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SOLUTIONS: OPTIONS AND MATHEMATICS
(CTH[mve095], GU[MAN690])

January 19, 2008, morning (4 hours), v
No aids.
Examiner: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. (Black-Scholes model) A derivative of European type pays the amount

Y = S(T ) +
1

S(T )

at time of maturity T: Find �Y (t) for all 0 � t < T:

Solution. We have
�Y (t) = �S(T )(t) + � 1
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Here, if � = T � t; s = S(t); and G 2 N(0; 1);
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and it follows that
�Y (t) = S(t) +
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2. (Binomial model) Suppose d = �u and er = 1
2
(eu + ed): A �nancial

derivative of European type has the maturity date T = 4 and payo¤ Y =
f(X1 +X2 +X3 +X4); where f(x) = 1 if x 2 f4u; 0;�4ug and f(x) = �1 if
x 2 f2u;�2ug : Show that �Y (0) = 0.

Solution. It follows that d < r < u and

qu =
er � ed
eu � ed =

eu � er
eu � ed = qd:

Hence qu = qd = 1
2
: Furthemore,
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3. (Black-Scholes model) Suppose T > 0; N 2 N+; h =
T
N
; and tn = nh;

n = 0; :::; N; and consider a derivative of European type paying the amount

Y =
N�1X
n=0

(ln S(tn+1)
S(tn)

)2 at time of maturity T . Find �Y (0):

Solution. First consider a derivative paying the amount Yn = (ln
S(tn+1)
S(tn)

)2 at

time T: Since Yn is known at time tn+1; �Yn(tn+1) = Yne
�r(T�tn+1): Note that
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Now it follows that
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4. Derive the delta of a European call in the Black-Scholes model. Recall
that the call price equals s�(d1)�Ke�r��(d2), where s = S(t); � = T�t > 0;
and

d1 =
ln s
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5. Consider the binomial model in one period and assume d < r < u: A
derivative pays the amount Y = f(X) at time 1: Find a portfolio which
replicates the derivative at time 0:


