 0 ;
\}

const protects the elements in the array from change.
TE's comment.

\section*{PARAMETERS}
\(v\) Specifies a pointer to an array of two, three, or four elements. The elements of a two-element array are \(x\) and \(y\); of a three-element array, \(x, y\), and \(z\); and of a four-element array, \(x, y, z\), and \(w\).

\section*{DESCRIPTION}
glVertex commands are used within glBegin/glEnd pairs to specify point, line, and polygon vertices. The current color, normal, and texture coordinates are associated with the vertex when glVertex is called.

When only \(x\) and \(y\) are specified, \(z\) defaults to 0.0 and \(w\) defaults to 1.0 . When \(x, y\), and \(z\) are specified, \(w\) defaults to 1.0 .

\section*{NOTES}

Invoking glVertex outside of a glBegin/glEnd pair results in undefined behavior.

SEE ALSO
glBegin, glCallList, glColor, glEdgeFlag, glEvalCoord, glindex, glMaterial, glNormal, glRect, glTexCoord

A careful OpenGL programmer uses the OpenGL types (I have not), e.g.:
```

void Display(void)

```
\{
    GLfloat \(\operatorname{color}[3]=\{0,0,1\}, x ;\)
    glClear (GL_COLOR_BUFFER_BIT);
    glColor3fv(color);
    glBegin(GL_LINE_STRIP);
        for ( \(\mathrm{x}=0\); \(\mathrm{x}<1.99\); \(\mathrm{x}+=0.1\) )
            glVertex \(2 f(x, 1-x)\);
    glEnd();
...

However, looking in /usr/include/GL/gl. hone sees that:
typedef unsigned int GLenum;
typedef unsigned char GLboolean;
typedef unsigned int GLbitfield;
typedef signed char GLbyte;
typedef short GLshort;
typedef int GLint;
typedef int GLsizei;
typedef unsigned char GLubyte;
typedef unsigned short GLushort;
typedef unsigned int GLuint;
typedef float GLfloat;
typedef float GLclampf;
typedef double GLdouble;
typedef double GLclampd;
typedef void GLvoid;
}
i
}
{
```

 DrawSquares(); // draw the squares
    ```
    DrawSquares(); // draw the squares
    DrawCoordSys(); // draw a coord syst.
    DrawCoordSys(); // draw a coord syst.
    glFlush();
    glFlush();
void MyInit()
void MyInit()
    glClearColor(1, 1, 1, 0);
    glClearColor(1, 1, 1, 0);
    glEnable(GL_DEPTH_TEST); // enable z-buffer
    glEnable(GL_DEPTH_TEST); // enable z-buffer
    glMatrixMode (GL_PROJECTION);
    glMatrixMode (GL_PROJECTION);
    glLoadIdentity();
    glLoadIdentity();
    glOrtho(-2, 2, -2, 2, 0, 3); // view volume
    glOrtho(-2, 2, -2, 2, 0, 3); // view volume
    glMatrixMode(GL_MODELVIEW);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    glLoadIdentity();
    gluLookAt(1,1,1, 0,0,0, 0,1,0); // place eye
    gluLookAt(1,1,1, 0,0,0, 0,1,0); // place eye
void DrawCoordSys()
void DrawCoordSys()
    float color[] = {0, 0, 0}, p[] = {0, 0, 0};
    float color[] = {0, 0, 0}, p[] = {0, 0, 0};
    char xyz[] = {'x', 'y', 'z'};
    char xyz[] = {'x', 'y', 'z'};
    int axis;
    int axis;
    glLineWidth(2);
    glLineWidth(2);
    for(axis = 0; axis <= 2; axis++) {
    for(axis = 0; axis <= 2; axis++) {
        color[axis] = 1;
        color[axis] = 1;
        glColor3fv(color);
        glColor3fv(color);
        color[axis] = 0; // back to black
        color[axis] = 0; // back to black
            glBegin(GL_LINE_STRIP);
            glBegin(GL_LINE_STRIP);
            glVertex3fv(p);
            glVertex3fv(p);
            p[axis] = 1; glVertex3fv(p);
            p[axis] = 1; glVertex3fv(p);
            glEnd();
```

 glEnd();
    ```
```

include <GL/glut.h>
\#include <stdlib.h>
void Display();
void MyInit();
void Reshape(int, int);
void KeyHandler(unsigned char, int, int);
void DrawCoordSys();
void DrawSquares();
int main(int argc, char*argv[])
{
glutInit(\&argc, argv);
// switch on z-buffer: GLUT_DEPTH
glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(300, 300);
glutInitWindowPosition(10, 10);
glutCreateWindow("A 3D-example");
glutDisplayFunc(Display);
glutReshapeFunc (Reshape);
glutKeyboardFunc (KeyHandler);
MyInit();
glutMainLoop();
return 0;
}
void Display()
{
// clear color- and z-buffer (depth buffer)
glClear(GL_COLOR_BUFFER_BIT | // NOT ||
GL_DEPTH_BUFFER_BIT);

```


The next program contains several new OpenGL-constructs. Double buffering, lighting and materials.

The program draws two spheres (radius one), a red centered on the origin and a green centered on \((2,0,0)\). A light is placed at \((5,0,0)\). When + is pressed the spheres rotate around the origin in a ccw fashion, and when - is pressed they rotate the other way. By using a menu we can make the light follow the spheres or to be stationary.
```

\#include <GL/glut.h>
\#include <stdlib.h>
void Display();
void MyInit();
void KeyHandler(unsigned char, int, int);
void MenuHandler(int); // For menus
void CreateObject();
int rotating_light = 0; // global variable
int main(int argc, char*argv[])
{
glutInit(\&argc, argv);
// GLUT_DOUBLE = double buffering
glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH |
GLUT_DOUBLE) ;
glutInitWindowSize(500, 500);
glutCreateWindow("Spheres");
glutKeyboardFunc (KeyHandler);
glutCreateMenu(MenuHandler); // Menu
glutAddMenuEntry("Rotating light", 1);
glutAddMenuEntry("Stationary light", 2);
glutAddMenuEntry("Quit", 3);
glutAttachMenu(GLUT_RIGHT_BUTTON); // for example
glutDisplayFunc(Displamy);

```
    glenable(GL_LIGHTO); // at least 8 lamps
    // set the position of light0
    glLightfv(GL_LIGHTO, GL_POSITION, light_pos);
    // switch on smooth shading; the other
    // alternative is GL_FLAT
    glShadeModel (GL_SMOOTH) ;
    glEnable(GL_DEPTH_TEST);
\}
void CreateObject ()
\{
    float // material properties (refl. coeff.)
        white_rc[] \(=\{1,1,1,1\}\),
    red_rc[] \(=\{1,0,0,1\}\),
    green_rc[] \(=\{0,1,0,1\}\),
    spec_exp \(=100\);
    // define material properties for front face
    glMaterialfv(GL_FRONT, GL_AMBIENT, white_rc);
    glMaterialfv(GL_FRONT, GL_DIFFUSE, red_rc);
    glMaterialfv(GL_FRONT, GL_SPECULAR, white_rc);
    glMaterialf (GL_FRONT, GL_SHININESS, spec_exp);
    // create the polygons and normals for a
    // sphere; radius, resolution along
    // longitudes and latidudes
    glutSolidSphere (1, 20, 20);
    // the translate should be temporary
    glPushMatrix();
        glTranslatef(2, 0, 0);
        glMaterialfv(GL_FRONT, GL_DIFFUSE, green_rc);
        glutSolidSphere (1, 20, 20);
    glPopMatrix();

MyInit();
glutMainLoop();
return 0;
\}
void Display()
\{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Createobject (); // my own routine
glutSwapBuffers(); // double buffering
\}
void MyInit()
\{
    float
        light_pos[] \(=\{5,0,0,0\}\),
        light_ambient[] \(=\{0.2,0.2,0.2,1\}\),
        light_diffuse[] \(=\{1,1,1,1\}\),
        light_specular[] \(=\{1,1,1,1\}\);
    glClearColor (1, 1, 1, 0);
    glMatrixMode (GL_PROJECTION);
    glloadIdentity();
    gluPerspective (45, 1, 1, 100);
    glMatrixMode (GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt ( \(0,0,10,0,0,0,0,1,0\) );
    // set up ambient, diffuse, and specular
    // components for light 0
    gllightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);
    gllightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
    glLightfv(GL_LIGHTO, GL_SPECULAR, light_specular);
    glenable (GL_LIGHTING); // switch on lighting
\}
void KeyHandler (unsigned char key, int \(x\), int \(y\) )
f
    float light_pos[] \(=\{5,0,0,0\}\);
    if (key \(==\) ' \(q^{\prime}\) )
        exit(0);
    else if (key \(==\) ' \({ }^{\prime}\) ')
        glRotatef(3, 0, 1, 0); // Ry, 3 degrees
    else if (key \(==\) ' \({ }^{\prime}\) )
        glRotatef(-3, 0, 1, 0); // Ry, -3 degrees
    else
        return;
    // The position of a light is affected by M, so...
    if ( rotating_light ) // Transform by M
        glLightfv(GL_LIGHTO, GL_POSITION, light_pos);
    else \{ // Stationary light
        glPushMatrix();
        glLoadIdentity(); // Do NOT multiply by M
        glLightfv(GL_LIGHTO, GL_POSITION, light_pos);
        glPopMatrix();
    \}
    glutPostRedisplay(); // update image
\}
void MenuHandler(int id) // id = menu alternative
\{
    if (id == 1 )
        rotating_light \(=1 ; \quad / /\) global variable
    else if (id == 2)
        rotating_light \(=0\);
    else if (id == 3)
        exit(0);
\}

45-etc: Define light properties.
If last element in light-pos \(=0\), skip the actual distance to the light source, just look at the direction. If the sphere is centered on ( \(8,0,0\) ) the light still comes from the right. If the component is 1 the position is taken into account and a sphere centered on ( \(8,0,0\) ) is lit from the left.

The fourth element in light_ambient etc. is for transparent materials.

121-: If we do not move the light, it will always come from the right.

Here is another way:
\#include <stdio.h>
void idle_func();
int main(int argc, char*argv[])
\{
    idle_func(); idle_func(); idle_func();
    return 0;
\}
void idle_func()
\{
    static int remember_me \(=0 ; 1 / \mathrm{NOTE}\) static
    remember_me++;
    printf("remember_me \(\left.=\% d \backslash n ", ~ r e m e m b e r \_m e\right) ; ~\)
\}

Both solutions will produce the following printout:
```

remember_me = 1
remember_me = 2
remember_me = 3

```

One difference between these programs is the rememberme is local to the function in the second case, but accessible to all functions in the first program.

\section*{More on animation}

In the previous example we used double buffering to get a smooth animation (line 17, 41). This should be used in the planet-lab as well, but a difference is that the planets should move on their own, we should not have to press any buttons.

To fix that we define an "idle-callback", a callback that OpenGL executes when it is idle.
We set the callback by glutIdleFunc (idlecallback),
where idle_callback, is our callback routine. In this routine one updates the positions of the Earth and Moon and then calls glutPostRedisplay().

It is possible to solve the updating problem in several ways. In some solutions it is necessary for the callback to "remember" values between calls. We can do that by using global variables. Another alternative is to use static variables. Here are two silly examples.
```

\#include <stdio.h>
void idle_func();
int remember_me = 0; // global variable (in this file)
int main(int argc, char*argv[])
{
idle_func(); idle_func(); idle_func();
return 0;
}
void idle_func()
{
remember_me++;
printf("remember_me = %d\n", remember_me);
}
239
A hint on debugging
void Display()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
... draw stuff
// You find CheckErr.c in the directory:
// /chalmers/groups/thomas_math/VIS/OpenGL/
CheckErr();
}
void KeyHandler(unsigned char key, int x, int y)
{
if (key == 'q' || key == 27) {
exit(0);
} else {
glPushMatrix(); // mistake, no matching Pop
glTranslatef(0.1, 0, 0);
glutPostRedisplay();
}
}

```

After 32 calls we get GL_Stack overflow.
Changing to glpopMatrix () ; gives GL_STACK_UNDERFLOW after the first call.

Here comes CheckErr:


\section*{ParaView}

Here are a few sentences from www. paraview. org
Overview:
ParaView is an open-source, multi-platform application designed to visualize data sets of size varying from small to very large.

The goals of the ParaView project include the following:
- Develop an open-source, multi-platform visualization application.
- Support distributed computation models to process large data sets.
- Create an open, flexible, and intuitive user interface.
- Develop an extensible architecture based on open standards.

ParaView runs on distributed and shared memory parallel as well as single processor systems and has been successfully tested on Windows, Mac OS X, Linux and various Unix workstations, clusters and supercomputers. Under the hood, ParaView uses the Visualization Toolkit as the data processing and rendering engine and has a user interface written using \(\mathrm{Qt} ®\).

The ParaView project started started in 2000 as a collaborative effort between Kitware Inc. and Los Alamos National Laboratory. The initial funding was provided by a three year contract with the US Department of Energy ASCI Views program. Today, ParaView development continues as a collaboration between Kitware, Sandia National Labs, CSimSoft, Los Alamos National Lab, Army Research Lab and others.

There is a set of books available from Kitware Inc. providing details about VTK and ParaView. In this course it is sufficient to study the "ParaView 3 tutorial for Supercomputing 07" (used in the labs), and the "VTK file formats documentation" (see the home page for links).

246

Lines 4-7 describe the dataset structure (also called the geometry or the topology) of the data. In our case we have grid points in the x -y-plane. The points are \((j, k), j, k=0,1,2\).
Finally, on lines 9-12, we have the dataset attributes, the values of the function on the grid (the values are 1-9).

We have POINT_DATA, i.e. we have defined a scalar value in each grid point. The value is a scalar-float (i.e not a vector for example) and we have named it, name_1. Choose meaningful names e.g. pressure, temperature etc.

We can have several quantities, by having several groups like 10-13. Using the name, we can later pick the relevant quantity in ParaView. On line 11 we define a colour lookup table (here the default). One should be able to define ones own, but this seems buggy in the present ParaView-version.

I have not included any images in the handouts, since the PDFfiles become so large. Some of the vtk-files (and corresponding images) are available on the student computer system, so you can try them yourself see
/chalmers/groups/thomasmath/VIS/Handoutsex_ParaView.
The following line denotes a missing image. [Image]

This is how I made the [Image]. I loaded the file, choose the "Glyph-filter", changed the "Glyph Type" to "Sphere", increased the "Radius" and "Theta Resolution". I pressed the "Toggle Color Legend Visibility"-button. Not to waste printertoner, I changed the background colour (so the background text is not very visible).

The hardest part with using OpenDX and ParaView is the creation of the input files and this chapter will show you some examples.

VTK supports many styles of file formats. In this course we will use two, the legacy VTK formats and the XML formats.

From the dictionary:
Legacy: Designating software or hardware which, although outdated or limiting, is an integral part of a computer system and difficult to replace.
Suppose we want implement the following Matlab-program in ParaView:
[X, Y] = meshgrid(linspace ( \(0,2,30\) ), ... linspace (-1, 1, 30));
\(\operatorname{surf}(X, Y, X . \wedge 2+\sin (3 * Y))\)
Here is a first step, the file ex1.vtk (the line numbers are not part of the file). For more details see the formats-manual.
```


vtk DataFile Version 2.0

Data for z = f(x, y).
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 3 31
ORIGIN 0 O O
SPACING 1 1 1
POINT_DATA 9
SCALARS name_1 float
LOOKUP_TABLE default
1 2 3 4 5 6 7 % 8

```

Line 1 is a header, and line 2 a title (comment). Line 3 gives the data format for numbers (coordinates etc), see the documentation for binary formats.

247

So what is a glyph?
(Glyph from from Greek Glyphe, carved work, from glyphein to carve.
1: an ornamental vertical groove especially in a Doric frieze
2: a symbolic figure or a character (as in the Mayan system of writing) usually incised or carved in relief
3: a symbol (as a curved arrow on a road sign) that conveys information nonverbally).

Looking at the image we can see that the point data is ordered the following way:
\(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{1}\right)\left(x_{3}, y_{1}\right)\left(x_{1}, y_{2}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{2}\right)\left(x_{1}, y_{3}\right)\left(x_{2}, y_{3}\right)\left(x_{3}, y_{3}\right)\)
How can we generate data in that order from Matlab? Here is a short example:


In the following VTK-file we construct a tiny vector field in 3D. You should use more points in a real application. You could have SCALARS-data as well.
\# vtk Datafile Version 2.0
Vector field in 3D.
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 333
ORIGIN 000
SPACING 111

POINT_DATA 27
VECTORS vec float
123
etc.
One could use the "Stream Tracer" and "Generate Tubes" filters to visualize the flow. [Image]
In the previous examples every node (point) has a quantity (scalar or vector) associated with it. In some applications it is more natural to associate a value with an area or volume (a so-called cell). A biologist may count the number of bugs, plants etc. per \(\mathrm{km}^{2}\) or number of fish per \(\mathrm{km}^{3}\).
Here comes a 2D-example using cell-data with scalar values.
```


vtk DataFile Version 2.0

A 2D cell example
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 4 4 1
ORIGIN 0 0 0
SPACING 1 1 1
CELL_DATA 9
SCALARS name float
LOOKUP_TABLE default
123456789

```

In the next example we create a more complicated geometry which is not quite so regular. Let us make a simple model of the surface of a house. We use triangles to construct the surface (compare the surface mesh in a finite element computation). We use point data from now on.
This primitive drawing shows the numbering of the points.


Line 5 defines a \(4 \times 4\) point grid so with \(3 \times 3\) cells, i.e. nine values on line 9. A plot gives a checkerboard pattern (in color).
[Image]
Here is a 3 D-example with \(3 \times 3 \times 3\) cells, i.e cubes. The central cube is number 14 , having the value -1 on line 13 . The data can be inspected using the Clip filter, for example. [Image]
```


vtk DataFile Version 2.0

A 3D cell example
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 4 4 4
ORIGIN 0 0 0
SPACING 1}
CELL_DATA 27
SCALARS name float
LOOKUP_TABLE default
1
10}111 12 13 13 -1 15 16 17 18
19 20 21 22 23 24 25 26 27

```

Here is a 2D cell example where we associate a vector with each cell. Using the "Cell Centers" and "Glyph"-filters, we get arrows starting in the center of each cell (square). [Image]
```

1 \# vtk DataFile Version 2.O
A 2D cell, vector, example
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 4 4 1
ORIGIN 0 0 0
SPACING 1 1 1
CELL_DATA 9
VECTORS vec float
100}00\quad10000100
0
0

```

On lines \(6-9\) we list the 10 coordinates for the points that define the corners of the triangles. The walls are made using one triangle strip (saves space compared to separate triangles), line 12. The points are numbered in a zig-zag-order, the first point having index zero. The roof is defined on line 13. The numbers on line 11 denote number of strips and number of integers in lines 12,13 . The first number on line 12 (13) denotes the numbers of points in the strip.

By using "Surface With Edges", using "Glyph" with "Glyph Type = Sphere", "Scalar Mode=scalar", clicking in "Edit" and setting "Set Scale factor \(=0.01\) " we get the following [Image].

Here comes an example of an unstructured grid composed by tetrahedrons. We reuse the points from the house example. I used Matlab to construct the tetrahedrons, here is a code segment. \(x, y\) and \(z\), contain the coordinates from the house.
```

% Tesselate the volume using tetrahedrons. T is an
% n_tetra x 4 matrix with indices into x, y and z.
T = delaunay3(x, y, z, [])
n_tetra = size(T, 1);
C = jet(n_tetra); % some colours
% Explode the view by moving the tetrahedrons
% from the centre
xm = mean (x);
ym = mean (y);
zm = mean(z);
d = 0.1; % scale factor
% P is used to extract corners in the four faces
% of a tetrahedron
P = [1 2 3; 1 2 4; 1 3 4; 2 3 4];

```
```

for k = 1:n_tetra
xmT = mean(x(T(k, :))); % centre of tetrahedron
ymT = mean (y (T (k, :)));
zmT = mean(z(T(k, :)));
vx = d * (xmT - xm); % translation
vy = d * (ymT - ym);
vz = d * (zmT - zm);
for j = 1:4 % plot all four faces
t = T(k, P(j, :));
fill3(x(t) + vx, y(t) + vy, z(t) + vz, C(k, :))
end
end

```

Here is the T-matrix
\(T=\)
\begin{tabular}{rlll}
7 & 3 & 2 & 1 \\
7 & 2 & 5 & 1 \\
7 & 3 & 4 & 2 \\
7 & 4 & 8 & 2 \\
7 & 6 & 5 & 2 \\
7 & 8 & 6 & 2 \\
10 & 8 & 6 & 5 \\
10 & 7 & 5 & 9 \\
10 & 7 & 8 & 5
\end{tabular}

Here is a sequence of images each with a different d-value, showing an "exploded view" [Image].

Boris Nikolaevich Delaunay or Delone, 1890-1980, was one of the first Russian mountain climbers and a Soviet/Russian mathematician (according to Wikipedia).

Line 4 has been changed from the first version. Lines 6-9 are unchanged. I have replaced the 2D triangle strips with 3D tetrahedrons, lines 11-23. The rest of the file is unchanged.

Line 11 starts the description of the corners of the tetrahedrons, there are nine tetrahedrons and \(45(9 \cdot 5)\) numbers are required to describe them. Line 12, 46210 , says that the coordinates of the four (the first 4) corners are given by 6:th, 2:d, 1:th and 0:th point (indices start at zero). To get the correct indices I had to subtract one from the T -matrix produced by delaunay 3.

Lines 22-23 describe the type of cells. We have nine tetrahedrons, which are identified by number ten (see the formatsmanual for the numbers). [Image]

Suppose you want to visualize data produced by \(w=f(x, y, z)\), and where you are using Matlab to produce the \(w\)-values. It is better to use ndgrid instead of meshgrid as will be explained below.
```

>> [X, Y, Z] = ndgrid(0:0.1:1, 10:2:40, -1:0.1:1);
>> W = X.^2 + (0.05* (Y - 10)).^2 + Z.^2;
>> w = W(:);
>> save -ascii wdata w % for example

```

To understand how the values are stored in the file we look at a much smaller example.
>> \([\mathrm{X}, \mathrm{Y}, \mathrm{z}]=\) ndgrid(0.1:0.1:0.3, -1:1, 20:10:40)
\begin{tabular}{rrr}
\(\mathrm{X}(:,:, 1)=\) & & \\
0.1000 & 0.1000 & 0.1000 \\
0.2000 & 0.2000 & 0.2000 \\
0.3000 & 0.3000 & 0.3000 \\
\(\mathrm{X}(:,:, 2)=\) & & \\
0.1000 & 0.1000 & 0.1000 \\
0.2000 & 0.2000 & 0.2000 \\
0.3000 & 0.3000 & 0.3000
\end{tabular}

What is the difference, with respect to visualization, between the two houses (the first and the second)?
\begin{tabular}{l|r|r} 
Filter & First house & Second house \\
\hline none & surface & volume \\
contour & curves & surfaces \\
clip & surface & volume \\
slice & curve & surface
\end{tabular}

Here comes the vtk-file:
```


vtk DataFile Version 2.0

A tesselated house
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 10 float
0
0

```

```

CELLS 9 45

4	6	2	1	0
4	6	1	4	0
4	6	2	3	1
4	6	3	7	1
4	6	5	4	1
4	6	7	5	1
4	9	7	5	4
4	9	6	4	8
4	9	6	7	4

```
CELL_TYPES 9
\(\begin{array}{lllllllll}10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10\end{array}\)
POINT_DATA 10
SCALARS name float
LOOKUP_TABLE default
\(\begin{array}{llllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}\)
                                    259
\(x(:,:, 3)=\)
\begin{tabular}{lll}
0.1000 & 0.1000 & 0.1000 \\
0.2000 & 0.2000 & 0.2000 \\
0.3000 & 0.3000 & 0.3000
\end{tabular}
\(Y(:,:, 1)=\)
    \(\begin{array}{lll}-1 & 0 & 1\end{array}\)
    \(\begin{array}{lll}1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1\end{array}\)
\(Y(:,:, 2)=\)
\begin{tabular}{lll}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{tabular}
\(Y(:,:, 3)=\)
\begin{tabular}{lll}
-1 & 0 & 1 \\
-1 & 0 & 1
\end{tabular}
\begin{tabular}{lll}
1 & 0 & 1 \\
-1 & 0 & 1
\end{tabular}
\(Z(:,:, 1)=\)
\begin{tabular}{ccc}
20 & 20 & 20 \\
20 & 20 & 20 \\
20 & 20 & 20 \\
\(Z(:,:, 2)\) & \(=\) & \\
30 & 30 & 30 \\
30 & 30 & 30 \\
30 & 30 & 30 \\
\(Z(:,:, 3)\) & \(=\) & \\
40 & 40 & 40 \\
40 & 40 & 40 \\
40 & 40 & 40
\end{tabular}

So we get 3D-matrices and from the next page we see that when W is computed, x varies faster than y which changes faster than z. Had I used meshgridthe order would have been \(y, x, z\), which is less regular.

\begin{tabular}{|lrll}
\hline & & \\
22 & 2 & 4 & 1 \\
23 & -1 & 2 & 4 \\
24 & 2 & 2 & 4 \\
25 & -1 & 4 & 4 \\
26 & 2 & 4 & 4 \\
27 & </DataArray> \\
28 & </Points> \\
29 & </Piece> & \\
30 & </StructuredGrid> \\
31 & </VTKFile>
\end{tabular}

Note that the keyword is StructuredGrid that
NumberOfComponents="3"and that filename ends in .vts. One can perturb the coordinates and still have a structured grid.

If we perturb the point sufficiently we do not get a structured grid, the points can be in arbitrary positions and we get an unstructured grid. Here comes the house-example again, but this time in XML-format.
```

<?xml version="1.0" encoding="iso-8859-1" ?>
<VTKFile type="UnstructuredGrid" version="0.1">
<UnstructuredGrid>
<Piece NumberOfPoints="10" NumberOfCells="9">
<PointData>
<DataArray type="Float32" Name="temperature">
11}12121314151516 17 18 19 20
</DataArray>
</PointData>
<Cells>
<DataArray type="Int32" Name="connectivity">
6
6
9
</DataArray>

```
```

<?xml version="1.0"?>
<VTKFile type="Collection" version="0.1">
<Collection>
<DataSet timestep="1" file="1.vtr"/>
<DataSet timestep="2" file="2.vtr"/>
<DataSet timestep="3" file="3.vtr"/>
<DataSet timestep="4" file="4.vtr"/>
<DataSet timestep="5" file="5.vtr"/>
</Collection>
</VTKFile>

```

Here is the first frame-file, 1.vtr:
```

<?xml version="1.0" encoding="iso-8859-1" ?>
<VTKFile type="RectilinearGrid" version="0.1">
<RectilinearGrid WholeExtent="0 1 0 1 0 1">
<Piece Extent="0 1 0 1 0 1">
<PointData>
<DataArray type="Float32" Name="temp">
1 1 1 1 1 1 1 1
</DataArray>
</PointData>
<Coordinates>
<DataArray type="Float32"> 0 1 </DataArray>
<DataArray type="Float32"> 0 1 </DataArray>
<DataArray type="Float32"> 0 1 </DataArray>
</Coordinates>
</Piece>
</RectilinearGrid>
</VTKFile>

```
in the next frame frame, I change temp and the x-coordinates.
Even easier is to create files having names like a1.vtr, a2.vtr, a3.vtretc. (must be a letter first) and then just mark the group of files when using the Open-alternative in the File-menu.

19
```

 <DataArray type="Int32" Name="offsets">
    ```
            \(\begin{array}{lllllllll}4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36\end{array}\)
        </DataArray>
        <DataArray type="UInt32" Name="types">
            101010101010101010
        </DataArray>
</Cells>
    <Points>
        <DataArray type="Float 32" NumberOfComponents="3":
            0002000100210
            \(\begin{array}{lllllllllll}0 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 1 & 2 & 1\end{array}\)
            \(00.51 .5 \quad 20.51 .5\)
        </DataArray>
            </Points>
    </Piece>
</UnstructuredGrid>
</VTKFile>

The offsets-array contains the indices into the connectivity array for the end of each cell. For some reason the offsets start at one (and not zero).

Finally an animation example, a cube that moves to the right changing colour at the same time. We store a sequence of frames, using a rectilinear format, one frame in each file. The file animation.pvdis a main file referring to the frame-files. In a real application we would probably have more frames (50-100 say).

\section*{267}

\section*{Textures}

Sometimes one can increase the level of realism by using textures. A texture is a matrix with colour values, e.g. an image. In one lab you are going to simulate the Sun-Earth-Moon system, using textures for the Earth and Moon. Textures are common in computer games, e.g. a brick wall in a castle would be drawn using a texture instead of drawing brick by brick. A texture could be the result of a computation as well, a procedural texture. Graphics cards have support for working with textures.

The default behaviour (can be changed) is that the colour of the texture will be mixed with the colour of the pixels
in a polygon.
An image is made up by a finite set of pixels (often called texels in this context) but using some form of interpolation OpenGL will provide the colour in an arbitrary point in the texture: texture( \(\mathrm{s}, \mathrm{t}\) ). s and t are two coordinates, \(0 \leq s, t \leq 1\) (usually).

We need to map the texture onto a surface, e.g. a rectangle. In the lab we will map a texture onto a sphere. We do this by giving an ( \(\mathrm{s}, \mathrm{t}\) )-pair for every ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) on the surface. So the code may look something like
```

\cdots compute s, t, x, y and z

```
```

glTexCoord2f(s, t);
glVertex3f(x, y, z);

```

OpenGL must be able to change the size of the texture, e.g. if we change the size of the window. More about that later on.

To create the texture we need to know how it should be stored. My examples assume that every texel is represented by an RGB-triple, each colour consisting of an unsigned byte. The datatype in OpenGL is GLubyte. In the GL-header file, gl.h, it says typedef unsigned char GLubyte;

In the manual page for gltexImage2D it says:
The first element corresponds to the lower left corner of the texture image. Subsequent elements progress left-to-right through the remaining texels in the lowest row of the texture image, and then in successively higher rows of the texture image. The final element corresponds to the upper right corner of the texture image.
Here is the order if the width is 3 and the height is 2 .
\(\begin{array}{lll}3 & 4 & 5 \\ 0 & 1 & \end{array}\)
\(0 \quad 1 \quad 2\)
If we store the RGB-triples in sequence in an one-dimensional array it would look like this.
\begin{tabular}{lll}
\(r(0)\) & \(g(0)\) & \(b(0)\) \\
\(r(1)\) & texel 0 \\
\(r(2)\) & \(g(2)\) & \(b(1)\) \\
\(r(3)\) & texel 1 \\
\(r(4)\) & texel 2 \\
\(r(4)\) & \(b(3)\) & texel 3 \\
\(r(4)\) & \(g(5)\) & \(b(5)\) \\
texel 4 \\
& texel 5
\end{tabular}

The colours are stored in byte order in memory, so an array Glubyte vec[2*3 * 3]; would work like this:
```

vec[0] <-> red(0)
vec[1] <-> green(0)
vec[2] <-> blue(0)
vec[3] <-> red(1)
etc.

```

Another way is to use a matrix. In \(C\) the rightmost dimension varies fastest then comes the columns and last the rows, so like this:

Glubyte mat[2][3][3];
\(\operatorname{mat}[0][0][0] \quad / / \mathrm{red}\)
mat[0][0][1] // green
mat[0][0][2] // blue
mat[0][1][0] // red
mat [0][1][1]
mat [0][1][2]
mat[0][2][0]
mat[0][2][1]
mat[0][2][2]
mat [1][0][0] Next row
mat[1][0][1]
mat [1][0][2]
mat[1][1][0]
mat[1][1][1]
mat[1][1][2]
mat[1][2][0]
mat[1][2][1]
mat [1][2][2]
Usually we would have much larger textures than this. Small textures may, in fact, lead to problems. It used to be that the width and height had to be powers of two. Some implementations require even numbers and perhaps a minimum size. One reason for this is performance. Some machines have hardware that is far more efficient at moving data to and from the framebuffer if the data is aligned on two-byte, four-byte, or eight-byte boundaries in processor memory.
The default alignment is four, and in our example one row occupies \(3 \cdot 3=9\) bytes, leading to misaligned rows (and an incorrect image on the screen). If we pad the matrix

\section*{Glubyte tex[2][4][3];}
keeping the values of height and width, it works. Another way is to change the alignment by the following calls:

271
glBindTexture (GL_TEXTURE_2D, 100);
// Done for each texture
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER GL_NEAREST);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, 0 , GL_RGB, GL_UNSIGNED_BYTE, mat) ;
glBindTexture (GL_TEXTURE_2D, 200);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER GL_NEAREST) ;
gltexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, vec);

\section*{glenable (GL_TEXTURE_2D);}
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE) ;
\}
Note that we normally would not change the alignment. glBindTexturegives the texture, to be defined, a name (a positive integer, 100 in this case).

We do not usually have an image that contains the same number of texels as the number of pixels in the rectangle (polygon). glTexParameteri is used to define what should happen if the rectangle is smaller or larger than the texture.
GL_TEXTUREMIN_FILTER defines the function which is used when the texture must be minified. GL_TEXTUREMAG_FILTER defines the function which is used when the texture must be magnified.

When texture ( \(s, t\) ) is needed, GL_nearest tells OpenGL to use colour from the nearest pixel (in \(\left\|\|_{1}\right.\) ) in the original image. Another choice is GL_LINEAR. This uses a weighted average of the four texture elements that are closest to the center of the pixel being textured.

GL_NEAREST is generally faster than GL_LINEAR, but can produce textured images with sharper edges because the transition between texture elements is not as smooth.

In gltexImage2D we finally make the image data available to the OpenGL-system. The parameters are: GL_TEXTURE.2D defines the type of the texture, level specifies the level of detail. Level 0 is the base level.

GL_RGB specifies the number of colours in the texture (we could have written 3). width and height obvious. It is possible to have a border around the texture, we say that its width is zero. This GL_RGB specifies the format of the data (mat and vec contain RGB-triples), and GL_UNSIGNED_bYte is the type. Finally comes an address to the data.
glenable enables texturing.
The last call (which is unnecessary, since I have chosen the default value) says that the colour of the textures should be mixed with the colour of the object.

So the resulting red (ambient + diffuse + specular) component, for example, in a pixel becomes \(r_{s} \cdot r_{t}\), where \(r_{s}\) is the red component originating from the ordinary shading computation and \(r_{t}\) is the red component from the texture.

In the Display-routine below we bind the two textures to two rectangles. In this simple program lighting is not used, so the textures will modulate the colour white, set by glColor3f(1, 1, 1);


Let us try a harder example. We are going to wrap an OpenGLlogo on a cylinder. The cylinder is symmetric around the \(y\) axis. An additional problem is that we are going to use light, so the program has to compute normals. Just to see that I have produced the image in the correct way the program puts the image on a rectangle as well. I used \(x v\) to transform the image, from gif to PBM/PGM/PPM (ascii) (as it says in xv). I named the file opengl.ppmand the first lines look like:

P3
\# CREATOR: XV version 3.10a-jumboFix+Enh of 20050501 22097
255
255255255255255255255255255255255255255255
255255255255255255255255255255255255255255
22097 is the dimension (which I could have read in). It is hardcoded in the code. As it turns out I have to reverse the rows when reading the lines (or the logo will be upside-down). First comes the resulting image and then parts of the program.

The call of glBindTexture picks the 100-texture. The pairs of calls to glTexCoord2f and glVertex \(3 f\) defines the mapping between image and rectangle. Note that we can deform the image by changing the mapping.
```

void Display()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1, 1, 1);
glBindTexture(GL_TEXTURE_2D, 100);
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex3f(0.0, 0.0, 0.5);
glTexCoord2f(1.0, 0.0); glVertex3f(1.0, 0.0, 0.5);
glTexCoord2f(1.0, 1.0); glVertex3f(1.0, 1.0, 0.5);
glTexCoord2f(0.0, 1.0); glVertex3f(0.0, 1.0, 0.5);
glEnd();
glBindTexture(GL_TEXTURE_2D, 200);
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex3f(0.5, 1.1, 0.5);
glTexCoord2f(1.0, 0.0); glVertex3f(2.0, 1.1, 0.5);
glTexCoord2f(1.0, 1.0); glVertex3f(2.0, 2.0, 0.5);
glTexCoord2f(0.0, 1.0); glVertex3f(0.5, 2.0, 0.5);
glEnd();
glFlush();
}

```

Here is part of the window (since I used grayscale in the images it is easy to interpret the result). The origin is in the lower left corner of the leftmost black rectangle.


\section*{void MakeTexture ()}
\{
int \(\quad\) r, g, b, row, col, width \(=220\), height \(=97\); char \(c\);
GLubyte logo[height][width] [3];
FILE *fp;
if \(((f p=\) fopen ("opengl.ppm", "r")) == NULL) \{ printf("Problems opening opengl.ppm.\n"); exit(1);
\}
row \(=0\);
do \{ // skip the header
fscanf(fp, "\%c", \&c);
if ( \(\left.c==\prime \backslash n^{\prime}\right)\) row++;
\} while ( row < 4);
```

 for (row = height - 1; row >= 0; row--) // reverse
 for (col = 0; col < width; col++) {
 fscanf(fp, "%d %d %d", &r, &g, &b);
 logo[row][col][0] = r;
 logo[row][col][1] = g;
 logo[row][col][2] = b;
 }
 fclose(fp);
 glBindTexture(GL_TEXTURE_2D, 100);
 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER
 GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height,
 0, GL_RGB, GL_UNSIGNED_BYTE, logo);
 glEnable(GL_TEXTURE_2D);
 }
The following routine is called from Display (as is a routine drawing a coordinate system).

```
```

void CreateObject()

```
void CreateObject()
{
{
    int k;
    int k;
    double r, c, s, phi, d_phi, TWO_PI = 2.0* M_PI, seg;
    double r, c, s, phi, d_phi, TWO_PI = 2.0* M_PI, seg;
    float white_rc[] = {1, 1, 1, 1}, spec_exp = 100;
    float white_rc[] = {1, 1, 1, 1}, spec_exp = 100;
    glMaterialfv(GL_FRONT, GL_AMBIENT, white_rc);
    glMaterialfv(GL_FRONT, GL_AMBIENT, white_rc);
    glMaterialfv(GL_FRONT, GL_DIFFUSE, white_rc);
    glMaterialfv(GL_FRONT, GL_DIFFUSE, white_rc);
    glMaterialfv(GL_FRONT, GL_SPECULAR, white_rc);
    glMaterialfv(GL_FRONT, GL_SPECULAR, white_rc);
    glMaterialf (GL_FRONT, GL_SHININESS, spec_exp);
    glMaterialf (GL_FRONT, GL_SHININESS, spec_exp);
    glBindTexture(GL_TEXTURE_2D, 100);
```

 glBindTexture(GL_TEXTURE_2D, 100);
    ```

So if we have vertices numbered \(1,2,3\), etc., this is the way they are used to define the quadrilaterals.


So the first quadrilateral \((\mathrm{n}=1)\) is defined by vertices \(1,2,4,3\) ( \(2 \mathrm{n}-1,2 \mathrm{n}, 2 \mathrm{n}+2\), and \(2 \mathrm{n}+1\) ).

Now to the cylinder. \([\sin \varphi, 0, \cos \varphi\) ] describes a circle in the x-z-plane. \([\sin \varphi, 2, \cos \varphi\) ] is another circle at \(y=2\). Since we are alternating between \(y=0\) and \(y=2\), we get the correct order for using GL_QUAD_STRIP.
```

// Draw a rectangle
glNormal3f(1, 0, 0); // Note
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex 3f(0.0, 1.5, 2.0);
glTexCoord2f(1.0, 0.0); glVertex3f(0.0, 1.5, -2.0);
glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 3.5, -2.0);
glTexCoord2f(0.0, 1.0); glVertex3f(0.0, 3.5, 2.0);
glEnd();
// Draw a cylinder
seg = 10;
d_phi = TWO_PI / seg;
r = 2;
glBegin(GL_QUAD_STRIP);
for (k = 0; k <= seg; k++) {
phi = k * d_phi;
c = cos(phi);
s = sin(phi);
glNormal3f(s, 0, c); // Note
c *= r;
s *= r;
glTexCoord2f(k / seg, 0.0); glVertex3f(s, 0, c);
glTexCoord2f(k / seg, 1.0); glVertex3f(s, 2, c);
}
glEnd();
}

```

In order to understand the last loop we first read the manual page for glBegin. It says the following about GL_QUAD_STRIP:

GL_QUAD_STRIP Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of vertices presented after the first pair. Vertices \(2 n-1,2 n, 2 n+2\), and \(2 n+1\) define quadrilateral \(n . N / 2-1\) quadrilaterals are drawn. ...

\section*{279}

When textures are used in computer games, for example, it may be interesting to repeat a texture. To put a wallpaper on a wall it may be sufficient to define a small part of the pattern. The repetition happens automatically if we use texture coordinates outside \([0,1]\), texture \((1.2,3.4)\) becomes texture \((0.2,0.4)\) (leaving the fractions). To change this behaviour we can ask for clamping instead; using one image but stretching the pixels on the edges. The following code
```

glBindTexture(GL_TEXTURE_2D, 100);
glBegin(GL_POLYGON);
glTexCoord2f(0.0, 0.0); glVertex3f(0.0, 0.0, 0.5);
glTexCoord2f(3.0, 0.0); glVertex3f(1.0, 0.0, 0.5);
glTexCoord2f(3.0, 2.0); glVertex3f(1.0, 1.0, 0.5);
glTexCoord2f(0.0, 2.0); glVertex3f(0.0, 1.0, 0.5);
glEnd();

```
will produce two image-rows with three image-columns (so our original image occurs six times).


Another way (mipmapping) to solve the minification problem is to let OpenGL build a sequence of images in decreasing sizes. This must be used in the planet-lab, otherwise the Moon-texture will flicker (it looks like small electric flashes).
"mip" is an acronym for multum in parvo, which is Latin for something like "much in little".

This is what it may look like in the lab:
glBindTexture (GL_TEXTURE_2D, 100);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER
GL_NEAREST);
// New
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER GL_LINEAR_MIPMAP_NEAREST);
// You have to set width, height and texture gluBuild2DMipmaps ( GL_TEXTURE_2D, GL_RGB, width, height, GL_RGB, GL_UNSIGNED_BYTE, texture );
GL_LINEARMIPMAP_NEAREST (looks best, I think) picks the mipmap that most closely matches the size of the pixel being textured and uses the GL_LINEAR criterion to produce a texture value.```

