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Preface

The aim with this book is to give an introduction to the mathematical theory
of �nancial derivatives based on classical di¤erential and integral calculus. In
addition, the presentation requires some knowledge of probability. So called
Lebesgue integration and Itô calculus will not be used.
The book is founded on di¤erent undergraduate courses given at the

Chalmers University of Technology and University of Gothenburg during
more than ten years and it is still not quite completed.
Finally I would like to express my deep gratitude to the students in my

classes and to Per Hörfelt, Carl Lindberg, and Olaf Torne for suggesting a
variety of improvements.

Göteborg, January 19, 2010
Christer Borell
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CHAPTER 1

The Dominance Principle

Introduction

In this book we will study so called �nancial derivatives, that is �nancial
securities de�ned in terms of other �nancial securities. The most common
examples of �nancial derivatives are ordinary stock options.
A call option on a stock is a contract between the writer (or seller) of the

call and the buyer of the call. The buyer has the right but not the obligation
to buy from the writer the stock at a �xed price called exercise price or strike
price. For a European call, the right to buy can only be exercised on the
expiration date of the contract. In an American call, the right to buy can
be exercised at any time on or before the expiration date of the call. If we
replace the right to buy in the de�nition of a call by the right to sell we get
a so called put on the stock. The writer of an option is said to have a short
position and the buyer a long position. The expiration date of an option is
also called maturity date or termination date.
If an investor borrows and then sells a stock, the investor is said to have

a short position in the stock.
Suppose S(t) denotes a stock price at time t and S = (S(t))t�0 the corre-

sponding stock price process. A European call on the stock, or for short on
S; with the strike price K and the termination date T has the value

max(0; S(T )�K)

at the date T and a European put on S with the same strike price and
termination date has the value

max(0; K � S(T ))

at the date T . Here the functions gc(x) = max(0; x � K) and gp(x) =
max(0; K�x) are called payo¤ functions of the call and the put, respectively.
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The payo¤s gc(S(T )) and gp(S(T )) are called the intrinsic values of the call
and put, respectively.
If g is a real-valued function on the interval ]0;1[, a contract which

pays the amount Y = g(S(T )) to its owner at maturity T is called a simple
European derivative on S with payo¤ function g. The American version can
be exercised at any time t before or on the date T and pays, upon exercise,
the amount g(S(t)).
A forward contract on S is an agreement to buy or sell the stock at a

�xed price K at a given delivery date T: The buyer is said to have a long
position and the seller a short position. Initially neither party incurs any
costs in entering into the contract. The price K is called delivery price or
forward price and is denoted by STfor(t) if the agreement is made at time t.
The payo¤ to the holder of the long position is S(T )�K and for the short
position it is K � S(T ):
To simplify the presentation, we will assume a constant interest rate r

and suppose there is a bond with the price

B(t) = B(0)ert

at time t; where B(0) is a strictly positive real number. The saving account
yields the same interest rate and, moreover, it is possible to borrow money
at the rate r: If not otherwise stated, it will be assumed that r > 0:
Our main concern here is to de�ne prices of �nancial derivatives from

given mathematical assumptions. However, to start with in this chapter we
assume that the prices are already de�ned and, only assuming minimal con-
ditions, we will derive interesting relations between them. In this context,
and elsewhere in this presentation, it will be assumed that there are no trans-
action costs and it is possible to trade in fractions of shares. Furthermore,
if not otherwise stated, it is assumed that the stocks do not pay dividends.
Option pricing for dividend-paying stocks will be treated in Chapter 7.

1.1 The Dominance Principle

Consider a model with n �nancial securities U1; :::;Un; where the n : th
security is the bond. The price of the i : th security equals �Ui(t) at time t:
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A portfolio is an ordered n-tuple of real numbers

A = (a1; :::; an)

where ai is the number of units of asset Ui (a negative value on ai means a
short position corresponding to �ai units in Ui). Thus a portfolio is a vector
inRn and we can de�ne the sum of two portfolios as the corresponding vector
sum. In a similar way, we de�ne �A if A is a portfolio and � 2 R.
The value of a portfolio A = (a1; :::; an) at time t is, by de�nition,

VA(t) =
nX
i=1

ai�
Ui(t):

Thus
V�A+�B(t) = �VA(t) + �VB(t)

if A and B are portfolios and �; � 2 R.
Below we assume time is restricted to the interval 0 � t � T:

Axiom 1. (Dominance Principle) Suppose t < T is the present time. If
the holder of a portfolio A can ensure that A exists at time T and VA(T ) � 0;
then VA(t) � 0.

At a �rst glance, the formulation of Axiom 1 may look complicated but
here recall that the writer of an American option cannot prevent the owner
from exercising the option before time T: Thus, in general, the holder of a
portfolio containing American contracts can not guarantee the existence of
the portfolio at a later point of time.
In fact, Axiom 1 is very plausible. To see this assume there is a portfolio

A such that the holder can act so that VA(T ) � 0: If VA(t) < 0 at the present
time t; the investor may add bonds to the portfolio A in such a proportion
that the new portfolio is of no value. Thus by investing the amount zero
today the investor, with certainty, has a positive portfolio value at a later
date, which is absurd in a mathematical model.
If a European derivative on S pays the amount Y at the termination

date T , we denote its price at time t by �Y (t) or �Y (t; T ) if it is important
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to emphasize the termination date. The following notation is standard for
European call and put prices:

c(t; S(t); K; T ) = �(S(T )�K)+(t; T )

p(t; S(t); K; T ) = �(K�S(T ))+(t; T )

Here a+ = max(0; a) if a is a real number. The price of an American
call fputg on S with strike price K and termination date T is denoted by
C(t; S(t); K; T ) fP (t; S(t); K; T )g :

Example 1.1.1. Consider a portfolio A consisting of a long position in an
American put on S with strike K and maturity T and, in addition, a short
position in its European counterpart. By not exercising the American put,
the holder of the portfolio can ensure that the portfolio is exists at time T:
Clearly the value of the portfolio then vanishes at time T . Thus, by Axiom
1,

P (t; S(t); K; T )� p(t; S(t); K; T ) = VA(t) � 0
that is,

P (t; S(t); K; T ) � p(t; S(t); K; T ):
In other words the value of an American put is not smaller than the value of
its European counterpart. We leave it as an exercise to prove that

p(t; S(t); K; T ) � 0:

Next let us consider a portfolio containing a short position in an American
put and a long position in its European counterpart. Now the holder of the
portfolio is also the writer of the American put and moreover, if S(t) is small
enough (for example (K�S(t))er(T�t) > K) it is not optimal for the owner of
the American put to retain this security until the termination date T . Thus
Axiom 1 does not apply in this case.

Example 1.1.2. Suppose a portfolio A consists of a long position in an
American call with strike K0 and termination date T and a short position in
an Amercan call on the same underlying asset and termination date but with
strike K1 � K0: Suppose the portfolio owner decides to exercise the long as
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soon as his counterparty exercises the short. As (S(�)�K0)
+ � (S(�)�K1)

+

for all � it is tempting to conclude that C(t; S(t); K0; T )�C(t; S(t); K1; T ) �
0: However, this is not an immediate consequence of Axiom 1 but will follow
from Theorem 1.1.3 below.

Theorem 1.1.1. Suppose t < T is the present time and let A and B be
portfolios not containing any American options.
(a) If VA(T ) = 0; then VA(t) = 0.
(b) If VA(T ) = VB(T ); then VA(t) = VB(t).
(c) If VA(T ) � VB(T ); then VA(t) � VB(t).

PROOF (a) Axiom 1 implies that VA(t) � 0:Moreover, V�A(T ) = �VA(T ) =
0 and Axiom 1 yields V�A(t) � 0 or �VA(t) � 0: It follows that VA(t) = 0
and Theorem 1.1(a) is proved.
(b) Part (a) yields VA�B(t) = 0 and the result follows from the relation

VA�B(t) = VA(t)� VB(t):
(c) The proof follows in a similar way as the proof of Part (b).

Theorem 1.1.2. (Put-Call Parity) If t < T and � = T � t; then

S(t)� c(t; S(t); K; T ) = Ke�r� � p(t; S(t); K; T ):

PROOF Consider a portfolio A consisting of a long position in the stock,
a long position in the European put on S with strike K and maturity T; a
short position in the European call on S with strike K and maturity T , and
a short position in the bond corresponding to K=B(T ) units. Then

VA(T ) = S(T ) + (K � S(T ))+ � (S(T )�K)+ � K

B(T )
B(T ):

Thus if S(T ) � K;

VA(T ) = S(T ) + 0� (S(T )�K)�K = 0
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and if S(T ) < K;

VA(T ) = S(T ) + (K � S(T ))� 0�K = 0

and Theorem 1.1.1(a) implies that VA(t) = 0; that is,

S(t) + p(t; S(t); K; T )� c(t; S(t); K; T )�Ke�r� = 0

which is equivalent to the call-put parity relation.
A reader who prefers to avoid short positions in the proof of Theorem

1.1.2 can base the proof on Theorem 1.1.1(b) instead. The details are left to
the reader.

Regarding Theorem 1.1.2 and the next theorem recall that the stock does
not pay dividends. In this case the next result says that it is never optimal
to exercise an American call before expiry. Note however that Chapter 7.2
shows that it may be optimal to exercise an American call option before the
maturity date if the underlying asset pays dividends.

Theorem 1.1.3. If t < T;

C(t; S(t); K; T ) > S(t)�K

and, as a consequence,

C(t; S(t); K; T ) = c(t; S(t); K; T ):

Moreover, the map
T ! c(t; S(t); K; T )

is increasing.

PROOF Since K > Ke�r� and p(t; S(t); K; T ) � 0 the Put-Call parity gives

c(t; S(t); K; T ) > S(t)�K:

As in Example 1.1.1 one proves that C(t; S(t); K; T ) � c(t; S(t); K; T ) and
hence, C(t; S(t); K; T ) > S(t) � K: As a consequence, it is not optimal to
exercise the American call at time t < T .
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Suppose the portfolioA is long one European call option with maturity T2
and strike price K and short one European call option with maturity T1 and
strike price K, where T2 > T1 � t. The put-call parity gives, as above,
that c(T1; S(T1); K; T2) > S(T1) � K and therefore c(T1; S(T1); K; T2) �
c(T1; S(T1); K; T1). Thus, VA(T1) � 0 and the dominance principle implies
VA(t) � 0 for t � T1. Hence

c(t; S(t); K; T2) � c(t; S(t); K; T1)

and the proof is complete.

A real-valued function f de�ned on an interval I is said to be convex if

f(�x+ (1� �)y) � �f(x) + (1� �)f(y)

for all x; y 2 I and 0 < � < 1: An a¢ ne function f(x) = ax+ b is convex and
so is the maximum of two convex functions f1 and f2 de�ned on the same
interval I: To prove this claim, de�ne h(z) = max(f1(z); f2(z)); when z 2 I:
Now if x; y 2 I and 0 < � < 1;

fk(�x+ (1� �)y) � �fk(x) + (1� �)fk(y); k = 1; 2

and, consequently,

fk(�x+ (1� �)y) � �h(x) + (1� �)h(y); k = 1; 2

and
h(�x+ (1� �)y) � �h(x) + (1� �)h(y):

In particular, the payo¤functions gc(s) = max(0; s�K) and gp(s) = max(0; K�
s) are convex functions of s for �xed K and convex functions of K for �xed
s.

Theorem 1.1.4. The maps

K ! c(t; S(t); K; T ); K > 0

and
K ! p(t; S(t); K; T ); K > 0



11

are convex.

PROOF Suppose K0; K1 > 0 and 0 < � < 1: Consider a portfolio A con-
sisting of a European call on S with strike �K1 + (1� �)K0 and maturity T
and a portfolio B consisting of � units of a European call on S with strike
K1 and maturity T and, in addition, (1 � �) units of a European call on S
with strike K0 and maturity T: Then, since the function f(x) = (S(T )�x)+
is convex, we get

VA(T ) = (S(T )� (�K1 + (1� �)K0))
+

� �(S(T )�K1)
+ + (1� �)(S(T )�K0)

+ = VB(T ):

Hence, by Theorem 1.1.1(c), VA(t) � VB(t); that is,

c(t; S(t); �K1 + (1� �)K0; T ) �

�c(t; S(t); K1; T ) + (1� �)c(t; S(t); K0; T ):

The convexity in the strike price K of the put price p(t; S(t); K; T ) is proved
in a similar way or, alternatively, follows from Put-Call Parity and the �rst
part of Theorem 1.1.4.

Finally, in this chapter, we will discuss forward contracts on S: First
consider a derivative with payo¤ function g(s) = s�K and termination date
T: If A is a portfolio with one stock and a short position in the bond of
K=B(T ) units; VA(T ) = g(S(T )): Hence VA(t) = �g(S(T ))(t); that is

�g(S(T ))(t) = S(t)�Ke�r� :

If K is chosen such that �g(S(T ))(t) = 0; we �nd that

STfor(t) = S(t)e
r� :

A forward contract on a foreign currency, say US dollars, is of a slightly
di¤erent nature. Let �(t) denote the exchange rate at time t: That is, at time t
the value of 1 US dollar equals �(t) Swedish crowns. First consider a contract
with the maturity date T which gives the holder the right and obligation to
buy one US dollar at the price of K Swedish crowns. At maturity the value
of this contract equals

Y = �(T )�K
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Swedish crowns: In the following we assume the US interest rate rf is strictly
positive and constant and let Bf (t) = Bf (0)erf t be the price in US dollars of
a US bond. Then the process

S(t) = Bf (t)�(t); t � 0

can be viewed as the price process of a traded Swedish security. Indeed, we
may exchange Swedish crowns to US dollars, buy the US bond, and when
selling the US bond exchange the cash to Swedish crowns. Now

Y =
1

Bf (T )
(S(T )�Bf (T )K)

and we get

�Y (t) =
1

Bf (T )
(S(t)�Bf (T )Ke�r� ):

If K is chosen such that �Y (t) = 0, K is called the forward price on the US
dollar with delivery date T and K is denoted by �Tfor(t): Thus

�Tfor(t) = �(t)e
(r�rf )� :

To check this price, at time t we borrow the amount �(t)e�rf � crowns
in a Swedish bank and buy e�rf �=Bf (T ) units of the US bond:The value of
the bond has grown to 1 US dollar at time T and the amount of debt in
the Swedish bank to �(t)e(r�rf )� Swedish crowns at time T: This means that,
today at time t; we are certain to obtain 1 US dollar at the delivery date T
at the price of �(t)e(r�rf )� Swedish crowns:
A futures contract is similar to a forward contract but the trading takes

place on an exchange, and is subject to regulation.

Exercises

Below it is assumed that the Dominance Principle holds.
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1. Suppose �K > 0. A butter�y spread on call options pays at the
maturity T the amount

max(0; S(T )�K��K)�2max(0; S(T )�K)+max(0; S(T )�K+�K):

Show that the value of this option is non-negative at any point of time.

2. Consider a model where S(t) = B(t) for all t � 0: (a) Prove that
c(t; S(t); K; T ) = 0 if S(0)erT < K: (b) Suppose K < S(0)erT . Prove
that p(t; S(t); K; T ) = 0. (c) Prove that P (t; S(t); K; T ) > 0 for small
t > 0 if S(0) < K:

3. The price of a contract at time t is N units of currency and it pays at
the maturity date T > t the amount

N + �N(S(T )�K)+:

Show that

� =
1� e�r(T�t)
c(t; S(t); K; T )

if c(t; S(t); K; T ) > 0 and N 6= 0:

4. Suppose H is the Heaviside function, i.e. H(x) = 0 if x < 0 and
H(x) = 1 if x � 0, and, moreover, supposeK;�K are positive numbers
such that K ��K > 0. A digital call option with cash settlement has
the payo¤ function

Y0 = H(S(T )�K)

and a digital call option with physical settlement has the payo¤function

Y1 = S(T )H(S(T )�K):

Digitals option are also known as binary or bet options. Below we
assume that the contracts are of European type.

a) Show that

c(t; S(t); K; T )� c(t; S(t); K +�K;T ) � �K�Y0(t)

� c(t; S(t); K ��K;T )� c(t; S(t); K; T ):
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and conclude that

�Y0(t) = �
@c

@K
(t; S(t); K; T );

if the derivative exists.

b) Show that

�Y1(t) = c(t; S(t); K; T ) +K�Y0(t):

5. Suppose K0 � K1. Show that

c(t; S(t); K1; T ) � c(t; S(t); K0; T )

and conclude that
@

@K
c(t; S(t); K; T ) � 0

if the derivative exists.

6. Prove that
c(t; S(t); K; T ) � S(t)

and
lim
T!1

c(t; S(t); K; T ) = S(t):

7. Suppose K0 � K1. Prove that

c(t; S(t); K1; T ) � c(t; S(t); K0; T )� e�r� (K1 �K0)

and
@

@K
c(t; S(t); K) � �e�r�

if the derivative exists.

8. Show that
lim
S(t)!0

c(t; S(t); K) = 0:

9. Show that
@c

@s
(t; s;K; T )� @p

@s
(t; s;K; T ) = 1

if the derivatives exists.
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10. Suppose t0 < T and n 2 N+: Set h = 1
n
(T � t0) and ti = t0 + ih;

i = 1; :::; n: Moreover, suppose K > 0 and consider two European
derivatives on S with time of maturity T and payo¤s

Yc = max(0;
1

n+ 1

nX
i=0

S(ti)�K)

and

Yp = max(0; K � 1

n+ 1

nX
i=0

S(ti))

respectively. If t 2 [tm�1; tm[, show that

e�r�

n+ 1

m�1X
i=0

S(ti) +
1� e�r(n�m+1)h

1� e�rh
S(t)

n+ 1
� �Yc(t)

= Ke�r� � �Yp(t):
Find a similar formula if t < t0: The contracts Yc and Yp are usually
referred to as Asian call and put options.

11. Below �i, i = 0; : : : ; n, are positive numbers such that �n0�i = 1.

a) Show that if f is convex function on I and xi 2 I, i = 0; : : : ; n, then

f(�n0�ixi) � �n0�if(xi):

b) Show that a geometric mean is smaller than or equal to an arithmetic
mean, i.e. show that if ai > 0, i = 0; : : : ; n, then

�n0a
�i
i � �n0�iai:

c) Consider the payo¤ functions

Yg = max(0;�
n
0S(ti)

�i �K)

and
Ya = max(0;�

n
0�iS(ti)�K);

where t0 � t1 � ::: � tn � T and K > 0. Show that if t � t0 then

�Yg(t) � �Ya(t) � c(t; S(t); K; T ):
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12. Let t < T and N 2 N+: Set � = T � t, h = �=N; and tn = t + nh;
n = 0; :::; N: A �nancial contract has the following description: at each
point of time tn�1 the holder of the contract gets a forward contract on
S with delivery date tn and, furthermore at time tn the holder�s saving
account adds the amount S(tn)�Stnfor(tn�1) for n = 1; :::; N: Prove that
the sum of the depositions will grow to the amount S(T ) � STfor(t) at
time T .

1.2 Problems with solutions

1. Find a portfolio consisting of European calls and puts with termination
date T such that the value of the portfolio at time T equals

Y = min(K; j S(T )�K j):

Solution. By drawing a graph of Y as a function S(T ) we get Y = (K �
S(T ))+ + (S(T ) � K)+ � (S(T ) � 2K)+: Thus a portfolio with long one
European put with strike K and expiry T , long one European call with
strike K and expiry T; and short one call with strike 2K and expiry T will
satisfy the requirements in the text.
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CHAPTER 2

The Binomial Model

Introduction

In this chapter we will study the so called binomial model introduced in 1979
by Cox, Ross och Rubinstein [CRR] och Rendleman och Bartter [RB].
The binomial model in T periods is a discrete time model where the time

index t belongs to the set f0; 1; :::; Tg : The model has two underlying assets,
a stock with strictly positive price S(t) at time t and a bond with strictly
positive price B(t) at time t: The bond price dynamics is given by

B(t+ 1) = B(t)er; t = 0; 1; :::; T � 1

where r is a positive constant called interest rate. To explain the stock
price dynamics, we suppose u and d are given reals such that u > d and let
X1; :::; XT be independent identically distributed random variables such that

pu = P [Xt = u] ;

pd = P [Xt = d]

and
pu + pd = 1; 0 < pu < 1:

In this presentation, for simplicity, it will be assumed that the event

[Xt =2 fu; dg]

never happens for any t: The stock price dynamics is de�ned by

S(t+ 1) = S(t)eXt+1 ; t = 0; :::; T � 1:

Above we have chosen a set up of the binomial model, which will make
the step to the famous Black-Scholes model as simple as possible.
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2.1. The Single-Period model

Let h = (hS; hB) be a portfolio consisting of hS units of the stock and hB
units of the bond. The portfolio value at time t is given by

Vh(t) = hSS(t) + hBB(t):

The portfolio h is called an arbitrage portfolio if

Vh(0) = 0; Vh(1) � 0; and E [Vh(1)] > 0

or, stated otherwise,

Vh(0) = 0; Vh(1) � 0; and Vh(1) 6= 0

(here recall, if X : 
 ! R is a function the inequality X � 0 means that
X(!) � 0 for all ! 2 
 and the relation X 6= 0 means that X(!) 6= 0 for
some ! 2 
). More explicitly, h is an arbitrage portfolio if

hSS(0) + hBB(0) = 0

and �
hSS(0)e

u + hBB(0)e
r � 0

hSS(0)ed + hBB(0)er � 0
where strict inequality occurs in at least one of these inequalities.

Theorem 2.1.1. There exists an arbitrage portfolio in the single-period
binomial model if and only if

r =2 ]d; u[ :

PROOF Suppose h = (hS; hB) is an arbitrage portfolio so that

hSS(0) + hBB(0) = 0
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and �
hSS(0)e

u + hBB(0)e
r � 0

hSS(0)ed + hBB(0)er � 0
where strict inequality occurs in at least one of these inequalities. Then

hBB(0) = �hSS(0)

and, hence, �
hSS(0)(e

u � er) � 0
hSS(0)(ed � er) � 0

where strict inequality occurs in at least one of these inequalities. Then
hS 6= 0 and if hS > 0, �

eu � er � 0
ed � er � 0:

Thus r � d and r =2 ]d; u[ : The case hS < 0 is treated in a similar way.
Conversely, suppose r =2 ]d; u[ : Assume �rst r � d and choose hS = 1 and

hB < 0 so that
S(0) = (�hB)B(0):

Then
hSS(0) + hBB(0) = 0

and �
hSS(0)e

u + hBB(0)e
r > 0

hSS(0)ed + hBB(0)er � 0
and it follows that h = (hS; hB) is an arbitrage portfolio. The case r � u is
treated in a similar way.

Next we enlarge the single-period binomial model by adding a derivative
security of European type paying the amount Y = g(S(1)) to its owner at
time of maturity 1: Here the so called payo¤ function g :

�
S(0)eu; S(0)ed

	
!

R is a deterministic function. What is a natural price �Y (0) of this derivative
at time 0?
To simplify, set f(x) = g(S(0)ex), x 2 fu; dg and note that Y = f(X):

In the next step we try to �nd a portfolio h = (hS; hB) consisting of hS units
of the stock and hB units of the bond which replicates the derivative, that is
Vh(1) = f(X) or, what amounts to the same thing,

hSS(0)e
u + hBB(0)e

r = f(u)
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and
hSS(0)e

d + hBB(0)e
r = f(d):

From these equations we have

hSS(0) =
f(u)� f(d)
eu � ed

and

hBB(0) = e
�r e

uf(d)� edf(u)
eu � ed :

In particular, the quantities hS and hB are unique and

Vh(0) = hSS(0) + hBB(0)

= e�r [quf(u) + qdf(d)]

where

qu =
er � ed
eu � ed

and

qd =
eu � er
eu � ed :

We de�ne
�Y (0) = Vh(0) = e

�r [quf(u) + qdf(d)] :

Clearly, �S(1)(0) = S(0) as

S(0) = e�r(que
uS(0) + qde

dS(0))

or
que

u + qde
d = er:

Suppose the model is free of arbitrage, which depending on Theorem 2.1.1
means that u > r > d. Then qu > 0; qd > 0 and qu+ qd = 1 and the numbers
qu and qd are called martingale probabilities. Moreover, if we go back to the
derivative above with payo¤ Y and recall that Vh(1) = Y we conclude that
the enlarged model is free of arbitrage in the following sense:
if x; y; and z are real numbers satisfying

xS(0) + yB(0) + z�Y (0) = 0
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then the following cannot occur

xS(1) + yB(1) + zY � 0 and xS(1) + yB(1) + zY 6= 0:

Example 2.1.1. Suppose u > 0 > d: A derivative has the payo¤

Y = max(0;
S(0) + S(1)

2
� S(0))

at time of maturity 1:We want to determine its price at time 0. To this end
set S(0) = s so that

S(1) = seX

and

Y = max(0;
1

2
(S(1)� S(0)) = smax(0; 1

2
(eX � 1)) =def f(X):

Now
f(u) =

s

2
(eu � 1)

and
f(d) = 0:

Thus
�Y (0) = e

�rqu
s

2
(eu � 1)

=
se�r

2
(eu � 1)e

r � ed
eu � ed =

s

2
(eu � 1)1� e

d�r

eu � ed :

Example 2.1.2. Suppose d < 0 < r < u and consider a call with the payo¤
Y = (S(1)�S(0))+ at the termination date 1:We want to �nd the replicating
strategy of the derivative at time 0: To solve this problem let S(0) = s and
S(1) = seX ; where X = u or d: If (hS; hB) denotes the replicating strategy
at time 0 we have

hSse
u + hBB(0)e

r = s(eu � 1)

and
hSse

d + hBB(0)e
r = 0:
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From this it follows that

hSs(e
u � ed) = s(eu � 1)

and
hS =

eu � 1
eu � ed :

Moreover, we get

hB = �
1

B(0)
hSse

d�r =
sed�r

B(0)

1� eu
eu � ed :

Exercises

1. A derivative has the payo¤ function

g(s) = max(0; s�K)

where
S(0)ed < K < S(0)eu:

Suppose the portfolio h = (hS; hB) replicates the derivative. Show that

hS > 0 and hB < 0:

2. Suppose
S(0)ed < K < S(0)eu

and consider a put of European type with the payo¤ Y = (K �S(1))+
at the termination date 1: Find the replicating strategy of the derivative
at time 0: (Answer: 1

S(0)
sed�K
eu�ed units of the stock and

eu�r

B(0)
K�sed
eu�ed units of

the bond)

3. (�-hedging) Assume u > r > d and consider a derivative with payo¤
Y = f(X) at time 1. Choose a portfolio D consisting of the derivate
and �� units of the stock, where � is chosen such that VD(1) is deter-
ministic.

(a) Prove that

� =
f(u)� f(d)
S(0)(eu � ed)
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and, hence,
VD(1) = VD(0)e

r:

(b) Give a new motivation of the de�nition

�Y (0) = e
�r(quf(u) + qdf(d)):

4. Suppose X is a Rademacher distributed random variable, that is

P [X = �1] = P [X = 1] =
1

2
:

Find all � 2 R such that

E
�
(a+ �bX)4

�
� (E

�
(a+ bX)2

�
)2

for every a; b 2 R.

5. Suppose d < r < u and consider a call with the payo¤Y = (S(1)�K)+
at the termination date 1, where S(0)ed < K < S(0)eu: (a) Find the
call price �Y (0) at time 0: (b) Prove that e�rY > �Y (0) if and only if
S(1) = S(0)eu:

2.2. The Multi-Period Model

Set X = (X1; :::; XT ) and

fu; dgT = fx; x = (x1; :::; xT ) and xt = u or d for t = 1; :::; Tg :

The set fu; dgT has 2T elements. The range of X may be represented
by a 2T � T matrix here denoted by RudT ; where the rows correspond
to the di¤erent realizations of X: Thus

Rud1 =

�
u
d

�
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Rud2 =

0BB@
u u
u d
d u
d d

1CCA

Rud3 =

0BBBBBBBBBB@

u u u
u u d
u d u
u d d
d u u
d u d
d d u
d d d

1CCCCCCCCCCA
and so on.
Since the random variables X1; :::; XT are independent

P [X1 = x1; :::; XT = xT ] = px1 � ::: � pxT

if x1; :::; xT = u or d: Therefore if f : fu; dgT ! R,

E [f(X1; :::; XT )] =
X

x1;:::;xT=u or d

f(x1; :::; xT )P [X1 = x1; :::; XT = xT ]

=
X

x1;:::;xT=u or d

f(x1; :::; xT )px1 � ::: � pxT :

Below we will often meet a sum of the typeX
x1;:::;xT=u or d

f(x1; :::; xT )qx1 � ::: � qxT

where qu and qd are as in Section 2.1.1 and it is convenient to introduce the
notation

EQ [f(X1; :::; XT )] =
X

x1;:::;xT=u or d

f(x1; :::; xT )qx1 � ::: � qxT :

Next recall the stock price dynamics introduced in the Introduction of
this chapter. Since

S(t) = S(0)eX1+:::+Xt
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the stock price at time t is a deterministic function of X1; :::; Xt and it is
sometimes useful to indicate this by writing

S(t) = S(t;X1; :::; Xt):

A sequence h = (hS(t); hB(t))
T
t=0 of real numbers is called a portfolio

strategy (or, for short, strategy) if h(0) = h(1) and h(t) is a deterministic
function of X1; :::; Xt�1 for every t 2 f1; :::; Tg. If so, we sometimes write

hS(t) = hS(t;X1; :::; Xt�1)

and
hB(t) = hB(t;X1; :::; Xt�1):

The corresponding value process Vh = (Vh(t))Tt=0 is de�ned by

Vh(t) = hS(t)S(t) + hB(t)B(t); t = 0; 1; ::; T:

Since Vh(t) is a deterministic function of X1; :::; Xt, we will often write

Vh(t) = Vh(t;X1; :::; Xt)

for t = 0; :::; T:
We have the picture that a portfolio strategy h = (hS(t); hB(t))Tt=0 is an

investment consisting of hS(t) units of the stock and hB(t) units of the bond
in the t : th period for t = 1; :::; T: Therefore, if

Vh(t) = hS(t+ 1)S(t) + hB(t+ 1)B(t); t = 1; :::; T � 1
the strategy is said to be self-�nancing. Since h(0) = h(1) the latest relation
is also true for t = 0; that is,

Vh(0) = hS(1)S(0) + hB(1)B(0):

Theorem 2.2.1. If h = (hS(t); hB(t))Tt=0 is a self-�nancing portfolio strat-
egy,

Vh(0) = e
�rT

X
x1;:::;xT=u or d

qx1 � ::: � qxTVh(T ;x1; :::; xT )

that is,
Vh(0) = e

�rTEQ [Vh(T ;X1; :::; XT )]
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or
Vh(0) = e

�rTEQ [Vh(T )] :

PROOF The case T = 1 is treated in Section 2.1. Now suppose T � 2 and
Theorem 2.2.1 is true for T � 1 periods. Moreover, let h = (hS(t); hB(t))Tt=0
is a self-�nancing portfolio strategy. Then, since

Vh(1) = hS(2)S(1) + hB(2)B(1)

we get from the induction assumption that

Vh(1;X1) = e
�r(T�1)

X
x2;:::;xT=u or d

qx2 � ::: � qxTVh(T ;X1; x2; :::; xT ):

But
Vh(0) = e

�r
X

x1=u or d

qx1Vh(1; x1)

and it follows that

Vh(0) = e
�r

X
x1=u or d

qx1

(
e�r(T�1)

X
x2;:::;xT=u or d

qx2 � ::: � qxTVh(T ;x1; x2; :::; xT )
)

= e�rT
X

x1;:::;xT=u or d

qx1 � ::: � qxTVh(T ;x1; :::; xT ):

This concludes the proof of Theorem 2.2.1.

A self-�nancing strategy h = (hS(t); hB(t))Tt=0 is said to be an arbitrage
strategy if

Vh(0) = 0; Vh(T ) � 0; and E [Vh(T )] > 0
or, stated otherwise,

Vh(0) = 0; Vh(T ) � 0; and Vh(T ) 6= 0:

Theorem 2.2.2. There exists an arbitrage strategy if and only if

r =2 ]d; u[ :
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PROOF First suppose r =2 ]d; u[ : By Theorem 2.1.1 there is an arbitrage
strategy in the �rst period. At time 1 the corresponding portfolio is rebal-
anced and its total value is invested in the bond until time T: Clearly, this
gives us an arbitrage portfolio.
Next assume r 2 ]d; u[ and consider a self-�nancing portfolio strategy

h = (hS(t); hB(t))
T
t=0 with Vh(0) = 0 and Vh(T ) � 0. Then, by applying

Theorem 2.2.1,

0 = e�rT
X

x1;:::;xT=u or d

qx1 :::qxTVh(T ;x1; :::; xT )

However, if u > r > d; then qu > 0 and qd > 0: Hence Vh(T ) = 0; which
completes the proof of Theorem 2.2.2.

From now on it will always be assumed that the model is free of arbitrage,
which equivalently means that u > r > d:
Suppose g :

�
S(0)eku+(T�k)d; k = 0; :::; T

	
! R is a function. A deriva-

tive paying the amount Y = g(S(T )) to its owner at maturity T is called a
simple derivative of European type and the function g is called payo¤ func-
tion. If the payo¤ Y at time T is a deterministic function of the stock prices

S(0); S(1); :::; S(T )

we speak of a contingent claim of European type. For example, a contract
ensuring the owner to buy the stock at the lowest price during the time points
f0; 1; :::; Tg is equivalent to a so called lookback option with the payo¤

Y = S(T )� min
t2f0;1;:::;Tg

S(t)

at time T
The payo¤ of a contingent claim of European type may be written Y =

f(X1; :::; XT ) for an appropriate function f : fu; dgT ! R:What is a natural
price �Y (t) of this contingent claim at time t?
We de�ne �Y (T ) = Y: Next suppose t < T and that �Y (j) has already

been de�ned as a deterministic function of X1; :::; Xj for j = T; :::; t + 1.
To complete the de�nition of �Y we have to de�ne �Y (t) as a deterministic
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function of X1; :::; Xt: To this end we note that there exists a unique portfolio
(hS(t+1); hB(t+1)) in the (t+1) : th period, only depending on X1; :::; Xt;
which replicates a derivative with payo¤�Y (t+1) at time t+1: To be more
precise, let

�uY (t+ 1) = �Y (t+ 1)jXt+1=u

and
�dY (t+ 1) = �Y (t+ 1)jXt+1=d:

Then

hS(t+ 1)S(t) =
�uY (t+ 1)� �dY (t+ 1)

eu � ed

and

hB(t+ 1)B(t) = e
�r e

u�dY (t+ 1)� ed�uY (t+ 1)
eu � ed

where, as usual,

qu =
er � ed
eu � ed

and

qd =
eu � er
eu � ed :

Hence
�Y (t) = e

�r(qu�
u
Y (t+ 1) + qd�

d
Y (t+ 1)):

Finally, de�ne h(0) = (hS(0); hB(0)) = h(1) so that Vh(t) = �Y (t) for all
t = 0; 1; :::; T: The above construction gives a self-�nancing portfolio strategy
h with

Vh(T ) = Y

and we say that h replicates the derivative in question. Since every contingent
claim of European type is replicable the model is called complete. Note also
that

�Y (0) = e
�rTE [Y ]

in view of Theorem 2.2.1.

Exemple 2.2.1. Suppose u > r > 0, d = �u, T = 2; and

Y = max(S(0); S(1); S(2)):
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We want to determine �Y (0) and to this end let S(0) = s and remember
that

S(t+ 1) = S(t)eXt+1 ; t = 0; 1:

To simplify, let v(t) = �Y (t) and we obtain

v(2)jX1=u;X2=u = max(s; se
u; seu+u) = se2u

v(2)jX1=u;X2=d = max(s; se
u; seu+d) = seu

v(2)jX1=d;X2=u = max(s; se
d; sed+u) = s

v(2)jX1=d;X2=d = max(s; se
d; sed+d) = s

and
v(1)jX1=u = e

�r(quse
2u + qdse

u)
v(1)jX1=d = e

�r(qus+ qds) = e
�rs:

Hence
�Y (0) = e

�r �que�r(quse2u + qdseu) + qde�rs	
= se�2r

�
q2ue

2u + quqde
u + qd

	
where, as usual,

qu =
er � ed
eu � ed = 1� qd:

Example 2.2.2. Suppose u > r > d and T = 2 and consider a European
derivative with the payo¤ Y at time of maturity T = 2; where

Y =

�
0; if X1 = X2

1; otherwise.

We want to �nd �Y (0) and hS(0): To this end set v(t) = �Y (t) and

qu =
er � ed
eu � er = 1� qd:

Then 8>><>>:
v(2)jX1=u; X2=u = 0
v(2)jX1=u; X2=d = 1
v(2)jX1=d; X2=u = 1
v(2)jX1=u; X2=u = 0

and �
v(1)jX1=u = e

�r(qu � 0 + qd � 1) = e�rqd
v(1)jX1=d = e

�r(qu � 1 + qd � 0) = e�rqu:
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Hence
�Y (0) = v(0) = e

�r(que
�rqd + qde

�rqu) = 2e
�2rquqd:

Futhermore, as h(0) = h(1);�
hS(0)S(0)e

u + hB(0)B(0)e
r = v(1)jX1=u

hS(0)S(0)e
d + hB(0)B(0)e

r = v(1)jX1=d

or �
hS(0)S(0)e

u + hB(0)B(0)e
r = e�rqd

hS(0)S(0)e
d + hB(0)B(0)e

r = e�rqu

and it follows that
hS(0) = e

�r qd � qu
S(0)(eu � ed) :

Again consider a contingent claim of European type with the payo¤ Y =
f(X1; :::; XT ) at time T and choose a replicating portfolio strategy h so that
Vh(T ) = Y: Then, by Theorem 2.2.2,

�Y (0) = e
�rT

X
x1;:::;xT=u or d

qx1 � ::: � qxT f(x1; :::; xT ):

To simplify this formula set

R10T = (ajk)1�j�2T ;1�k�T .

Moreover, let rj be the j : th row of the matrix R10T , let

bj = (u� d)rj + [d ::: d]

and let nj number of u : s in the vector bj, that is

nj =

TX
k=1

ajk

for j = 1; :::; 2T : Then

�Y (0) = e
�rT

2TX
j=1

qnju q
T�nj
d f(bj):
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Here the sum in this series contains 2T terms, which is an extremely large
number even if T is of a rather moderate size.
A simple derivative with payo¤Y = g(S(T )) = g(S(0) exp(X1+ :::+XT ))

is much simpler to handle numerically. Since there are�
T
k

�
=

T !

k!(T � k)!

sequences of length T that have exactly k u : s; we have

�Y (0) = e
�rT

TX
k=0

�
T
k

�
qkuq

T�k
d g(S(0)eku+(T�k)d):

Setting � = T � t, note that

�Y (t) = e
�r(T�t)

�X
k=0

�
�
k

�
qkuq

��k
d g(S(t)eku+(��k)d)

which implies that �Y (t) is a deterministic function of S(t). In connec-
tion, with computations it is often preferable to proceed recursively. Writing
�Y (t) = v(t; S(t)),

v(T; S(0)eku+(T�k)d) = g(S(0)eku+(T�k)d); k = 0; :::; T

and for every t = T � 1; :::; 1; 0,

v(t; S(0)eku+(t�k)d)

= e�r(quv(t+ 1; S(0)e
(k+1)u+(t�k)d) + qdv(t+ 1; S(0)e

ku+(t+1�k)d))

for k = 0; :::; t: We get �Y (0) = v(0; S(0)):
Next let k 2 f0; :::; Tg be �xed and de�ne

ADk =

�
1 if S(T ) = S(0)eku+(T�k)d

0 if S(T ) 6= S(0)eku+(T�k)d

so that

�ADk(0) = e
�rT

�
T
k

�
qkuq

T�k
d :
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The quantities �ADk(0); k = 0; 1; :::; T; are called the Arrow-Debreu prices.
For a simple derivative of European type with payo¤ Y = g(S(T )) at time
of maturity T;

�Y (0) =
TX
k=0

�ADk(0)g(S(0)e
ku+(T�k)d)

(the Arrow-Debreu prices serve the same role a Green function in mathemat-
ical physics).
Finally in this section we consider so called American contingent claims.
For any t = 0; 1; :::; T; suppose Yt is a deterministic function of X1; :::; Xt

given by the equation
Yt = ft(X1; :::; Xt)

where
ft : fu; dgt ! R:

Here Y0 is a real number known at time 0. A contingent claim of American
type with payo¤ process Y = (Yt)Tt=0 gives its owner the right to exercise the
contract at any time point t 2 f0; 1; :::; Tg and, if so, the contract pays the
amount Yt to its owner and expires at the same time. What is a natural price
�Y (t) of this derivative at time t? As above we will make use of the notation

�uY (t+ 1) = �Y (t+ 1)jXt+1=u

and
�dY (t+ 1) = �Y (t+ 1)jXt+1=d:

First we de�ne �Y (T )) = YT : If

e�r(qu�
u
Y (T ) + qd�

d
Y (T )) > YT�1

it is not optimal for the owner to exercise the derivative at time T � 1: We
therefore de�ne

�Y (T � 1) = max(YT�1; e�r(qu�uY (T ) + qd�dY (T ))

and, in general,

�Y (t) = max(Yt; e
�r(qu�

u
Y (t+ 1) + qd�

d
Y (t+ 1))); t = T; T � 1; :::; 0:
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Again, in many interesting cases it is impossible to compute �Y (0) since
2T is an extemely larege number even if T is of a rather moderate size.
The situation is much simpler if each Yt is a deterministic function of S(t).
Introducing

Yt = gt(S(t))

we �nd that �Y (t) is a deterministic function of function v(t; S(t)) of (t; S(t))
and

v(T ;S(0)eku+(T�k)d) = gT (S(0)e
ku+(T�k)d); k = 0; :::; T:

Moreover, for every t = T � 1; :::; 1; 0,

v(t;S(0)eku+(t�k)d)

equals

max(gt(S(0)e
ku+(t�k)d); e�r(quv(t+1; S(0)e

(k+1)u+(t�k)d)+qdv(t+1; S(0)e
ku+(t+1�k)d))

for each k = 0; :::; t:

Exercises

1. A European derivative pays the amount Y at time of maturity T = 2;
where

Y =

�
0; if X1 = X2

1; otherwise.

(a) Find the price �Y (0) of the derivative at time zero. (b) Suppose
(hS(t); hB(t))

T
t=0 is a self-�nancing portfolio which replicates the deriv-

ative. Find hS(0):

2. Suppose T = 2 and consider a contingent claim of European type with
the payo¤

Y = max(0; (S(0)S(1)S(2))
1
3 �K)

at time of maturity 2, where K is a real number satisfying

S(0)ed < K � S(0)e 13u+ 2
3
d:

Show that

�Y (0) = e
�2r
h
S(0)q2ue

u + S(0)quqd(e
2
3
u+ 1

3
d + e

1
3
u+ 2

3
d)� qu(1 + qd)K

i
:
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3. Suppose T = 2 and consider a contingent claim of European type with
the payo¤

max

�
0;
1

3
(S(0) + S(1) + S(2))�K

�
at time of maturity 2, where K is a real number satisfying

S(0)

3
(1 + ed + e2d) < K <

S(0)

3
(1 + ed + eu+d):

Find �Y (0):

4. A contingent claim of European type pays

Y = S(T )� min
t2f0;1;:::;Tg

S(t)

at time T: Find �Y (0) if u = �d = 0:1; r = 0:05 and
(a) T = 1 (Answer : 0.0731 S(0))

(b) T = 2 (Answer: 0.124 S(0))

5. Suppose u > r > 0 � d: A contingent claim of European type and
termination date T has payo¤ Y = S(T ) if S(0) < S(1) < ::: < S(T )
and Y = S(0) otherwise. Find �Y (0):

(Answer: e�rT
�
1 +

�
er�ed
eu�ed

�T
(eTu � 1)

�
S(0))

6. Let h = (hS(t); hB(t))
T
t=0 be a portfolio strategy. The gain process

(G(t))Tt=0 is de�ned by G(0) = 0 and

G(t) = hS(1)(S(1)� S(0)) + :::+ hS(t)(S(t)� S(t� 1)
+hB(1)(B(1)�B(0)) + :::+ hB(t)(B(t)�B(t� 1))

for t = 1; :::; T: Prove that h is self-�nancing if and only if

Vh(t) = Vh(0) +G(t); t = 0; :::; T:

2.3 Problems with solutions
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1. (The binomial model with u > 0; d = �u; r = 1
2
u; and T = 2). Suppose

g(x) = 1 if x = 0 and g(x) = 0 if x 6= 0: A derivative of European type
has the payo¤ g(S(T )� S(0)) at time of maturity T . (a) Find the price of
the derivative at time 0: (b) Suppose the strategy h replicates the derivative.
Find hS(0): The answers in Parts (a) and (b) may contain the martingale
probabilities qu and qd.

Solution. (a) We have

qu =
er � ed
eu � ed =

eu=2 � e�u
eu � e�u

and

qd = 1� qu =
eu � eu=2
eu � e�u :

Thus if v(t) denotes the price of the derivative at time t;

v(2)jX1=u;X2=u = 0

v(2)jX1=u;X2=d = 1

v(2)jX1=d;X2=u = 1

v(2)jX1=d;X2=d = 0

and

v(1)jX1=u = e�r(qu0 + qd1) = e
�rqd

v(1)jX1=d = e�r(qu1 + qd0) = e
�rqu:

Now
v(0) = e�r(que

�rqd + qde
�rqu)

= 2e�2rquqd = 2e
�uquqd:

(b) Recall that h(0) = h(1) and

hS(1)S(0)e
u + hB(1)B(0)e

r = e�rqd

hS(1)S(0)e
d + hB(1)B(0)e

r = e�rqu:

Hence
hS(0) = hS(1) = e

�u=2 1

S(0)

qd � qu
eu � e�u :
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2. (The single-period binomial model with pu = 1
2
) Suppose X = ln S(1)

S(0)
.

Show that
u = E [X] +

p
Var(X)

and
d = E [X]�

p
Var(X) :

Solution. We have

E [X] =
1

2
u+

1

2
d

and

E
�
X2
�
=
1

2
u2 +

1

2
d2:

Consequently,

Var(X) =
1

4
(u� d)2

and it follows that

E [X] +
p
Var(X) =

1

2
u+

1

2
d+

1

2
(u� d) = u

and

E [X]�
p
Var(X) =

1

2
u+

1

2
d� 1

2
(u� d) = d:

3. (Binomial model) Suppose d = �u and er = 1
2
(eu + ed): A �nancial

derivative of European type has the maturity date T = 4 and payo¤ Y =
f(X1 +X2 +X3 +X4); where f(x) = 1 if x 2 f4u; 0;�4ug and f(x) = �1 if
x 2 f2u;�2ug : Show that �Y (0) = 0.

Solution. It follows that d < r < u and

qu =
er � ed
eu � ed =

eu � er
eu � ed = qd:
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Hence qu = qd = 1
2
: Furthemore,

�Y (0) = e
�4r

4X
k=0

�
4
k

�
qkuq

4�k
d f(ku+ (4� k)d)

= e�4r
4X
k=0

�
4
k

�
qkuq

4�k
d f((2k � 4)u)

= e�4r(
1

2
)4(1� 4 + 6� 4 + 1) = 0:

4. (Binomial model) Suppose T = 3; u > r > 0; and d = �u: A derivative of
European type has the payo¤ Y at time of maturity T; where

Y =

�
1; if X1 = X2 = X3;
0; otherwise.

Find �Y (0) (the answer may contain the martingale probabilities qu and qd;
which must, however, be de�ned explicitely).

Solution. We have

qu =
er � e�u
eu � e�u and qd =

eu � er
eu � e�u :

Introducing �Y (t) = v(t), it follows that8>><>>:
v(2)jX1=u;X2=u = e

�r(qu � 1 + qd � 0) = e�rqu
v(2)jX1=u;X2=d = e

�r(qu � 0 + qd � 0) = 0
v(2)jX1=d;X2=u = e

�r(qu � 0 + qd � 0) = 0
v(2)jX1=d;X2=d = e

�r(qu � 0 + qd � 1) = e�rqd

and �
v(1)jX1=u = e

�r(que
�rqu + qd � 0) = e�2rq2u

v(1)jX1=d = e
�r(qu � 0 + qde�rqd) = e�2rq2d:

Thus
v(0) = e�r(que

�2rq2u + qde
�2rq2d) = e

�3r(q3u + q
3
d):
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Alternative solution. We have Y = 1fS(0)e3u;S(0)e�3ug(S(3)) and the derivative
is simple. Hence

�Y (0) = e
�3r

3X
k=0

�
3
k

�
qkuq

3�k
d 1fS(0)e3u;S(0)e�3ug(S(0)e

ku+(3�k)(�u))

= e�3r
X

k2f0;3g

�
3
k

�
qkuq

3�k
d = e�3r(q3u + q

3
d):

5. (The one period binomial model, where d < 0 < r < u) Consider a put
with the payo¤ Y = (S(0) � S(1))+ at the termination date 1: Find the
replicating strategy of the derivative at time 0:

Solution: Let S(0) = s and S(1) = seX ; where X = u or d: If (hS; hB)
denotes the replicating strategy at time 0 we have

hSse
u + hBB(0)e

r = 0

and
hSse

d + hBB(0)e
r = s(1� ed):

From this it follows that

hSs(e
u � ed) = s(ed � 1)

and

hS =
ed � 1
eu � ed :

Moreover, we get

hB = �
1

B(0)
hSse

u�r =
seu�r

B(0)

1� ed
eu � ed :

6. (Binomial model; T periods, d < 0 < r < u) A �nancial derivative of
European type pays the amount Y at time of maturity T; where

Y =

�
0 if S(T � 1) � S(T )
1 if S(T � 1) > S(T ):
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Find a self-�nancing portfolio strategy h = (hS(t); hB(t))Tt=0 which replicates
Y:

Solution. Set �Y (t) = v(t);

qu =
er � ed
eu � ed and qd =

eu � er
eu � ed :

We have v(T � 1; X1 = x1; ::::; XT�1 = xT�1) = e
�r(qu � 0+ qd � 1) = e�rqd

for all x1; :::; xT�1 2 fu; dg : Hence

v(t) = e�(T�1�t)re�rqd = e
�(T�t)rqd if 0 � t � T � 1:

Now

hS(t;x1; :::; xt�1) = 0 and hB(t;x1; :::; xt�1) =
e�Trqd
B(0)

if 1 � t � T � 1

and, as usual, h(0) = h(1): Moreover,�
hS(T ;x1; :::; xT�1)S(T � 1)eu + hB(T ;x1; :::; xT�1)B(T � 1)er = 0
hS(T ;x1; :::; xT�1)S(T � 1)ed + hB(T ;x1; :::; xT�1)B(T � 1)er = 1

and we get (
hS(T ;x1; :::; xT�1) = � 1

S(T�1)(eu�ed)
hB(T ;x1; :::; xT�1) =

eu�r

B(T�1)(eu�ed) :
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CHAPTER 3

Review of Basic Concepts in Probability

Introduction

If you intend to buy a share of a stock at time 0 at the price S(0) and have
the time horizon T it is interesting to know the return

R =
S(T )� S(0)

S(0)

of the investment during the time interval [0; T ] : However, R is not known
until time T and, before the investment, it is natural to view the return as
a random variable. In fact, probability seems to be an inevitable tool in
�nance.
The purpose of this chapter is to recall some basic de�nitions in prob-

ability theory and to go a little bit further than in the previous chapter.
The approach is rather intuitive and will not be based on measure theory.
However, certain results stated below require measure theory for their proofs.

3.1 Basic Concepts

Consider a �xed sample space 
: An event is a subset of 
 and a random
variable is a map from 
 into the real numbers. The probability of an event
A is denoted by P [A] and the expectation of a random variable X by E [X] :
If A is an event we de�ne a random variable 1A by setting

1A =

�
1 if A occurs

0 if A does not occur.

Thus
P [1A = 1] = P [A]
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and
P [1A = 0] = 1� P [A] :

Hence
E [1A] = 0 � (1� P [A]) + 1 � P [A] = P [A] :

If X is a random variable with a �nite second order moment E [X2] <1
it is interesting to note that E [j X j] <1: Indeed,

E [j X j] = E
�
j X j 1[jXj�1]

�
+ E

�
j X j 1[jXj>1]

�
� E [1] + E

�
X2
�
= 1 + E

�
X2
�
<1:

Moreover, in this case, we de�ne the variance of X by

Var(X) = E
�
(X � E [X])2

�
and it follows that

Var(X) = E
�
X2
�
� (E [X])2:

The variance ofX is a measure on how muchX deviates from its expectation.
If c is a real number X and X + c have the same variance.

If a > 0; the important Markov inequality states that

P [j X j� a] � 1

a
E [j X j] :

The proof is simple. First

1[jXj�a] �
1

a
j X j

and by taking the expectation

E
�
1[jXj�a]

�
� E

�
1

a
j X j

�
which is the same as Markov�s inequality. In particular,

P [j X j� a] = P
�
X2 � a2

�
� 1

a2
E
�
X2
�
:

Here assuming E [X2] < 1 and replacing X by X� E [X], we get the so
called Chebyshev inequality

P [j X � E [X] j� a] � 1

a2
Var(X) if a > 0:
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The distribution function of a real-valued random variable X is de�ned
by

F (x) = P [X � x] ; x 2 R:
Furthermore, the function

cX(�) = E
�
ei�X

�
; � 2 R

is called the characteristic function of X. Note that

cX(0) = 1:

For example, if X is a random variable with probability distribution
given by

P [X = 1] = P [X = �1] = 1

2
then

cX(�) =
1

2
ei� +

1

2
e�i� = cos �:

Two random variables X and Y are said to have the same distribution if
they have the same distribution function or, equivalently, if

P [X 2 A] = P [Y 2 A]

for every set A which is a �nite union of intervals. Moreover, by a fairly
deep theorem in Fourier analysis, this property equivalently means that the
random variables X and Y have the same characteristic function.
If X is a random variable with a density function f ,

E
�
ei�X

�
=

Z +1

�1
ei�xf(x)dx; � 2 R:

In the special case when

f(x) =
1p
2�
e�

x2

2

we write X 2 N(0; 1) and say that X has a standard Gaussian distribution.
In this case

E [X] =

Z +1

�1
xf(x)dx = 0

E
�
X2
�
=

Z +1

�1
x2f(x)dx = 1
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and
Var(X) = E

�
(X � E [X])2

�
= E

�
X2
�
� (E [X])2 = 1:

A standard Gaussian random variable X has the distribution function

�(x) =

Z x

�1
e�y

2=2 dyp
2�
; x 2 R

and the characteristic function

cX(�) = e
��2=2:

To prove the last claim �rst note that the Gaussian function

e�
x2

2 ; x 2 R

is even. Hence

cX(�) =

Z 1

�1
(cos (�x) + i sin(�x)) e�

x2

2
dxp
2�

=

Z 1

�1
cos (�x) e�

x2

2
dxp
2�

and we get
d

d�
cX(�) =

Z 1

�1

d

d�
cos (�x) e�

x2

2
dxp
2�

= �
Z 1

�1
x sin (�x) e�

x2

2
dxp
2�
:

Now by partial integration,

d

d�
cX(�) = ��cX(�)

that is,
d

d�
(e

�2

2 cX(�)) = 0:

Since cX(0) = 1 it follows that

cX(�) = e
��2=2:
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Suppose � 2 R and � � 0 are given real numbers. A random variable X
is said to belong to the class N(�; �2) if

X = �+ �G

where G 2 N(0; 1): Moreover, in this case

E [X] = �

Var(X) = �2

and
cX(�) = e

i��� 1
2
�2�2 = ei�E[X]�

1
2
�2Var(X):

A random variable in the class N(�; �2) is said to have a Gaussian distribu-
tion with expectation � and variance �2:
A random variable X is said to have a uniform distribution in the interval

[a; b] if a < b and X possesses the density function

f(x) =

�
1
b�a if a � x � b
0 if x < a or x > b:

If X 2 N(0; 1) the random variable �(X) has a uniform distribution in the
unit interval [0; 1] :
Two real-valued random variables X and Y have a density f if

E [g(X; Y )] =

ZZ
R2

g(x; y)f(x; y)dxdy

for each function g : R2 ! R such that gf is integrable. Here the double
integral may be evaluated by iterated integration,ZZ

A�B

f(x; y)dxdy =

Z
A

(

Z
B

f(x; y)dy)dx =

Z
B

(

Z
A

f(x; y)dx)dy:

In particular, an event of the type [X 2 A; Y 2 B] has the probability

P [X 2 A; Y 2 B] =
ZZ
A�B

f(x; y)dxdy

where A�B = f(x; y); x 2 A and y 2 Bg :
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Suppose two real-valued random variables X and Y have �nite second
order moments. Then, for any real numbers a and b,

E
�
(aX + bY )2

�
� 0

that is,
a2E

�
X2
�
+ 2abE [XY ] + b2E

�
Y 2
�
� 0:

Hence

(aE
�
X2
�
+ bE [XY ])2 + b2(E

�
X2
�
E
�
Y 2
�
� E2 [XY ]) � 0

and we get the so called Cauchy-Schwarz inequality,

j E [XY ] j�
p
E [X2]

p
E [Y 2]:

Replacing (X; Y ) by (1; j X j) yields

E [j X j] �
p
E [X2] :

The covariance of two random variables X and Y with �nite second order
moments is de�ned to be

Cov(X; Y ) = E [(X � E [X])(Y � E [Y ])] :

Note that
Cov(X; Y ) = E [XY ]� E [X]E [Y ]

and
Var(X + Y ) = Var(X) + 2Cov(X; Y ) +Var(Y ):

If, in addition,
Var(X) > 0 and Var(Y ) > 0

the correlation of X and Y is de�ned to be

Cor(X;Y ) =
Cov(X; Y )p
Var(X)Var(Y )

:

We �nd it convenient to de�ne Cov(X; Y ) = 0 if either Var(X) = 0 or
Var(Y ) = 0: If Cov(X; Y ) = 0 the random variables X and Y are said to be
uncorrelated and if Cov(X; Y ) > 0 (< 0) the random variables X and Y are
said to be positively (negatively) correlated.
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The correlation between two random variables is a measure of codepen-
dence for some distributions such as Gaussian, as shown below. However,
there are uncorrelated random variables that are not independent (see the
exercises in this section).

Example 3.1.1. Let U and V be random varibles and suppose Var(V ) > 0:
In many applications it is important to �nd an a 2 R such that Var(U �
aV ) � Var(U � xV ) for every x 2 R.
To solve this problem set U0 = U �E [U ] and V0 = V �E [V ] : We have

f(x) =def Var(U � xV ) = E
�
(U0 � xV0)2

�
= E

�
U0

2
�
� 2xE [U0V0] + x2E

�
V0
2
�

= (x
p
E [V02]�

E [U0V0]p
E [V02]

)2 + E
�
U0

2
�
� ( E [U0V0]p

E [V02]
)2:

Hence
min f = f(a)

where

a =
E [U0V0]

E [V02]
=
Cov(U; V )
Var(V )

:

The real-valued random variablesX1; :::; Xn have a joint density f if f � 0
and

E [g(X1; :::; Xn)] =

Z
� � �
Z

Rn

g(x1; :::; xn)f(x1; :::; xn)dx1:::dxn

for each function g : Rn ! R such that gf is integrable, where the integration
in Rn may be evaluated by iterated integration. In particular, an event of
the type [X1 2 A1; :::; xn 2 An] has the probability

P [X1 2 A1; :::; Xn 2 An] =
Z
� � �
Z

A1�:::�An

f(x1; :::; xn)dx1:::dxn

where A1 � :::� An = f(x1; :::; xn); x1 2 A1; :::, xn 2 Ang : Note thatZ
� � �
Z

Rn

f(x1; :::; xn)dx1:::dxn = 1:
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A collection of random variables (X(t))t2T is called a stochastic process.
Below we will often write Xt instead of X(t): The index set T is called the
time parameter set and the map

t! Xt(!)

a realization, sample function, sample path, or trajectory of the process. Two
stochastic processes X = (X(t))t2T and Y = (Y (t))t2T with the same time
parameter set are said to be equivalent in distribution if, for all t1; :::; tn 2 T
and n 2N+;

P [X(t1) 2 A1; :::; X(tn) 2 An] = P [Y (t1) 2 A1; :::; Y (tn) 2 An]

where A1; :::; An are �nite unions of intervals. Measure theory tells us that
this property is equivalent to

E
h
ei
Pn
k=1 �kX(tk)

i
= E

h
ei
Pn
k=1 �kY (tk)

i
for all �1; :::; �n 2 R, t1; :::; tn 2 T; and n 2N+: Two stochastic processes
which are equivalent in distribution are often identi�ed.
If X = (X(t))t2T and Y = (Y (t))t2T are two stochastic processes with

the same time set T and such that X(t) and Y (t) have the same distribution
for every t 2 T , the processes X and Y need not be equivalent in distribution
(Exercise 14).
Suppose (X(t))t2T is a stochastic process. If

E [j X(t) j] <1; t 2 T

the expectation function � : T! R of the process is given by

�t = E [X(t)] ; t 2 T:

Here the process is said to be centred if � = 0. Moreover, if

E
�
X2(t)

�
<1; t 2 T

the covariance function C : T � T ! R is de�ned as

C(s; t) = Cov(X(s); X(t)); s; t 2 T;

that is,
C(s; t) = E [(X(s)� �s)(X(t)� �t)] ; s; t 2 T:
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A stochastic process (Xt)t2f1;:::;ng = (Xk)
n
k=1 is identi�ed with an R

n-
valued random variable, that is a random vector in Rn: If

E [j Xk j] <1; k = 1; 2; :::; n

the mean value function of the process can be viewed as a vector in Rn:
One of the most important concepts in probability is so called indepen-

dence. The random variables Xk; k = 1; :::; n; are said to be independent if
any of the following three conditions holds:
(1)

P [X1 2 A1; :::; Xn 2 An] =
nY
k=1

P [Xk 2 Ak]

for all sets A1; :::; A; which are �nite unions of intervals.
(2)

E

"
nY
k=1

gk(Xk)

#
=

nY
k=1

E [gk(Xk)]

for all functions gk : R! C; only with �nitely many points of
discontinuity such that

E [j gk(Xk) j] <1; ; k = 1; :::; n:

(3)

E
h
ei
Pn
k=1 �kXk

i
=

nY
k=1

E
�
ei�kXk

�
for all �k 2 R; k = 1; :::; n:

To prove that (1)-(3) are equivalent falls outside the scope of this presen-
tation.
If the random variables X1; :::; Xn�1; Xn are independent and have the

density functions f1; :::; fn�1, and fn; respectively, then

P [(X1; :::; Xn) 2 A] =
Z
� � �
Z
(x1;:::;xn)2A

nY
k=1

fk(xk)dx1:::dxn

for any �nite union A of n-cells in Rn: Here a subset R of Rn is called an
n-cell if there are subintervals I1; :::; In of R such that

R = fx; x = (x1; :::; xn) 2 Rn and xk 2 Ik; k = 1; :::; ng :
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A collection (X(t))t2T of random variables is said to be independent if
any �nite subcollection is independent and, similarly, a collection (At)t2T of
events is said to be independent if the collection (1At)t2T of random variables
is independent. In particular, this means that a �nite collection A1; :::; An of
events is independent if

P [Aki \ ::: \ Akm ] = P [Aki ] � ::: � P [Akm ]

whenever 2 � m � n and 1 � k1 < ::: < km � n:
If the random variablesX and Y are independent and possess �nite second

order moments,

Cov(X;Y ) = E [XY ]� E [X]E [Y ] = 0

that is, X and Y are uncorrelated and, in particular,

Var(X + Y ) = Var(X) +Var(Y ):

A very important property of independent Gaussian random variables is
that their sums are Gaussian. For example, if X0 2 N(�0; �20) and X1 2
N(�1; �

2
1) then X0 +X1 2 N(�0 + �1; �20 + �21): In fact,

E
�
ei�(X0+X1)

�
= E

�
ei�X0ei�X1

�
= E

�
ei�X0

�
E
�
ei�X1

�
= ei�0��

1
2
�20�

2

ei�1��
1
2
�21�

2

= ei(�0+�1)��
1
2
(�20+�

2
1)�

2

and the claim follows at once. An alternative proof is as follows. For sim-
plicity assume �0 = �1 = 0, �0 > 0 and �1 > 0. Then

P [X0 +X1 2 A] =
ZZ

�0yo+�1y12A
e�

y20
2
� y21

2
dy0dy1

(
p
2�)2

and the change of variables�
z0 = (�0y0 + �1y1)=

p
�20 + �

2
1

z1 = (�1y0 � �0y1)=
p
�20 + �

2
1

yields

P [X0 +X1 2 A] =
ZZ

z0
p
�20+�

2
12A

e�
z20
2
� z21

2
dz0dz1

(
p
2�)2
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=

Z
z0
p
�20+�

2
12A

e�
z20
2
dz0p
2�
=

Z
A

e
� z2

2(�20+�
2
1)

dzp
2�(�20 + �

2
1)

and it follows that X0 +X1 2 N(0; �20 + �21):
A stochastic process (X(t))t2T is said to be Gaussian if for every �k 2 R,

tk 2 T; k = 1; :::; n; and n 2 N+, the linear combination

Y =

nX
k=1

�kX(tk);

has a Gaussian distribution. In this case,

Y 2 N(
nX
k=1

�kE [X(tk)] ;
nX

j;k=1

�j�kCov(X(tj); X(tk)))

and we get

E
h
ei
Pn
k=1 �kX(tk)

i
= ei

Pn
k=1 �kE[X(tk)]�

1
2

Pn
j;k=1 �j�kCov(X(tj);X(tk)):

If a Gaussian process (Xk)
n
k=1 satis�es

Cov(Xj; Xk) = 0 if j 6= k

then
E
h
e
i
Pn
k=1 �kXk

i
= ei

Pn
k=1 �kE[Xk]�

1
2

Pn
j;k=1 �j�kCov(Xj ;Xk)

= ei
Pn
k=1 �kE[Xk]�

1
2

Pn
k=1 �

2
kVar(Xk) =

nY
k=1

ei�kE[Xk]�
1
2
�2kVar(Xk)

=
nY
k=1

E
h
e
i�kXk

i
and it follows that X1; :::; Xn are independent. Thus we have proved the
following important

Theorem 3.1.1. Suppose (Xk)
n
k=1is a Gaussian process. Then X1; :::; Xn

are independent if and only if Cov(Xj; Xk) = 0 if j 6= k:
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A sequence (Xk)
N
k=1 of independent identically distributed random vari-

ables is called an i.i.d. Here N 2 N+ [ f1g : If X is a random variable and
(Xk)

N
k=1 is an i.i.d. such that X1 and X have the same distribution, the

random variables Xk; k � 1; are called independent observations of X.
If (Xk)

N
k=1 is an i.i.d. the corresponding sequence of partial sums (Zn)

N
k=1;

where Zn = X1 + ::: + Xn; n � 1, is called a random walk. Moreover, if
a 2 R the process (Un)Nn=0, where U0 = a and Un = a + Zn; n � 1; is called
a random walk which starts at the point a at the time n = 0: The random
variables Xn; n � 1; are called increments of the random walk. The sequence
(Xn)

N
n=1 is called a Gaussian i.i.d. if it is an i.i.d. with X1 Gaussian. The

corresponding random walks are called Gaussian random walks. The random
walk (Zn)Nn=1 is called a simple random walk if (Xk)

N
k=1 is an i.i.d. and X1

has the probability distribution given by

P [X1 = 1] = P [X1 = �1] =
1

2
:

For example, if (lnS(t))Tt=0 denotes the log-price process in the binomial
model in T periods we get a random walk starting at lnS(0) at time 0:
The notions of i.i.d., independent observations, and random walk extend

unambiguously to Rn-valued random variables.

Exercises

1. Suppose the random variables X1; :::; Xn are independent and

E
�
X2
k

�
<1; k = 1; :::; n:

Show that

Var(
nX
k=1

Xk) =

nX
k=1

Var(Xk):

2. (Binomial model, T periods) Set

Y =
1

T

TX
t=1

ln
S(t)

S(t� 1) :

Prove that E [Y ] = d+ pu(u� d) and Var(Y ) = 1
T
pu(1� pu)(u� d)2:
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3. Suppose the random variables Xk 2 N(�k; �2k); k = 1; :::; n; are inde-
pendent. Prove that

Pn
k=1Xk 2 N(

Pn
k=1 �k;

Pn
k=1 �

2
k):

4. Suppose X and Y are independent random variables with density func-
tions f and g; respectively. Prove that X + Y has the density function
f � g, where

(f � g)(x) =
Z 1

�1
f(y)g(x� y)dy; x 2 R:

5. Show that jCov(X; Y )j�
p
Var(X)

p
Var(Y ):

6. Prove that �1 �Cor(X; Y ) � 1:

7. The random variables X and Y are independent and uniformly dis-
tributed in the unit interval [0; 1]. Show that the random variablesq
2 ln 1

X
cos(2�Y ) and

q
2 ln 1

X
sin(2�Y ) are independent and N(0; 1)-

distributed.

8. Let X be a centred Gaussian random. Show that

E
�
e�X
�
= e

�2

2
E[X2]; � 2 R:

9. Suppose X; Y 2 N(0; 1) are independent. Prove that

E
�
e�max(X;X+Y )

�
= e�

2

�(�) +
1

2
e
�2

2 ; � 2 R:

10. A random variable X has the density function f(x) = x2p
2�
e�

x2

2 ; x 2 R:
Find the characteristic function cX(�) = E

�
ei�X

�
; � 2 R:

11. Suppose X 2 N(�; �2) and K > 0: Compute

E
�
max(0; eX �K)

�
:

12. Prove that �(x) = 1� �(�x); x 2 R; and

(
1

x
� 1

x3
)
e�x

2=2

p
2�

� 1� �(x) � 1

x

e�x
2=2

p
2�
; x > 0:
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13. Show that

1� �(x) � 1

2
e�x

2=2; x � 0:

14. Suppose X 2 N(0; 1) and set

Y = X1[jXj�c] �X1[jXj>c]

where c is a given positive real number. (a) Prove that Y 2 N(0; 1).
(b) First choose c such that X and Y are uncorrelated and then prove
that

P [X > c; Y > c] = 0 6= P [X > c]P [Y > c] :

Explain why the random vector (X; Y ) is not Gaussian.

15. De�ne two stochastic processes X = (X(t))t2T and Y = (Y (t))t2T with
the same time set T such thatX(t) and Y (t) have the same distribution
for every t 2 T but X and Y are not equivalent in distribution. (Hint:
the previous exercise.)

16. Suppose the random variable X is positive with probability one and
lnX 2 N(0; 1): (a) Find the density function f of X: (b) Set

g(x) =

�
f(x)(1 + sin(2� lnx)); x > 0;

0; if x � 0:

Show that g(x) � 0 andZ 1

0

p(x)g(x)dx =

Z 1

0

p(x)f(x)dx

for every polynomial p(x).

17. Let x 2 [0; 1] and suppose P [X = 1] = x and P [X = 0] = 1 � x:
Furthermore, let X1; :::; Xn be independent copies of X: Show that

E

�
f(
1

n
(X1 + :::+Xn))

�
=

nX
k=0

f(
k

n
)
�
n
k

�
xk(1� x)n�k

for any function f : [0; 1]! R.
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18. Suppose n � 2 and X1; :::; Xn is an i.i.d. with E [X1] = � and
Var(X1) = �

2: Set

�X =
1

n

nX
k=1

Xk

and

s2 =
1

n� 1

nX
k=1

(Xk � �X)2:

Prove that
E
�
�X
�
= �

and
E
�
s2
�
= �2:

19. A random variable X is said to be Cauchy distributed with parameters
� 2 R and � > 0 if

P [a < X < b] =
1

�

Z b

a

�dx

�2 + (x� �)2
; if a < b

(abbr. X 2 C(�; �)).
(a) Suppose X is uniformly distributed in the interval

�
�1
2
; 1
2

�
. Show

that tan(�X) 2 C(0; 1):
(b) Suppose X; Y 2 N(0; 1) are independent. Prove that Y

X
2 C(0; 1).

20. The function f : ]a; b[! R is convex and di¤erentiable and b�a <1.
a) Show that f

0
is increasing and conclude that

f(x) � f(x0) + f 0(x0)(x� x0)

for every x0; x 2 ]a; b[ : b) A random variable X ful�ls a < X < b :
Prove Jensen�s inequality

f(E [X]) � E [f(X)] :

21. Suppose X is a non-negative random variable with probability density
f and such that 0 < E [X2] < 1: Let � = E [X] and suppose � 2
[0; 1] :



55

(a) Prove that Z 1

��

xf(x)dx � (1� �)�:

(b) Prove that Z 1

��

f(x)dx � (1� �)2 (E [X])
2

E [X2]
:

3.2 The Law of Large Numbers and the Monte Carlo Method

Suppose (Xk)
1
k=1 is an i.i.d. with E [j X1 j] < 1. The Strong Law of Large

Numbers says that

P

�
lim
n!1

1

n
(X1 + :::+Xn) = E [X1]

�
= 1:

Moreover, if we approximate the expectation E [X1] by the arithmetic mean
1
n
(X1 + ::: + Xn) and assume that E [X2

1 ] < 1; the Chebyshev inequality
says something about the error in the approximation

1

n
(X1 + :::+Xn) t E [X1] :

Indeed, since

E

�
1

n
(X1 + :::+Xn)

�
= E [X1]

and
Var(

1

n
(X1 + :::+Xn)) =

1

n
Var(X1)

the Chebyshev inequality implies that

P

�
j 1
n
(X1 + :::+Xn)� E [X1] j� "

�
� Var(X1)

"2n
if " > 0:

To demonstrate how this result can be used let f : [0; 1] ! R be a
continuous function and suppose we want to compute the value of the integralZ 1

0

f(x)dx:
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If a primitive F of f is known, thenZ 1

0

f(x)dx = F (1)� F (0):

In other cases, it may be useful to approximate the integral by a Riemannian
sum Z 1

0

f(x)dx t
1

n
�nk=1f(

k

n
):

The Law of Large Number yields a completely di¤erent approach to the
problem. First we have Z 1

0

f(x)dx = E [f(U)]

where U is a uniformly distributed random variable in the unit interval [0; 1].
Therefore, if (Un)1n=1is an i.i.d. with U1 uniformly distributed in the unit
interval

P

�Z 1

0

f(x)dx = lim
n!1

1

n
�nk=1f(Uk)

�
= 1:

Using the approximationZ 1

0

f(x)dx t
1

n
�nk=1f(Uk):

we say the integral is computed by the Monte Carlo method. In the case of
this simple example numerical integration is preferable. However, it can be
shown that the Monte Carlo method has great advantages in higher dimen-
sions. To indicate why it is so let f be a function de�ned on the unit cube
Qd =

�
x 2 Rd; x = (x1; :::; xd) and 0 � xk � 1; k = 1; :::; n

	
in Rd. The in-

tegral Z
� � �
Z

Qd

f(x1; :::xd)dx1:::dxd:

can be approximated by the Riemannian sumX
ki=0;:::;m�1
i=1;:::;d

f(
k1
m
; :::;

kd
m
)
1

md
:
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However, in many cases the number of terms md in this sum is too large
to be possible to handle. Instead using the Monte Carlo method we let
U1k;:::; Udk; k = 1; :::; n be independent and uniformly distributed random
variables in the unit interval and approximate the integral by the following
sum

1

n

nX
k=1

f(U1k; :::; Udk):

This sum contains n terms and dn random numbers.
Let us return to the binomial model in T periods and consider a contin-

gent claim paying the amount Y = g(S(0); :::; S(T )) to its owner at time of
maturity T; where g is a deterministic function. Setting

f(x1; :::; xT ) = g(S(0); S(0)e
x1 ; :::; S(0)ex1+:::+xT )

we know that the price �Y (0) of the derivative at time 0 equals

�Y (0) = e
�rTEQ [f(X1; :::; XT )] = e

�rT
X

x1;:::;xT=u or d

f(x1; :::; xT )qx1 � ::: � qxT :

Next we introduce a new propabability Q de�ned by the equation

Q [A] = E

�
qX1 � ::: � qXT
pX1 � ::: � pXT

1A

�
:

Here, if x1; :::; xT = u or d;

Q [X1 = x1; ::::XT = xT ] = E

�
qX1 � ::: � qXT
pX1 � ::: � pXT

1[X1=x1;::::XT=xT ]

�

=
qx1 � ::: � qxT
px1 � ::: � pxT

px1 � ::: � pxT = qx1 � ::: � qxT

= Q [X1 = x1] � ::: �Q [XT = xT ]

and we conclude that the random variables X1; :::; XT are independent with
respect to the probability measure Q; which is called the martingale measure
of the binomial model in T periods. To compute the price �Y (0) let Xtk;
t = 1; :::; T; k = 1; :::; n; be independent observations on X1 relative to the
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probability Q: The Monte Carlo method gives us the following approximate
price of the derivative,

�Y (0) t
e�rT

n
�nk=1f(X1k; ::::; XTk):

Exercises

1. Use the Monte-Carlo method to �nd an approximate value of the inte-
gral

R 1
0
f(x)dx when a) f(x) = x b) f(x) = sin x c) f(x) = 1

x1=4
:

2. Let f(x) = sin(x+ 1); x 2 R. (a) Find the value of the integral

I =

Z 1

�1
f(x)e�

x2

2
dxp
2�
:

(b) Suppose G1; :::; Gn 2 N(0; 1) are independent. Find an approxi-
mate value of I using the estimates

MC1 =
1

n

nX
k=1

f(Gk)

and

MC2 =
1

2n

nX
k=1

(f(Gk) + f(�Gk))

respectively.

3. Suppose X is a random vector in Rd and B an open subset of Rd. Set
p = P [X 2 B] and let X1; :::; Xn be independent observations on X.
Prove that

P [j An � p j� "] �
1

4n"2
; " > 0;

where
An =

1

n
(1[X12B] + ::::+ 1[Xn2B])
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3.3. The Central Limit Theorem

If Xn; n 2 N+; and X are random variables such that

lim
n!1

P [a < Xn < b] = P [a < X < b]

for all reals a and b such that

P [X 2 fa; bg] = 0

the sequence (Xn)n2N+ is said to converge to X in distribution, which is
denoted by

Xn ! X:

Equivalently, this type of convergence means that

lim
n!1

E [f(Xn)] = E [f(X)]

for each bounded continuous function f : R! R or, alternatively

lim
n!1

cXn(�) = cX(�); � 2 R:

The proofs of these equivalences are based on measure theory and fall beyond
the scope of this presentation.

Theorem 3.3.1. (Central Limit Theorem; weak form) Let (Xn)
1
n=1be

an i.i.d. with

P [X1 = 1] = P [X1 = �1] =
1

2

and set

Yn =
1p
n
(X1 + :::+Xn); n 2 N+:

Then
Yn ! G

where G 2 N(0; 1):
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For stronger versions of the Central Limit Theorem see e.g. [BOR]. The-
orem 3.3.1 was proved by de Moivre in 1733 (see e.g. the Lifshits book
�Gaussian Random Functions� [LIF ]).

PROOF OF THEOREM 3.3.1. We have

cYn(�) = cX1+:::+Xn(
�p
n
) =

nY
k=1

cXk(
�p
n
) = cosn(

�p
n
)

and therefore

cYn(�) = (1�
�2

2n
+
�4

n2
B(

�p
n
))n

where the function B is bounded in a neighbourhood of the origin. Thus

lim
n!1

cYn(�) = lim
n!1

exp(n ln(1� �2

2n
+
�4

n2
B(

�p
n
))

= e�
�2

2 = cG(�)

which proves Theorem 3.3.1.

3.4 Problems with solutions

1. Let X be a random variable with strictly positive variance and suppose
a; b; c; and d are real numbers such that bd 6= 0: Show that

Cor(a+ bX; c+ dX) =
bd

j bd j :

Solution. Set

U = (a+ bX)� E [a+ bX] = b(X � E [X])

and
V = (c+ dX)� E [c+ dX] = d(X � E [X]):
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Now

Cor(a+ bX; c+ dX) =
Cov(a+ bX; c+ dX)p

Var(a+ bX)
p
Var(c+ dX)

=
E [UV ]p

E [U2]
p
E [V 2]

=
bdE [(X � E [X])2]

j b jj d j E [(X � E [X])2] =
bd

j bd j :

2. Set X(t) = W (t) � tW (1) and Y (t) = X(1 � t) if 0 � t � 1: Prove
that the processes (X(t))0�t�1 and (Y (t))0�t�1 are equivalent in distribution.
(Hint: Prove that the processes are Gaussian with E [X(t)] = E [Y (t)] and
Cov[X(s); X(t)] =Cov(Y (s); Y (t)) for all 0 � s; t � 1:)

Solution. Given t1; :::; tn 2 [0; 1] an arbitrary linear combination ofX(t1); :::; X(tn)
is a linear combination ofW (t1); :::;W (tn); W (1) and, hence a centred Gaussian
random variable. In a similar way a linear combination of Y (t1); :::; Y (tn) is
a centred Gaussian random variable. Therefore it only remains to prove that
the processes (X(t))0�t�1 and (Y (t))0�t�1 have the same covariance. To this
end let 0 � s � t � 1. Then

E [X(s)X(t)] = E [(W (s)� sW (1))(W (t)� tW (1)]

= E [W (s)W (t)]� tE [W (s)W (1)]� sE [W (1)W (t)] + stE
�
(W 2(1)

�
= s� st� st+ st = s� st

and

E [Y (s)Y (t)] = E [X(1� t)X(1� s)] = (1� t)� (1� t)(1� s) = s� st:

Thus E [X(s)X(t)] = E [Y (s)Y (t)] = min(s; t) � st for all 0 � s; t � 1 and
it follows that the processes (X(t))0�t�1 and (Y (t))0�t�1 are equivalent in
distribution.

3. (a) A random variable X has the density function

f(x) =

�
e�x; if x > 0;
0; if x � 0:
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Find the characteristic function cX of X (recall that cX(�) = E
�
ei�X

�
if

� 2 R).
(b) A random variable Y has the density function

g(x) =

�
0; if x > 0;
ex; if x � 0:

Find the characteristic function cY of Y:
(c) A random variable Z has the density function h(x) = 1

2
e�jxj; x 2 R:

Find the characteristic function cZ of Z:

Solution. (a) For each � 2 R;

cX(�) = E
�
ei�X

�
=

Z 1

�1
f(x)ei�xdx =

Z 1

0

e�xei�xdx

=

Z 1

0

ex(i��1)dx =

�
1

i� � 1e
x(i��1)

�1
0

:

Here j ex(i��1) j=j e�xei�x j= e�x j ei�x j= e�x and we get

cX(�) =
1

1� i� :

Alternatively, use that eia = cos a+ i sin a and computeZ 1

0

e�xei�xdx =

Z 1

0

e�x cos �xdx+ i

Z 1

0

e�x sin �xdx

by partial integration.

(b) Here P [�Y � y] = P [Y � �y] =
R1
�y g(x)dx =

R y
�1 g(�t)dt =

R y
�1 f(t)dt

and it follows that the random varibles�Y andX have the same distribution.
Consequently, cY (�) = c�X(�) = cX(��) = 1

1+i�
:

(c) Since h(x) = 1
2
f(x) + 1

2
g(x) and hence

cZ(�) =
1

2

Z 1

�1
(f(x) + g(x))ei�xdx =

1

2

�
1

1� i� +
1

1 + i�

�
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=
1

1 + �2
:

3. Suppose '(x) = 1p
2�
e�

x2

2 and �(x) =
R x
�1 '(t)dt; �1 < x < 1: Prove

that

1� �(x) � '(x)

x
; if x > 0;

and

1� �(x) � x'(x)

1 + x2
; if x 2 R:

Solution. For any x > 0;

1� �(x) =
Z 1

x

'(t)dt =

Z 1

x

1

t
t'(t)dt

�
Z 1

x

1

x
t'(t)dt =

1

x
[�'(t)]t=1t=x =

'(x)

x
:

This proves the �rst inequality. To prove the second inequality de�ne

f(x) = (1 + x2)(1� �(x))� x'(x); if x 2 R:

It is obivous that f(x) > 0 if x � 0 and therefore it is enough to prove that
f(x) � 0 for every x > 0: To this end, �rst note that

lim
x!1

(1 + x2)(1� �(x)) = 0

since 0 � 1� �(x) � '(x)
x
= 1

x
p
2�
e�

x2

2 for every x > 0: Hence

lim
x!1

f(x) = 0

and it is enough to show that f 0(x) � 0 if x > 0: Now for every x > 0;

f 0(x) = 2x(1� �(x))� (1 + x2)'(x)� '(x) + x2'(x)

= 2x(1� �(x)� '(x)
x
) � 0

and we are done.
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CHAPTER 4

Brownian Motion

Introduction

Brownian motion is the most important stochastic process. The �rst ap-
plications of Brownian motion were made by Bachelier in 1900 [BA] and
Einstein in 1905 [E]. Bachelier�s aim was to provide a model for option
pricing and Einstein wanted to explain the physical phenomenon Brownian
motion, �rst observed by Robert Brown [BR] under his microscope in 1827
(see, Klafer, Schlesinger, Zumofen [KSZ] for a very illuminating history of
Brownian motion). A mathematically rigorous treatment of Brownian mo-
tion was submitted by Wiener in 1923 [W ] :
In this chapter the Brownian motion process is introduced as a limit of

scaled simple random walks. Furthermore, we show some if its connections
with heat conduction and present the geometric Brownian motion model of
a stock price process, which was introduced in 1965 by Samuelson [SAM1]
(see also [SAM2]).

4.1. Brownian Motion

A centred Gaussian process (W (t))t�0; starting at 0 at time 0; and with the
covariance function

E [W (s)W (t)] = min(s; t)

is called a standard Brownian motion. In thise case,W (s)�W (t) is a centred
Gaussian random variable with the second order moment

E
�
(W (s)�W (t))2

�
= E

�
W 2(s)� 2W (s)W (t) +W 2(t)

�
= s� 2min(s; t) + t =j s� t j

and, thus
W (s)�W (t) 2 N(0; j s� t j):
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If W = (W (t))t�0 is a standard Brownian motion, a stochastic process
(X(t))t�0 is called a Brownian motion if X(t) = x + �W (t); t � 0; for
appropriate x 2 R och � > 0; and a Brownian motion with drift if X(t) =
x+ �t+ �W (t); t � 0; for appropriate �; x 2 R and � > 0. Here x is called
starting point, � drift constant, and � di¤usion constant.

Theorem 4.1.1. A Gaussian process X = (X(t))t�0 is a standard Brownian
motion if and only if the following conditions are true:

(i) X(0) = 0

(ii) X(t) 2 N(0; t); t � 0

(iii) the increments of X are independent, that is, for any �nite times
0 � t0 � t1 � ::: � tn the random variables

X(t1)�X(t0); X(t2)�X(t1); :::; X(tn)�X(tn�1)

are independent (or uncorrelated since X is Gaussian).

PROOF First suppose X = (X(t))t�0 is a standard Brownian motion. Then
(i) holds and X is a Gaussian process such that X(t) 2 N(0; t): This proves
(ii): To prove (iii), let j < k < n to get

E [(X(tj+1)�X(tj))(X(tk+1)�X(tk))]

= E [X(tj+1)X(tk+1)]�E [X(tj+1)X(tk)]�E [X(tj)X(tk+1)]+E [X(tj)X(tk)]

= tj+1 � tj+1 � tj + tj = 0:
This proves (iii):
Conversely, assume X = (X(t))t�0 is a Gaussian process satisfying (i)�

(iii). Then X(0) = 0 and if 0 � s � t,

E [X(s)X(t)] = E
�
X(s)(X(t)�X(s)) +X2(s)

�
= E [X(s)(X(t)�X(s)] + E

�
X2(s)

�
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= E [X(s)]E [X(t)�X(s)] + E
�
X2(s)

�
= s:

From this follows that E [X(s)X(t)] = min(s; t) and X is a standard Brown-
ian motion.

Suppose W = (W (t))t�0 is a standard Brownian motion and a > 0: The
scaled process

X(t) = a�
1
2W (at); t � 0

is a standard Brownian motion since the process is centred, Gaussian, and

E [X(s)X(t)] = a�1min(as; at) = min(s; t):

Furthermore,
Y (t) =W (t+ a)�W ( a); t � 0

is a standard Brownian motion since the process is centred, Gaussian, and

E [Y (s)Y (t)] = E [(W (s+ a)�W ( a))(W (t+ a)�W ( a))]

= E [(W (s+ a)(W (t+ a)]� E [(W (s+ a)W ( a)]
�E [(W ( a)W (t+ a)] + E(W ( a)W ( a)

= min(s+ a; t+ a)� a� a+ a = min(s; t):
As a mnemonic rule we say that W starts afresh at each point of time.
Finally, the sign changed process

Z(t) = �W (t); t � 0

is a standard Bownian motion..
To show the existence of Brownian motion (in the mathematical sence

of the concept) requires lots of prerequistes in mathematics and we can not
go into the details here. Instead the approach below is very intuitive and the
motion will be the formal limit case of scaled simple random walks.
Suppose X = (Xn)

1
n=1 is an i.i.d. with

P [X1 = 1] = P [X1 = �1] =
1

2

(the existence of X is equivalent to the existence of the so called Lebesgue
measure and is far from trivial). We have

E [X1] = 0
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and
Var(X1) = 1:

Set
Un =

X
1�k�n

Xk; n 2 N

with the convention U0 = 0: Thus U = (Un)
1
n=0 is a simple random walk

starting at the origin at time 0: Now if t is a real number, [t] denotes the
greatest integer smaller than or equal to t; and we introduce the process

Y (t) = U[t] + (t� [t])X[t]+1; t � 0

which, in particular, equals Un if t = n and is an a¢ ne function in each time
interval [n; n+ 1], n 2 N: Moreover, the process Y (t); t � 0; has continuous
sample paths. Next let N 2 N+ be �xed and set

WN(t) =
1p
N
Y (Nt); t � 0:

The processWN is a centred process and choosing t = n
N
; where n is a natural

number, gives

WN(
n

N
) =

1p
N
Un =

1p
N

X
1�k�n

Xk; n 2 N:

If N is large and n
N
�xed, by the Central Limit Theorem, the random variable

WN(
n

N
) =

r
n

N

1p
n

X
1�k�n

Xk

is approximately Gaussian distributed and, in addition,

E
h
WN(

m

N
)WN(

n

N
)
i
=
1

N
E

"
mX
k=1

Xk

nX
k=1

Xk

#

=
1

N
min(m;n) = min(

m

N
;
n

N
):

The process WN = (WN(t))t�0 has continuous sample paths and these
are a¢ ne functions in each interval

�
n
N
; n+1
N

�
; n = 0; 1; 2; :::: . For large N;

WN approximates standard Brownian motion very well. The proof is omitted
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here. In the following it is often useful to think of Brownian motion as "a
simple random walk in continuous time".

Theorem 4.1.2. (Wiener�s Theorem) There is a standard Brownian
motion possessing continuous sample paths.

One of the simplest proofs of Wiener�s Theorem is given in Bass [BASS] :
In the following, if not otherwise stated, W = (W (t))t�0 will always denote
a standard Brownian motion with continuous sample paths.

Exercises

1. De�ne X(0) = 0 and X(t) = tW (1
t
); t > 0: Show that (X(t))t�0 is a

standard Brownian motion.

2. Suppose the process (Vn(t))0�t�1; has continuous sample paths, which
are a¢ ne in each subinterval k�1

n
� t � k

n
, k = 1; :::; n: Moreover,

assume Vn(0) = 0 and

Vn(
k

n
) =

1p
n

kX
j=1

Xj; k = 1; :::; n

where (Xj)
n
j=1 is an i.i.d. Draw a picture of at least two realizations of

the process (Vn(t))0�t�1; if

a) X1 2 N(0; 1):
b) X1 is Cauchy distributed with parameters 0 and 1; that is

P [X1 2 A] =
1

�

Z
A

dx

1 + x2

(hint: represent X1 as tan(�U); where U has a uniform distribution in�
�1
2
; 1
2

�
).
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4.2. The Geometric Brownian Motion Model of a Stock Price

A stock price process S = (S(t))t�0 is called a geometric Brownian motion
if the so called log-price process

ln S(t); t � 0

is governed by a Brownian motion with drift, or stated otherwise,

S(t) = S(0)e�t+�W (t); t � 0

for appropriate parameters � 2 R och � > 0: Since

E [S(t)] = S(0)e(�+
�2

2
)t

it is natural to introduce a new parameter � de�ned by the equation

� = �+
�2

2

so that
S(t) = S(0)e(��

�2

2
)t+�W (t):

The parameters � and � are called the mean rate of return and the volatility
of S, respectively. If the time unit is years and � = 0:25, S is said to have
the volatility 25 %. The geometric Brownian motion model of a stock
price was introduced in 1965 by Samuelson [SAM1]. Bachelier [BA] in 1900
used Brownian motion (not geometric Brownian motion) as a model of stock
prices, even if Brownian motion can take negative values.
In the geometric Brownian motion model, for any h > 0; the sequence of

log-prices
(lnS(nh))1n=0

is a Gaussian random walk. Moreover, if the time scale is changed so that

t̂ = ct

where c > 0; the stock price process is a geometric Brownian motion in the
new time unit. To explain this let

Ŝ(t̂) = S(t)
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or, what amounts to the same thing,

Ŝ(t̂) = S(0)e
�
c
t̂+�W ( t̂

c
):

Now setting

Ŵ (t̂) =
p
cW (

t̂

c
); t̂ � 0

we get a a new standard Brownian motion and

Ŝ(t̂) = Ŝ(0)e�̂t̂+�̂Ŵ (t̂)

where
�̂ =

�

c
and �̂ =

�p
c
:

Hence, the process (Ŝ(t̂))t̂�0 is a geometric Brownian motion.

Theorem 4.2.1. Let

S(t) = S(0)e�t+�W (t); t � 0

and suppose 0 < t1 < ::: < tn and a1 < b1; :::; an < bn: Then

P [a1 < S(t1) < b1; :::; an < S(tn) < bn]

=

Z
� � �
Z

A1�:::�An

nY
k=1

(
1p

2�(tk � tk�1)
e
� (xk�xk�1)

2

2(tk�tk�1)

)
dx1:::dxn:

where x0 = 0, t0 = 0; and

Ak =

�
1

�
(ln

ak
S(0)

� �tk);
1

�
(ln

bk
S(0)

� �tk)
�
; k = 1; :::; n:

PROOF We have

P [a1 < S(t1) < b1; :::; an < S(tn) < bn]

= P [W (t1) 2 A1; :::;W (tn) 2 An] :
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Furthermore, de�ning

Y1 = W (t1); Y2 = W (t2)�W (t1); :::; Yn = W (tn)�W (tn�1)

the random variables Y1; :::; Yn are independent with Gaussian distributions

Yk 2 N(0; tk � tk�1); k = 1; :::; n

and
P [W (t1) 2 A1; :::;W (tn) 2 An] :

= P [Y1 2 A1; Y1 + Y2 2 A2; :::; Y1 + Y2 + :::+ Yn 2 An]

=

Z
� � �
Z
y12A1;:::;y1+:::+yn2An

nY
k=1

(
1p

2�(tk � tk�1)
e
� y2k
2(tk�tk�1)

)
dy1:::dyn

=

Z
� � �
Z

A1�:::�An

nY
k=1

(
1p

2�(tk � tk�1)
e
� (xk�xk�1)

2

2(tk�tk�1)

)
dx1:::dxn:

This proves Theorem 4.2.1.

Next we will discuss some statistical estimates of the parameters � and
� in the geometric Brownian motion model. To this end �x a period of time
from 0 to T and choose a natural number n: Set h = T=n, ti = ih; i = 1; :::; n;
and

Xi = ln
S(ti)

S(ti�1)
= �h+ �

p
hGi;

for i = 1; :::; n; where G1; :::; Gn 2 N(0; 1) are independent. Furthermore,
de�ne

�̂ =
1

T
�ni=1Xi

and
�̂2 =

1

T
�ni=1X

2
i :

It is readily seen that �
E [�̂] = �

Var(�̂) = �2=T

and after some calculations the following formulas are obtained, viz.�
E
�
�̂2
�
= �2 + �2T=n

Var(�̂2) = 2�4=n+ 4�2T�2=n2:
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Thus E
�
�̂2
�
� �2 and Var(�̂2) both converge to zero as n tends to in�nity.

Here note T can be an arbitrarily small positive number but in spite of this �̂2

becomes an almost unbiased estimator of �2 with small variance by increasing
the number of observations. In contrast to this the variance of the estimator
�̂ does not change at all by increasing n: Note that �̂ � � 2 N(0; �2=T ) so
that

P
h
j �̂� � j� �x=

p
T
i
= 2�(x)� 1:

The choice x = 1:96 gives 2�(x) � 1 = 0:95: If, in addition, the annual

volatility is 30%, that is � = 0:3, then �x=
p
T = 0:02 if T t 864 years! In

addition, it can be proved that �̂ is an unbiased estimator of � with smallest
variance. Accordingly from this example, we conclude that the parameter �
cannot be estimated by su¢ ciently small variance.
To explain why the parameter � is important in portfolio theory suppose

the initial wealth 1 is invested in the stock and bond. Moreover, let the
amount x be invested in the stock and the remaining wealth 1 � x in the
bond so that at time T the wealth equals

V (x) = xe�T+�W (T ) + (1� x)erT :

Here
E [V (x)] = xe�T + (1� x)erT

and
Var(V (x)) = Var(xe�T+�W (T )) = x2e2�T (e�

2T � 1):
To obtain optimal wealth we maximize expected terminal wealth plus the
variance of terminal wealth multiplied by a negative constant. Therefore, let

f(x) = E [V (x)]� 1� 

2
Var(V (x))

where 
 2 ]�1; 1[ is a parameter called the investor�s risk aversion. A simple
calculation shows that the maximum of f is attained at the point

x(T ) =
1

1� 

e�T � erT

e2�T (e�2T � 1) :

As T ! 0 we get

x(0+) =
1

1� 

�� r
�2

:
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Here �, like �; is very di¢ cult to estimate. It is a great success in mathe-
matical �nance that the pricing and hedging of options are independent of �
as will be seen below.

Exercises

1. Consider a stock price process (S(t))t�0 in the geometric Brownian mo-
tion model and introduce

Xk = ln
S(k)

S(k � 1) ; k = 1; :::; n;

�X =
1

n

nX
k=1

Xk

and

s2 =
1

n� 1

nX
k=1

(Xk � �X)2:

Prove that

E
�
�X
�
= (mean rate of return)� 1

2
(volatility)2

and p
E [s2] = volatility.

4.3. Brownian Motion and Heat Conduction

In what follows Ec denotes the class of all real-valued continuous functions f
on R such that

sup
x2R
(e�Ajxj j f(x) j) = sup

�
e�Ajxj j f(x) j; x 2 R

	
<1

for an appropriate constant A > 0; possibly dependent on f (recall that ifM
is a non-empty set which is bounded from above, then there is a least number
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a which is greater than or equal to every member of M and a is denoted by
supM).
Now suppose the function f 2 Ec is given and consider the heat equation

@u

@�
=
1

2

@2u

@x2
; � > 0; x 2 R

with the initial condition
uj�=0 = f:

The so called heat kernel


(� ; x) =
1p
2��

e�
x2

2� ; � > 0; x 2 R

solves the heat equation since

@


@�
= �1

2

1

�
3
2

1p
2�
e�

x2

2� +
x2

2�
5
2

1p
2�
e�

x2

2� ;

@


@x
= � x

�
3
2

1p
2�
e�

x2

2� ;

and
@2


@x2
= � 1

�
3
2

1p
2�
e�

x2

2� +
x2

�
5
2

1p
2�
e�

x2

2� :

Thus
@


@�
=
1

2

@2


@x2
:

In the next step de�ne

u(� ; x) =

Z 1

�1
f(y)
(� ; x� y)dy; � > 0; x 2 R

and by interchanging the order of di¤erentiation and integration we get

@u

@�
� 1
2

@2u

@x2
=

Z 1

�1
f(y)(

@

@�

(� ; x� y)� 1

2

@2

@x2

(� ; x� y))dy = 0

and it follows that u is a solution of the heat equation in the domian � > 0;
x 2 R: To check the limit of u(� ; x) ia � goes to zero, �rst note that

u(� ; x) =

Z 1

�1
f(x� y)
(� ; y)dy
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=

Z 1

�1
f(x� y) 1p

2��
e�

y2

2� dy

and

u(� ; x) =

Z 1

�1
f(x�

p
�y)

1p
2�
e�

y2

2 dy:

Hence,

lim
�!0

u(� ; x) =

Z 1

�1
lim
�!0

f(x�
p
�y)

1p
2�
e�

y2

2 dy =

Z 1

�1
f(x)

1p
2�
e�

y2

2 dy

= f(x)

Z 1

�1

1p
2�
e�

y2

2 dy = f(x)

as Z 1

�1

1p
2�
e�

y2

2 dy = 1:

In the following

u(� ; x) =

Z 1

�1
f(x�

p
�y)

1p
2�
e�

y2

2 dy

is called the solution of the following heat conduction problem�
@u
@�
= 1

2
@2u
@x2

uj�=0 = f; � > 0; x 2 R.

Actually, there are more solutions to this problem but they are of no interest
here.
A function f : R ! R is said to belong to the class E if there exist

�nitely many real numbers a0 < ::: < an such that f restricted to each
interval ]ak�1; ak[ is continuous, the limits

lim
x%ak

f(x) and lim
x&ak

f(x)

exist and are real number for k = 1; :::; n, and, furthermore,

sup
x2R
(e�Ajxj j f(x) j) <1

for a suitable constant A > 0: If f 2 E ; the function

u(� ; x) =

Z 1

�1
f(x�

p
�y)

1p
2�
e�

y2

2 dy
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=

Z 1

�1
f(x+

p
�y)

1p
2�
e�

y2

2 dy

is de�ned to be the solution of the heat conduction problem�
@u
@�
= 1

2
@2u
@x2

uj�=0 = f; � > 0; x 2 R.

Clearly, if G 2 N(0; 1);

u(� ; x) = E
�
f(x+

p
�G)

�
:

or
u(� ; x) = E [f(x+W (�))]

since W (�) and
p
�G possess the same probability distribution. From now

on, if not otherwise stated, G will always denote a standard Gaussian random
variable.

Example 4.3.1. Suppose�
@u
@�
= 1

2
@2u
@x2

uj�=0 = f; � > 0; x 2 R

where
f(x) =

1p
2��2

e�
x2

2�2

and � > 0: The solution equals

u(� ; x) =

Z
R

1p
2��2

e�
(x�y)2

2�2
1p
2��

e�
y2

2� dy

and a calculation yields

u(� ; x) =
1p

2�(�2 + �)
e
� x2

2(�2+�)

(note that u(� ; x) is the density function of the random variable �G+
p
�H,

where G;H 2 N(0; 1) are independent).
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Next consider the terminal problem�
@u
@t
+ 1

2
@2u
@x2

= 0
ujt=T = f; 0 � t < T; x 2 R

where T is a strictly positive real number and f 2 E . By setting

� = T � t

and
u(t; x) = v(� ; x)

we get �
@v
@�
= 1

2
@2v
@x2

vj�=0 = f; 0 < � � T; x 2 R.
Hence

u(t; x) = v(� ; x) = E [f(x+W (�))] :

Theorem 4.3.1 Suppose a; b 2 R and � > 0: If f 2 E ; the equation�
@u
@t
+ �2

2
@2u
@x2
+ a@u

@x
+ bu = 0

ujt=T = f; 0 � t < T; x 2 R

has the solution

u(t; x) = eb�E [f(x+ a� + �W (�))]

= eb�E
�
f(x+ a� + �

p
�G)

�
:

PROOF Set
y = (x+ a�)=�

and
u(t; x) = eb�v(� ; y):

A straight-forward calculation yields

@v

@�
=
1

2

@2v

@y2
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and
vj�=0 = f(�y):

Hence

v(� ; y) = E [f(�(y +W (�)))] = E [f(x+ a� + �W (�))]

which completes the proof of Theorem 4.3.1.

Theorem 4.3.2. Suppose a; b 2 R and � > 0: If g(ex) 2 E ; the equation�
@u
@t
+ �2s2

2
@2u
@s2
+ as@u

@s
+ bu = 0

ujt=T = g; 0 � t < T; s > 0

has the solution
u(t; s) = eb�E

h
g(se(a�

�2

2
)�+�W (�))

i
= eb�E

h
g(se(a�

�2

2
)�+�

p
�G)
i
:

PROOF Set
s = ex

and
u(t; s) = v(t; x):

Then
@u

@s
=
@v

@x

1

s
and

@2u

@s2
=
@2v

@x2
1

s2
� @v
@x

1

s2
:

By using these formulas, the di¤erential equation in Theorem 4.3.2 equals

@v

@t
+
�2

2

@2v

@x2
+ (a� �

2

2
)
@v

@x
+ bv = 0 :

Finally observing that
v(T; x) = g(ex)

Theorem 4.3.1 yields

u(t; s) = v(t; x) = eb�E
h
g(ex+(a�

�2

2
)�+�W (�))

i
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and Theorem 4.3.2 follows as s = ex.

Exercises

1. Consider the equation

@u

@t
+
�2

2

@2u

@x2
+ a

@u

@x
+ bu = 0

where a; b 2 R and � > 0: Find �; � 2 R so that the substitution

u(t; x) = e�t+�xv(t; x)

leads to the simpler equation

@v

@t
+
�2

2

@2v

@x2
= 0 :

2. Solve the equation�
@u
@t
+ 1

2
@2u
@x2

= 0
u(T; x) = max(0; x); 0 � t < T; x 2 R:

(Answer: u(t; x) = x�( xp
�
) +

p
�'( xp

�
); where ' = �0)

3. Suppose f(s) = 0 if 0 < s � 1 and f(s) = 1 if s > 1: Solve�
@u
@t
+ �2s2

2
@2u
@s2
+ s@u

@s
� u = 0

u(T; s) = f(s); 0 � t < T; s > 0:

4. Solve the equation�
@u
@t
+ �2s2

2
@2u
@s2
+ s@u

@s
� u = 0

u(T; s) = s; 0 � t < T; s > 0:

(Answer: u(t; s) = s)
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5. Solve the initial problem�
@u
@t
= 1

2
@2u
@x2

u(0; x) = sinx; t > 0; x 2 R

Find an approximation of u(4; 1) by using the Monte-Carlo method.
(Answer: u(t; s) = e�t=2 sin x)

4.4. Simple Random Walk and a Numerical Method for the
Heat Equation

If f 2 E ; Theorem 4.3.1 proves that the equation�
@u
@t
+ �2

2
@2u
@x2

= 0
ujt=T = f; 0 � t < T; x 2 R

has the solution
u(t; x) = E [f(x+ �W (�))]

where � = T � t: Now suppose (�1�k�nXk)
1
n=0 is a simple random walk, set

h = �=N

and note that, if N is big, the random variable

p
h

NX
j=1

Xj

is approximately N(0; �)-distributed by the Central Limit Theorem. Thus,
since W (�) 2 N(0; �); the function

v(t; x) = E

"
f(x+ �

p
h

NX
j=1

Xj

#

approximates u(t; x). Below it will be proved that a certain numerical method
for the heat equation leads to the same formula.
Consider the equation

@u

@t
+
�2

2

@2u

@x2
= 0
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and use the following approximations

@u

@t
t
u(t; x)� u(t��t; x)

�t
;

@u

@x
(t; x) � u(t; x)� u(t��x; x)

�x
;

and
@2u

@x2
(t; x) � u(t; x+�x)� 2u(t; x) + u(t; x��x)

(�x)2

and replace u by v to obtain

v(t; x)� v(t��t; x)
�t

+
�2

2

v(t; x+�x)� 2v(t; x) + v(t; x��x)
(�x)2

= 0:

To simplify, let

� =
�2

2

�t

(�x)2

so that

v(t; x)� v(t��t; x) + �(v(t; x+�x)� 2v(t; x) + v(t; x��x)) = 0

or
v(t��t; x) = �v(t; x+�x) + (1� 2�)v(t; x) + �v(t; x��x):

This equation opens for probabilistic interpretations for each � 2
�
0; 1

2

�
: Here

we concentrate on the special case � = 1
2
and let

�t = h and �x = �
p
h

Then
v(t� h; x) = 1

2
v(t; x+ �

p
h) +

1

2
v(t; x� �

p
h)

or
v(t; x) =

1

2
v(t+ h; x+ �

p
h) +

1

2
v(t+ h; x� �

p
h)

that is,
v(t; x) = E

h
v(t+ h; x+ �

p
hX1)

i
:
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Since X1 and X2 are independent,

v(t; x) = E
h
v(t+ 2h; x+ �

p
h(X1 +X2))

i
and by repetition we get

v(t; x) = E

"
v(T; x+ �

p
h

NX
j=1

Xj)

#
:

The terminal condition
v(T; x) = f(x)

now yields

v(t; x) = E

"
f(x+ �

p
h

NX
j=1

Xj)

#
which is the same formula as the one obtained above by approximating
Brownian motion with a simple random walk:

4.5 Problems with solutions

1. Suppose W denotes a standard Brownian motion. Find

E
h
(W (t) +W 2(t))eW

2(t)
i

for every t 2 [0; 1=2[ :

Solution. We have

E
h
(W (t) +W 2(t))eW

2(t)
i
=

Z
R

�p
tx+ (

p
tx)2

�
e(
p
tx)2e�

x2

2
dxp
2�

= t

Z
R

x2etx
2

e�
x2

2
dxp
2�
= t

Z
R

x2e�(
1
2
�t)x2 dxp

2�

=

(
y =

r
1

2
� tx

)
=

t

(1
2
� t) 32

Z
R

y2e�
y2

2
dyp
2�

=
t

(1
2
� t) 32

:
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CHAPTER 5

The Black-Scholes Option Theory

Introduction

In this chapter we consider a capital market consisting of a stock, a bond and
options on the stock. It will be assumed that the stock price process (S(t))t�0
is governed by a geometric Brownian motion with mean rate of return � and
volatility �; that is

S(t) = S(0)e�t+�W (t)

where � = �� �2

2
: Furthermore the bond price process (B(t))t�0 is given by

B(t) = B(0)ert

where r > 0 is a constant, called interest rate. At time 0, the asset prices
S(0) and B(0) are known strictly positive real numbers.
In the seminal paper [BS] ; which appeared in 1973, Black and Scholes

derived the following price at time 0 of a European call with strike price K
and termination date T; namely

c(0; S(0); K; T )

= S(0)�(
ln S(0)

K
+ (r + �2

2
)T

�
p
T

)�Ke�rT�(
ln S(0)

K
+ (r � �2

2
)T

�
p
T

):

Remarkably enough the parameter � (or �) does not appear in the price
formula.
Our aim in this chapter is to give an elementary introduction to the

Black-Scholes option theory.
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5.1. Motivation of the Black-Scholes Option Prices

Suppose g : ]0;1[ ! R is a function such that g(ex) 2 E . We then write
g 2 P and g is called a payo¤ function: In this section we want to �nd a
natural price of a simple European contingent claim with the payo¤ g(S(T ))
at time of maturity T 2 ]0;1[.
The present time is denoted by t and it is assumed that 0 � t < T . We

let � = T � t be the residual time: The processes

(W (�)�W (t))t���T

and

(
p
�W (

�� t
�
))t���T

are equivalent in distribution and as

S(�) = S(t)e�(��t)+�(W (�)�W (t)); t � � � T

we may assume that

S(�) = S(t)e�(��t)+�
p
�W (��t

�
); t � � � T:

Next choose N 2 N+ and de�ne h = �=N and

tn = t+ nh; n = 0; 1; :::; N:

In the following we approximate the process

(
p
�W (

�� t
�
))t���T

by the process

(
p
�WN(

�� t
�
))t���T

where WN is as in Section 4.1. Recall that (WN(�))0���N possesses con-
tinuous sample functions, which are a¢ ne in each time interval

�
n
N
; n+1
N

�
;

n = 0; 1; 2; :::; N; and, moreover,

WN(
n

N
) =

1p
N

X
1�k�n

Xk
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where (Xk)
N
k=1 is an i.i.d. such that

P [X1 = 1] = P [X1 = �1] =
1

2
:

In the next step we introduce an approximate stock price process by the
equation

SN(�) = S(t)e
�(��t)+�

p
�WN (

��t
�
); t � � � T:

Observe that the process

(�(�� t) + �
p
�WN(

�� t
�
))t���T

is a¢ ne in each time interval

[tn; tn+1] ; n = 0; :::; N � 1

and
SN(tn) = S(t)e

�nh+�
p
h
P
1�k�nXk ; n = 0; 1; :::; N:

In view of the binomial model it is natural to introduce a time discrete
stock price process

~S(n) = SN(tn); n = 0; :::; N

and a time discrete bond price process

~B(n) = B(tn); n = 0; :::; N

and we observe that

~S(n+ 1) = ~S(n)e�h+�
p
hXn+1 :

and
~B(n+ 1) = ~B(n)erh:

Thus we have got a binomial model with N periods, where

u = �h+ �
p
h

and
d = �h� �

p
h
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and, assuming N large,

�h+ �
p
h > rh > �h� �

p
h

which implies that the model is free of arbitrage.
FromChapter 2 we know how to price a European contingent claim paying

g( ~S(N)) at time of maturity N: If V (n) denotes the price at time and

V u(n+ 1) = V (n+ 1)jXn+1=+1

and
V d(n+ 1) = V (n+ 1)jXn+1=�1:

we have the recurrence equation

V (n) = e�rh(quV
u(n+ 1) + qdV

d(n+ 1))

with

qu =
erh � e�h��

p
h

e�h+�
p
h � e�h��

p
h
= 1� qd

The results in Chapter 2 show that V (n) is a deterministic function of n and
~S(n) and it is natural to write

V (n) = v(t+ nh; ~S(n)):

Clearly V and v depend on N:
The next sections are rather technical. First de�ne s = ~S(0) = S(t) and

set n = 0 in the recurrence equation above to get

v(t; s)erh = quv(t+ h; se
�h+�

p
h) + qdv(t+ h; se

�h��
p
h):

Moreover,

qu =
e(r��)h � e��

p
h

e�
p
h � e��

p
h

=
1

2

1 + (r � �)h� 1 + �
p
h� 1

2
�2h+ o(h)

�
p
h+ o(h)

; h! 0

or, after a simpli�cation,

qu =
1

2

1 + (r � �� �2

2
)
p
h
�
+ o(

p
h)

1 + o(
p
h)
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=
1

2
+ (r � �� �

2

2
)

p
h

2�
+ o(

p
h); h! 0

(the notation f(h) = o(g(h)); h! 0; means that f(h)=g(h)! 0 as h! 0).
Hence

qd =
1

2
� (r � �� �

2

2
)

p
h

2�
+ o(

p
h); h! 0:

Next we assume v extends to a smooth function and

v(t+ h; se�h+�
p
h) = v(t; s) +

@v

@t
(t; s)h+

@v

@s
(t; s)s(e�h+�

p
h � 1)

+
1

2

@2v

@s2
(t; s)s2(e�h+�

p
h � 1)2 + o(h); h! 0

that is,

v(t+ h; se�h+�
p
h) = v(t; s) +

@v

@t
(t; s)h+

@v

@s
(t; s)s((�+

�2

2
)h+ �

p
h)

+
1

2

@2v

@s2
(t; s)s2�2h+ o(h); h! 0:

In a similar way, we assume

v(t+ h; se�h��
p
h) = v(t; s) +

@v

@t
(t; s)h+

@v

@s
(t; s)s((�+

�2

2
)h� �

p
h)

+
1

2

@2v

@s2
(t; s)s2�2h+ o(h); h! 0

and substitute these expressions for v(t + h; se�h��
p
h) into the recurrence

equation

v(t; s)erh = quv(t+ h; se
�h+�

p
h) + qdv(t+ h; se

�h��
p
h)

and use
erh = 1 + rh+ o(h); h! 0

to obtain
v(t; s)(1 + rh) + o(h)

= qu

�
v(t; s) +

@v

@t
(t; s)h+

@v

@s
(t; s)s((�+

�2

2
)h+ �

p
h) +

1

2

@2v

@s2
(t; s)s2�2h

�
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+qd

�
v(t; s) +

@v

@t
(t; s)h+

@v

@s
(t; s)s((�+

�2

2
)h� �

p
h) +

1

2

@2v

@s2
(t; s)s2�2h

�
as h! 0 and, hence,

v(t; s)rh+ o(h) =

@v

@t
(t; s)h+

@v

@s
(t; s)s((�+

�2

2
)h+ (qu � qd)�

p
h) +

1

2

@2v

@s2
(t; s)s2�2h

as h! 0. Since

(�+
�2

2
)h+ (qu � qd)�

p
h = (�+

�2

2
)h+ 2(r � �� �

2

2
)

p
h

2�
�
p
h+ o(h)

= rh+ o(h); h! 0

(the parameter � disappears!) we �nally arrive at the so called Black-Scholes
equation

v(t; s)r =
@v

@t
(t; s) +

@v

@s
(t; s)sr +

1

2

@2v

@s2
(t; s)s2�2

or, written slightly di¤erently,

@v

@t
(t; s) +

�2s2

2

@2v

@s2
(t; s) + rs

@v

@s
(t; s)� rv(t; s) = 0; 0 � t < T:

Our original derivative satis�es the condition

v(T; s) = g(s)

and Theorem 4.3.2 gives

v(t; s) = e�r�E
h
g(se(r�

�2

2
)�+�

p
�G)
i

where, as usual, G 2 N(0; 1):

De�nition 5.1.1. Suppose g 2 P and consider a simple derivative of Euro-
pean type with payo¤ Y = g(S(T )) at time of maturity T . The theoretic
price of the derivative at time t equals �Y (t) = v(t; S(t)); where

v(t; s) = e�r�E
h
g(se(r�

�2

2
)�+�

p
�G)
i
:
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The theoretic price is also called the Black-Scholes price.
A portfolio with hS(t) = v0s(t; S(t)) units of the stock and

hB(t) = (v(t; S(t))� hS(t)S(t))=B(t)

units of the bond at time t is called a hedging portfolio. The process hS is
often denoted by � and is called the delta of the option.

The very last part in De�nition 5.1.1 needs a comment. To this end let
us return to the motivation of the Black-Scholes price just before De�ni-
tion 5.1.1. We know from Chapter 2 that to each contingent claim in the
binomial model there is exactly one self-�nancing replicating strategy. To
prove something similar in the Black-Scholes model requires measure the-
ory and stochastic analysis, theories which are far beyond the scope of these
lecture notes. Instead we argue as follows. There is a self-�nancing strat-
egy (h ~S(n); h ~B(n))

N
n=0 which replicates the derivative with payo¤ g( ~S(N)):

In particular,
V (0) = h ~S(1)

~S(0) + h ~B(1)
~B(0)

and
V (0) = h ~S(1)

~S(1) + h ~B(1)
~B(1):

Thus

h ~S(0) = h ~S(1) =
1
~S(0)

V u(1)� V d(1)
eu � ed

and letting s = S(t) = ~S(0);

h ~S(0) =
1

s

v(t+ h; se�h+�
p
h)� v(t+ h; se�h��

p
h)

e�h+�
p
h � e�h��

p
h

:

Now by letting h! 0;

lim
h!0

1

s

v(t+ h; se�h+�
p
h)� v(t+ h; se�h��

p
h)

e�h+�
p
h � e�h��

p
h

= v0s(t; s):

Thus the hedging portfolio in De�nition 5.1.1 should "replicate the derivative
with payo¤ g(S(T )) at time T" if such a concept had been de�ned.
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Example 5.1.1. (a) If a derivative of European type pays the amount K
at the termination date T; then

�K(t) = e
�r�E [K] = e�r�K:

Here hS(t) = 0 and hB(t) = K
B(T )

: Thus � = 0:

(b) Consider a derivative of European type which pays the amount S(T ) at
the termination date T: Then if s = S(t);

�S(T )(t) = S(t)

since
e�r�E

h
se(r�

�2

2
)�+�

p
�G
i
= s:

Here hS(t) = 1 and hB(t) = 0: Thus � = 1:

In view of Example 5.1.1 a stock and a bond may be identi�ed with
European derivatives.

Theorem 5.1.1. Assume t < t� < T: Moreover, let g 2 P and consider a
simple European derivative with payo¤ Y = g(S(T )) at termination time T
and another derivative with payo¤ Z = �Y (t�) at time t�: Then

�Z(t) = �Y (t)

Note here that the derivative paying the amount Z at time t� is a simple
derivative of European type since

Z = e�r(T�t�)
Z 1

�1
g(S(t�)e

(r��2

2
)(T�t�)+�

p
T�t�y)'(y)dy

is a deterministic function of S(t�) and, accordingly from this, the price
�Z(t) has a meaning. To emphasize the di¤erent determination dates of the
derivatives in Theorem 5.1.1 it is natural to write

�Y (t) = �Y (t; T )
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and
�Z(t) = �Z(t; t�):

Theorem 5.1.1 exhibits the so called semi-group property of option prices
in the Black-Scholes model, namely

��Y (t�)(t; t�) = �Y (t; T ); t � t� � T:

Any portfolio A can be view as a derivative paying the amount VA(t�) at
a given future point of time t� since the market price of the the portfolio at
time t� equals VA(t�). From this remark the semi-group property extends to
a portfolio A consisting of stocks, bonds, and European derivatives on the
stock and we get the following equation, namely

�VA(t�)(t; t�) = VA(t); t � t� � T:

PROOF OF THEOREM 5.1.1. We have

�Y (t�) = e
�r(T�t�)

Z 1

�1
g(S(t�)e

(r��2

2
)(T�t�)+�

p
T�t�y)'(y)dy

and it follows that Z is a deterministic function of S(t�): Thus

�Z(t) = e
�r(t��t)

�
Z 1

�1

�
e�r(T�t�)

Z 1

�1
g((S(t)e(r�

�2

2
)(t��t)+�

p
t��txe(r�

�2

2
)(T�t�)+�

p
T�t�y)'(y)dy

�
'(x)dx

= e�r(T�t)
Z 1

�1

Z 1

�1
g(S(t)e(r�

�2

2
)(t��t)+�

p
t��txe(r�

�2

2
)(T�t�)+�

p
T�t�y)'(x)'(y)dxdy

= e�r(T�t)
Z 1

�1

Z 1

�1
g(S(t)e(r�

�2

2
)(T�t)+�(

p
t��tx+

p
T�t�y)) exp(�1

2
(x2+y2))

dxdy

2�

= e�r(T�t)E
h
g(se(r�

�2

2
)(T�t)+�(

p
t��tX+

p
T�t�Y ))

i
js=S(t)

where X; Y 2 N(0; 1) are independent and we get

�Z(t) = e
�r(T�t)E

h
g(se(r�

�2

2
)(T�t)+�(

p
T�tG)

i
js=S(t)

= �Y (t):

This proves Theorem 5.1.1.
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The following result gives a weak type of dominance principle for portfo-
lios containing the stock, the bond, and European derivatives with the stock
as the underlying security.

Theorem 5.1.2. Suppose gi 2 P, i = 1; :::;m; and consider m derivatives
of European type with payo¤s Yi = gi(S(T )); i = 1; :::;m; at time of maturity
T: Furthermore, let ai; i = 1; :::;m; be real numbers such that

mX
i=1

aigi � 0:

Then
mX
i=1

ai�Yi(t) � 0:

If
mX
i=1

aigi = 0

then
mX
i=1

ai�Yi(t) = 0:

PROOF We have
mX
i=1

ai�Yi(t) =
mX
i=1

aie
�r�E

h
gi(se

(r��2

2
)�+�

p
�G)
i

e�r�E

"
mX
i=1

aigi(se
(r��2

2
)�+�

p
�G)

#
and Theorem 5.1.2 follows at once.

Recalling the notation

c(t; S(T ); K; T ) = �(S(T )�K)+(t)
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and
p(t; S(t); K; T ) = �(K�S(T ))+(t)

Theorems 5.1.2 implies the put-call parity relation

c(t; S(t); K; T )� S(T ) = p(t; S(T ); K; T )�Ke�r� :

In fact, since

(S(T )�K)+ � S(T ) +K � (K � S(T ))+ = 0
for all values on S(T ),

�(S(T )�K)+(t)� �S(T )(t) + �K(t)� �(K�S(T ))+(t) = 0:

Now the put-call parity relation follows from Example 5.1.1.
In a similar way we conclude that the forward price STfor(t) = S(t)e

r� :

Exercises

1. Suppose g 2 P and consider a simple European option with payo¤
Y = g(S(T ) and termination date T: Prove that �Y (t) = u(t; STfor(t)),
where

u(t; f) = e�r�E
h
g(fe�

�2

2
�+�

p
�G)
i
:

Moreover, prove that

@u

@t
(t; f) +

�2f 2

2

@2u

@f 2
(t; f)� ru(t; f) = 0; 0 � t < T:

2. Suppose g 2 P and consider a simple European option with payo¤
Y = g(S(T ) and termination date T: Then, by De�nition 5.1.1, �Y (t) =
v(t; S(t)), where

v(t; s) = e�r�E
h
g(se(r�

�2

2
)�+�

p
�G)
i
:

(a) Prove that v(t; s) is a convex function of s for �xed t if g is a convex
function.

(b) In addition, assume g(0+) = 0: Prove that v(t; s) � g(s):
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3. Let a be a positive real number and suppose the function u(t; s) satis�es
the Black-Scholes di¤erential equation

u0t +
�2s2

2
u00ss + rsu

0
s � ru = 0; 0 � t < T; s > 0:

Show that the function v(t; s) = s1�
2r
�2 u(t; a

s
) satis�es the Black-Scholes

di¤erential equation.

5.2 The Prices of Some Simple Derivatives

Theorem 5.2.1. If t < T and � = T � t ,

c(t; s;K; T ) = s�(d1)�Ke�r��(d2);

and
p(t; s;K; T ) = Ke�r��(�d2)� s�(�d1)

where

d1 =
ln s

K
+ (r + �2

2
)�

�
p
�

and

d2 =
ln s

K
+ (r � �2

2
)�

�
p
�

:

PROOF De�nition 5.1.1 gives

c(t; s;K; T ) = e�r�E
h
max(0; se(r�

�2

2
)���

p
�G �K)

i
= e�r�

Z 1

�1
max(0; se(r�

�2

2
)���

p
�x �K)e�x2

2
dxp
2�

= e�r�
Z
x� ln s

K
+(r��2

2 )�

�
p
�

(se(r�
�2

2
)���

p
�x �K)e�x2

2
dxp
2�

= e�r�
Z
x�d2

se(r�
�2

2
)���

p
�x�x2

2
dxp
2�
� e�r�K�(d2)
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= s

Z
x�d2

e�
1
2
(x+�

p
�)2 dxp

2�
� e�r�K�(d2)

= s�(d1)�Ke�r��(d2):

Furthermore by the call-put parity relation

p(t; s;K) = Ke�r� � s+ c(t; s;K) = Ke�r� � s+ s�(d1)�Ke�r��(d2)

= Ke�r� (1� �(d2))� s(1� �(d1)) = Ke�r��(�d2)� s�(�d1)
which completes the proof of Theorem 5.2.1.

Below ' = �0; that is

'(x) =
1p
2�
e�

x2

2 :

For a general payo¤ function g 2 P the price �g(S(T ))(t) of the corresponding
European contingent claim equals

v(t; s) = e�r�
Z 1

�1
g(se(r�

�2

2
)�+�

p
�x)'(x)dx

which is simple to compute by numerical integration. Alternatively, ifG1; :::; Gn
are independent observations on G 2 N(0; 1), the Monte Carlo method gives
the following approximate option price, viz.

e�r�

n

nX
i=1

g(se(r�
�2

2
)�+�

p
�Gi):

Finally, the binomial model, which motivated the Black-Schole price above,
can be used to �nd an approximation v(t; S(t)) of the price �g(S(T ))(t) as
follows. First choose N 2 N+ and de�ne h = �=N and

tn = t+ nh; n = 0; 1; :::; N:

Then, if s = S(t),

v(tN ; se
(N�2j)�

p
h) = g(se(N�2j)�

p
h); j = 0; 1; :::; N
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and for every n = N � 1; N � 2; ::::; 1; 0; we let

v(tn; se
(n�2j)�

p
h) = e�rh(quv(tn+1; se

(n+1�2j)�
p
h) + qdv(tn+1; se

(n�1�2j)�
p
h))

for j = 0; 1; :::; n; where

qu =
erh � e��

p
h

e�
p
h � e��

p
h

and qd = 1 � qu: Thus the drift parameter � is chosen equal to 0. The
quantity v(t0; s) approximates the option price �g(S(T ))(t):
As an example consider a European call with volatility 20% when the

stock price equals 40 crowns at time 0: The annual simple interest rate is
5%, that is r = ln 1:05: We get the following result with N = 5; 20; and 50
and di¤erent strikes and residuals:

Black � Scholes price N = 5

Kn� 1=12 4=12 7=12
35 5:15 5:76 6:40
40 1:00 2:17 3:00
45 0:02 0:51 1:10

Kn� 1=12 4=12 7=12
35 5:14 5:77 6:45
40 1:05 2:26 3:12
45 0:02 0:54 1:15

N = 20 N = 50

Kn� 1=12 4=12 7=12
35 5:15 5:77 6:39
40 0:99 2:14 2:97
45 0:02 0:51 1:11

Kn� 1=12 4=12 7=12
35 5:15 5:76 6:40
40 1:00 2:16 2:99
45 0:02 0:51 1:11

The Monte Carlo method with n = 106 simulations gave us the following
results:

exact prices 106 random numbers

Kn� 1=12 4=12 7=12
35 5:15 5:76 6:40
40 1:00 2:17 3:00
45 0:02 0:51 1:10

Kn� 1=12 4=12 7=12
35 5:15 5:75 6:40
40 1:00 2:17 3:00
45 0:02 0:51 1:11
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Since the dominance principle in Chapter 1 shows that it is not optimal
to exercise an American call before maturity, we de�ne its price as the cor-
responding European call price (we here assume that the underlying pays
no dividends). However, in this introduction to the Black-Scholes theory we
cannot, in general, de�ne the price of an American contingent claim. Already
the American put causes great troubles but the following can be proved using
very advanced tools. If an American put has strike price K and termination
time T; the price at time t is a function v(t; S(t)) of (t; S(t)); where v(t; s)
solves the Black-Scholes di¤erential equation in a domain

D = f(t; s); s > b(t); 0 � t < Tg

for an appropriate increasing and convex function b such that

lim
t!T�

b(t) = K:

Moreover,

v(t; s) > max(K � s; 0); (t; s) 2 D;
v(t; s) = max(K � s; 0); (t; s) 2 @D

and
dv

ds
(t; b(t)+) = �1; 0 � t < T:

Here the function b, which is unknown from the beginning, is a part of the
solution. If S(t) < b(t); it is optimal to exercise the put. Like the put
price, the so called critical boundary s = b(t) is not given by any known
analytic expression (see Myneni [MY ] ; Carr, Jarrow, and Myeni [CJM ] ;
and Ekström [EK]).
The binomial method can be used to obtain an approximate price v(t; S(t))

of a simple American option with payo¤ g 2 P : Set s = S(t) and let

v(tN ; se
(N�2j)�

p
h) = g(se(N�2j)�

p
h); j = 0; 1; :::; N:

Furthermore, for every n = N � 1; N � 2; ::::; 1; 0; we let

v(tn; se
(n�2j)�

p
h)

= max(g(se(n�2j)�
p
h); e�rh(quv(tn+1; se

(n+1�2j)�
p
h)+qdv(tn+1; se

(n�1�2j)�
p
h)))
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for j = 0; 1; :::; n:
As an example consider an American put with volatility 20% when the

stock price equals 40 crowns at time 0: The annual simple interest rate is
5% , that is r = ln 1:05: If K = 45 and � = 4=12; the algorithm gives the
price 5:08 if N = 25 and 5:09 if N = 50; 75 ; 100 and 150: The corresponding
European put has the price 4:78. If K = 45 and � = 1=12 the American put
has the price 5 and a closer analysis shows that it is optimal to exercise the
option.
The Black-Scholes theory applies to options on exchange rates and futures

contracts as will be seen below.
First suppose we have two currencies; the domestic currency Swedish

crowns and the foreign currency US dollars. Let �(t) denote the exchange
rate at time t that is, at time t the value of 1 US dollar equals �(t) Swedish
crowns. The domestic interest rate r as well as the foreign interest rate rf are
positive deterministic constants, and the corresponding bond price processes
are denoted by B and Bf ; respectively.
Now consider the right but not the obligation to buy one US dollar at

the price K Swedish crowns at time T: The value of this contract at time T
equals

Y = max(0; �(T )�K)
in Swedish crowns. To price this stochastic payo¤ we will assume that the
exchange rate process (�(t))t�0 is a geometric Brownian motion with volatility
� and, moreover, observe that the process

S(t) = Bf (t)�(t); t � 0

is the price process of a traded Swedish asset. In fact, we may exchange
Swedish crowns to US dollars, buy the US bond, and when selling the US
bond the cash in US dollars is exchanged to Swedish crowns. Now writing

Y = Bf (T )
�1max(0; S(T )�Bf (T )K)

and assuming t < T , the price �Y (t) at time t in Swedish crowns equals

�Y (t) = Bf (T )
�1c(t; S(t); Bf (T )K); T )

= Bf (T )
�1 �Bf (t)�(t)�(D1)�Bf (T )Ke�r��(D2)

�
where

D1 =
ln

Bf (t)�(t)

Bf (T )K
+ (r + �2

2
)�

�
p
�
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=
ln �(t)

K
+ (r � rf + �2

2
)�

�
p
�

and

D2 =
ln �(t)

K
+ (r � rf � �2

2
)�

�
p
�

:

After a simpli�cation we get the so-called Garman-Kohlhagen price formula

�Y (t) = �(t)e
�rf ��(D1)�Ke�r��(D2):

The option to sell one US dollar is treated similarly. The option to buy one
unit of the IBM stock at a given price in Swedish crowns is slightly more
involved and will be treated later in Chapter 6.
As a second example how Theorem 5.2.1 can be used consider a call

option, with exercise date T and strike price K; on an underlying forward
contract on S written at time T and with delivery date T1; where T1 > T:
At the exercise time T the holder of the option will obtain the amount

Y = max(0; ST1for(T )�K)

and a long position in the forward contract. Since the price of the forward
contract vanishes at time T we only have to evaluate the price of an option
with payo¤ Y at time T: Since

Y = er(T1�T )max(0; S(T )�Ke�r(T1�T ))

we get for t < T ,

�Y (t) = e
r(T1�T )c(t; S(t); Ke�r(T1�T ); T )

= er(T1�T )

(
S(t)�(

ln S(t)

Ke�r(T1�T )
+ (r + �2

2
)(T � t)

�
p
T � t

)

�Ke�r(T1�T )e�r(T�t)�(
ln S(t)

Ke�r(T1�T )
+ (r � �2

2
)(T � t)

�
p
T � t

)

)

= e�r�

8<:ST1for(t)�(ln
S
T1
for(t)

K
+ �2

2
�

�
p
�

)�K�(
ln

S
T1
for(t)

K
� �2

2
�

�
p
�

)

9=; :
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This formula is called the Black-76 formula.

Exercises

1. Consider a European call on a stock with volatility 25%, termination
date 20 March, and strike price 100 crowns. The simple annual rate
is r = 5%. During the period 20 January-20 February the stock price
increases from 97 crowns to 103 crowns. Find the increase in the option
price during the same period in (a) crowns. (b) percentage. Assume
each month possesses the same number of trading days.

(Answer: (a) 1.94 crowns (b) 64.73 %)

2. Consider a simple European derivative with payo¤Y = g(S(T )), where
g 2 P. Find a function �(t; s; y) such that �Y (t) = v(t; S(t)); where

v(t; s) =

Z 1

0

g(y)�(t; s; y)dy if t < T:

3. Suppose K and L are positive constants.

(a) (�cash or nothing call�) A simple European option on S pays
nothing at time of maturity T if S(T ) < K and, in other cases, it pays
the amount L: Find the price of the derivative at time t:

(b) (�asset or nothing call�) A simple European option on S pays
nothing at time of maturity T if S(T ) < K and, in other cases, it pays
the amount S(T ): Find the price of the derivative at time t:

(Answer: Let s = S(t): (a) Le�r��(d2) (b) s�(d1))

4. ( �as you like it option� or �chooser option�) Let t < T < T1
and K > 0: At time T a �nancial derivative gives its owner the right to
choose either a European call on S with strike price K and termination
date T1 or a European put on S with strike price K and termination
date T1: Find the price of the derivative at time t:

5. A European derivative pays Y = cos2(lnS(T )) at the termination date
T: Find the price of the derivative at time t:

(Answer: 1
2
e�r�

n
1 + e�2�

2� cos(2 ln s+ (2r � �2)�)
o
)
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6. Suppose X 2 N(�; �2); where � > 0; and set Y = eX . Prove that

E [min(K;Y )]

= E [Y ] �(
ln K

E[Y ]
� �2

2

�
) +K�(

ln E[Y ]
K
� �2

2

�
)

if K > 0:

5.3 The Greeks

The Greeks of an option measure the sensitivity of the option price from its
parameters. Expressed in mathematical terms, if a simple European option
on S with payo¤ function g 2 P and termination date T has the price
v(t; S(t)) at time t; where

v(t; s) = e�r�E
h
g(se(r�

�2

2
)�+�

p
�G)
i
:

then partial derivatives of v = v(t; s; r; �) evaluated at the point (t; S(t));
where t < T; are called Greeks of the option. We already have de�ned the
delta in De�nition 5.1.1 and know that this Greek is an important tool to
hedge the option. The following list is (more or less) standard:
delta: @v

@s

gamma: @
2v
@s2

rho: @v
@r

theta: @v
@t

vega: @v
@�

Furthermore the quantity s @v
@s

v
is called the omega of the stock price. Thus

omega: s
@v
@s

v
= (formally) =

@v
v
@s
s

:

Omega is also called the elasticity of the option price with respect to the
stock price; if the stock price changes 1% the option price changes about
omega %.

Since a linear combination of payo¤ functions is a payo¤ function a port-
folio containing the stock, the bond, and European options on S has Greeks
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as above. Such a portfolio is said to be delta neutral if the delta of the
portfolio vanishes.

Theorem 5.3.1. For a European call price and � > 0,

delta = �(d1)

gamma =
'(d1)

s�
p
�

rho = K�e�r��(d2)

theta = �s'(d1)�
2
p
�

� rKe�r��(d2)

vega = s'(d1)
p
�

where all expressions to the right are evaluated at the point (t; s) = (t; S(t)):
In particular, the delta, gamma, rho, and vega of a European call are strictly
positive but theta is strictly negative.

The most common Greeks for a European put are obtained from the
put-call parity relation

p(t; s;K; T ) = c(t; s;K; T )� s+Ke�r�

and Theorem 5.3.1.

PROOF OF THEOREM 5.3.1 If c denotes the call price,

c = s�(d1)�Ke�r��(d2)

where

d1 =
ln s

K
+ (r + �2

2
)�

�
p
�

and

d2 =
ln s

K
+ (r � �2

2
)�

�
p
�

= d1 � �
p
� :
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Hence
@c

@s
= �(d1) + s'(d1)

@d1
@s

�Ke�r�'(d2)
@d2
@s

= �(d1) +
1p
2�

@d1
@s

�
se�

d21
2 �Ke�r�e�

d22
2

�
= �(d1) +

1p
2�

@d1
@s

�
se�

d21
2 �Ke�r�e�

d21
2
+d1�

p
���2�

2

�

= �(d1) +
e�

d21
2

p
2�

@d1
@s

n
s�Ke�r�+d1�

p
���2�

2

o
= �(d1) +

e�
d21
2

p
2�

@d1
@s

n
s�Ke�r�+ln s

K
+(r+�2

2
)���2�

2

o
= �(d1):

This proves the formula for the delta. The formula for the gamma now follows
from

@d1
@s

=
1

s�
p
�
:

The remaining part of Theorem 5.3.1 is left as an exercise.

For a general simple derivative of European type the Greeks of the option
price are obtained by numerical integration and di¤erentiation. Alternatively
the following result may be used.

Theorem 5.3.2. A simple European option on S with payo¤ function g 2 P
and termination date T has the price v(t; S(t)) at time t; where

v(t; S(t)) = e�r�E
h
g(se(r�

�2

2
)�+�

p
�G)
i
js=S(t)

:

Moreover, if � > 0:

delta =
e�r�

S(t)�
p
�
E
h
g(se(r�

�2

2
)�+�

p
�G)G

i
js=S(t)

gamma =
e�r�

S2(t)��
E

�
g(se(r�

�2

2
)�+�

p
�G)(

�G2

��
�
p
�G� 1

�
)

�
js=S(t)
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rho = e�r�E
�
g(se(r�

�2

2
)�+�

p
�G)(

p
�G

�
� �)

�
js=S(t)

theta =
�
r +

1

2�

�
v(t; S(t))�e�r�E

"
g(se(r�

�2

2
)�+�

p
�G)

(
G2

2�
+
(r � �2

2
)G

�
p
�

)#
js=S(t)

:

and

vega = e�r�E
�
g(se(r�

�2

2
)�+�W (�))(

�G2

��
�
p
�G� 1

�
)

�
js=S(t)

PROOF We here compute only the theta. The other Greeks in Theorem
5.3.2 are obtained in a similar way. First

v(t; s) = e�r�
Z 1

�1
g(eln s+(r�

�2

2
)�+�

p
�x)'(x)dx

where

'(x) =
e�

x2

2

p
2�
:

We now set ln y = ln s+ (r � �2

2
)� + �

p
�x and have

v(t; s) =
e�r�

�
p
�

Z 1

0

g(y)'(
ln y

s
� (r � �2

2
)�

�
p
�

)
dy

y
:

Thus

@v

@t
(t; s) =

�
re�r�

�
p
�
+

e�r�

2�
p
��

�Z 1

0

g(y)'(
ln y

s
� (r � �2

2
)�

�
p
�

)
dy

y

� e
�r�

�
p
�

Z 1

0

g(y)
ln y

s
� (r � �2

2
)�

�
p
�

'(
ln y

s
� (r � �2

2
)�

�
p
�

)

(
ln y

s
� (r � �2

2
)�

2�
p
��

+
r � �2

2

�
p
�

)
dy

y

=

�
r +

1

2�

�
e�r�

�
p
�

Z 1

0

g(y)'(
ln y

s
� (r � �2

2
)�

�
p
�

)
dy

y

� e
�r�

�
p
�

Z 1

0

g(y)
ln y

s
� (r � �2

2
)�

�
p
�

'(
ln y

s
� (r � �2

2
)�

�
p
�

)

(
ln y

s
� (r � �2

2
)�

2�
p
��

+
r � �2

2

�
p
�

)
dy

y

=

�
r +

1

2�

�
v(t; s)
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�e�r�
Z 1

0

g(se(r�
�2

2
)�+�

p
�x)x'(x)

(
x

2�
+
r � �2

2

�
p
�

)
dx =�

r +
1

2�

�
v(t; s)

�e�r�E
"
g(se(r�

�2

2
)�+�

p
�G)

(
G2

2�
+
(r � �2

2
)G

�
p
�

)#
:

Example 5.3.1. Suppose 0 < t < T and consider a �nancial derivative of
European type with payo¤ Y = (S(T )�S(0))2=S(T ) at time of maturity T:
We want to �nd the price �Y (t) and the delta �(t) of the derivative at time
t.
To solve these problems �rst note that

Y = S(T )� 2S(0) + S(0)2S(T )�1:

Here
�S(T )(t) = S(t)

and
�S(0)(t) = S(0)e

�r�

where � = T � t: Moreover,

�S(T )�1(t) = e
�r�
Z 1

�1
(S(t)e(r�

�2

2
)�+�

p
�x)�1e�

x2

2
dxp
2�

= S(t)�1e�r�e�(r�
�2

2
)�

Z 1

�1
e�

x2

2
��
p
�x dxp

2�

= S(t)�1e(�
2�2r)�

Z 1

�1
e�

1
2
(x+�

p
�)2 dxp

2�
= S(t)�1e(�

2�2r)� :

Hence
�Y (t) = S(t)� 2S(0)e�r� + S(0)2e(�

2�2r)�S(t)�1:

Now, if �Y (t) = v(t; S(t));

�(t) =
@v

@s
(t; S(t)) = 1� S(0)2e(�2�2r)�S(t)�2:

Exercises
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1. Show that
@c

@K
= �e�r��(d2):

Use this to prove that the map K ! c(t; S(t); K; T ); K > 0; is convex
in the Black-Scholes model (cf Chapter 1).

2. Let a;K; T > 0 be given numbers and consider a simple derivative of
European type with time of maturity T and payo¤K if S(T ) < a and
payo¤ 0 if S(T ) � a: (a) Find the price of the derivative at time t < T:
(b) Find the delta of the derivative at time t < T: (c) Find the vega of
the derivative at time t < T:

3. A European option on S pays the amount 1 at maturity T if S(T ) � K
and, otherwise, it pays nothing. Suppose t < T . For which value on
S(t) is the delta of the option minimal?

(Answer: S(t) = Ke�(r+
�2

2
)� )

4. Let a;K; T > 0: A �nancial derivative of European type pays the
amount Y = (min(S(T ) � K; a))+ at time of maturity T: Show that
the delta of the derivative is positive and does not exceed

ln(1 + a
K
)

�
p
2�(T � t)

at time t < T:

5. Show that
c(t; s;K; T )

c(t; s0; K; T )
>
s

s0
if s > s0 and t < T:

6. A function f : ]a; b[! ]0;1[ is said to be log-convex if ln f is convex.
(a) Show that the function f : ]a; b[! ]0;1[ is log-convex if and only
if the function f(x) exp(cx); a < x < b; is convex for all real c. (b)
Show that the sum of two log-convex functions is convex.

7. A European simple derivative on S has the payo¤ g(S(T )) at time of
maturity T , where g 2 P and g(y) > 0 for all y > 0: Prove that the
omega is an increasing function of the stock price S(t) if ln g(ex) is a
convex function of x:

5.4 Path dependent options
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A subset of Rn of the type

I = fx; x = (x1; :::; xn) and ak < xk < bk; k = 1; ::; ng

where �1 � ak < bk � 1 ; k = 1; ::; n; is called an open n-cell.
Let g(s1; :::; sn); s1 > 0; :::sn > 0; be a function satisfying the following

conditions:
(a) There are �nitely many mutually disjoint n-cells I1; :::; Im such that

the union of the closure of the Ik : s equals Rn:
(b) The restriction of g to each Ik is the restriction to Ik of a continuous

function in the closure of Ik for k = 1; :::;m:
(c) There exists a positive constant A such that

sup
�
e�A(jx1j+:::+jxnj) j g(ex1 ; :::; exn) j; x1; :::; xn 2 R

	
<1:

If these conditions are ful�lled we write g 2 Pn and g is called an n-payo¤
function.
Suppose t = t0 < t1 < ::: < tn�1 < tn = T and � = T � t. In

this section we will consider a European contingent claim with payo¤ Y =
g(S(t1); :::; S(tn)) at termination time T , where g is an n-payo¤ function.
We de�ne the derivative price �Y (t) = �Y (t; T ) to be equal to the price of
a European contingent claim with the payo¤ �Y (tn�1; T ) at time tn�1; that
is �Y (t) = ��Y (tn�1;T )(t; tn�1): By induction we �nd that �Y (t) = v(t; S(t))
where

v(t; s) = e�r�E
h
g((se(r�

�2

2
)(tk�t)+�(W (tk)�W (t)))nk=1)

i
and

(se(r�
�2

2
)(tk�t)+�(W (tk)�W (t)))nk=1

= (se(r�
�2

2
)(t1�t)+�(W (t1)�W (t)); se(r�

�2

2
)(t2�t)+�(W (t2)�W (t)); :::; se(r�

�2

2
)(tn�t)+�(W (tn)�W (t))):

Moreover, introducing

f(s;x1; :::; xn) = g(se(r�
�2

2
)(t1�t)+�

p
t1�tx1 ; se(r�

�2

2
)(t2�t)+�

p
t1�tx1+�

p
t2�t1x2 ;

:::; se(r�
�2

2
)(tn�t)+�

p
t1�tx1+:::+�

p
tn�tn�1xn):

we also have
v(t; s)
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= e�r�
Z
R

:::

Z
R

f(s;x1; :::; xn) exp(�
1

2
(x21 + :::+ x

2
n))
dx1:::dxnp
2�

n :

For n = 1 the de�nition above coincides with the old one.

Example 5.4.1. A derivative of European type pays the amount Y = S(T )
S(T=2)

at time of maturity T: To �nd �Y (0) note that for any t 2 [0; T ] and real
number a; �aS(T )(t) = aS(t) and, hence,

�Y (T=2) = � 1
S(T=2)

S(T )(T=2) =
1

S(T=2)
�S(T )(T=2)

=
1

S(T=2)
S(T=2) = 1:

Accordingly from this,
�Y (0) = e

� rT
2 :

Alernatively, using the general theory above,

�Y (0) = e
�rTE

h
g((se(r�

�2

2
)tk+�W (tk))2k=1)

i
with t1 = T

2
; t2 = T; and g(x1; x2) = x2

x1
: Hence

�Y (0) = e
�rTE

"
se(r�

�2

2
)T+�W (T )

se(r�
�2

2
)T
2
+�W (T

2
)

#

= e�r
T
2
��2

2
T
2E
h
e�(W (T )�W (T

2
))
i

= e�r
T
2
��2

2
T
2E
h
e�W (T

2
)
i
= e�

rT
2 :

Example 5.4.2. Suppose t < t� < T and consider a European contingent
claim with payo¤ Y = max(S(t�); S(T )) at time T: We have

Y = S(t�) + max(0; S(T )� S(t�))

and
�Y (t�) = S(t�)e

�r(T�t�) + c(t�; S(t�); S(t�); T )
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= S(t�)(e
�r(T�t�) + c(t�; 1; 1; T )):

Thus by Theorem 5.1.2

�Y (t) = S(t)(e
�r(T�t�) + c(t�; 1; 1; T )):

Moreover,

c(t�; 1; 1; T )) = �((
r

�
+
1

2
�)
p
T � t�)� e�r(T�t�)�((

r

�
� 1
2
�)
p
T � t�)

and it follows that

�Y (t) = S(t)(�((
r

�
+
1

2
�)
p
T � t�) + e�r(T�t�)(1� �((

r

�
� 1
2
�)
p
T � t�)))

= S(t)(�((
r

�
+
1

2
�)
p
T � t�) + e�r(T�t�)�((�

r

�
+
1

2
�)
p
T � t�)):

Example 5.4.3. Consider a derivative of European type with the payo¤

Y =
1

n

nX
k=1

S(
kT

n
)

at time of maturity T: To �nd �Y (0) we introduce a derivative paying the
amount Yk = S(kTn ) at time T: Then

�Y (0) =
1

n

nX
k=1

�Yk(0):

Moreover, �Yk(
kT
n
) = e�(T�

kT
n
)rS(kT

n
) and, hence,

�Yk(0) = e
�(T� kT

n
)rS(0):

Thus

�Y (0) =
S(0)

n

nX
k=1

e�(1�
k
n
)Tr

=
S(0)

n

n�1X
i=0

e�iT r=n =
S(0)

n

1� e�Tr
1� e�Tr=n :
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Example 5.4.4. Consider a derivative of European type with the payo¤

Z =

(
nY
k=1

S(
kT

n
)

) 1
n

at time of maturity T: To �nd �nd �Z(0) let S(0) = s so that

�Z(0) = e
�rTE

24( nY
k=1

se(r�
�2

2
) kT
n
+�W ( kT

n
)

) 1
n

35
= se�rT+(r�

�2

2
)
(n+1)T
2n E

h
e
�
n

Pn
k=1W ( kT

n
)
i
:

Set Vi = W ( iTn ); i = 0; :::; n: Then

nX
k=1

W (
kT

n
) = V1 + :::+ Vn

= V1 + :::+ Vn�2 + 2Vn�1 + (Vn � Vn�1)
= V1 + :::+ Vn�3 + 3Vn�2 + 2(Vn�1 � Vn�2) + (Vn � Vn�1)

= n(V1 � V0) + :::+ 2(Vn�1 � Vn�2) + (Vn � Vn�1)

and using the formula 12 + 22 + :::+ n2 = n(n+1)(2n+1)
6

we get

E
h
e
�
n

Pn
k=1W ( kT

n
)
i
=

nY
k=1

E
h
e
�(n+1�k)

n
(Vk�Vk�1)

i
= e

�2

2n2
(n2+:::+22+12)T

n

= e
�2

2n2
n(n+1)(2n+1)

6
T
n = e�

2T
(n+1)(2n+1)

12n2 :

Thus

�Z(0) = se
�rT+(r��2

2
)
(n+1)T
2n

+�2T
(n+1)(2n+1)

12n2 = S(0)e(
1�n
2n

r+ 1�n2
12n2

�2)T :

Exercises
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1. Set g(�) = c(t; 1; 1;T ) if T � � = T � t � 0 and � > 0: (a) Prove that
c(t; s; s;T ) = sg(T � t); where � is the same in the right-hand and left-
hand side. (b) Let t � t� < T . A European derivative pays the amount
Y = max(0; S(T ) � S(t�)) at time T: Prove that �Y (t) = S(t)g(T �
t�):(c) (�tandem option�) Let � = T � t > 0 and set tj = t + j

n
� ;

j = 0; :::; n; where n 2 N+. A derivative pays max(0; S(tj) � S(tj�1))
at time tj for j = 1; :::; n: Show that the price of the derivative at time
t equals nS(t)g(�=n):

2. Suppose t0 < t� < T and consider a �nancial derivative of European
type with payo¤ Y =j S(T ) � S(t�) j at time of maturity T: Find the
delta �(t) of the derivative at time t if

(a) t 2 ]t�; T [ :
(b) t 2 ]t0; t�[ :
(c) Finally, compute �(t��)��(t�+):

3. (Black-Scholes model) Suppose 0 < T0 < T and consider a simple
derivative of European type with the payo¤ Y = min(S(T0); S(T )) at
time of maturity T: Find �Y (t) for all t 2 [0; T0] :
(Answer: �Y (t) = (1�c(T0; 1; 1; T ))S(t) if 0 � t � T0; where c(T0; 1; 1; T ) =
�(

r+�2

2

�

p
T � T0)� e�r(T�T0)�(

r��2

2

�

p
T � T0):)

4. (Black-Scholes model) Suppose K > 0 and 0 = t0 < t1 < ::: < tn = T .
A �nancial derivative of European type pays the amount Y at time of
maturity T , where

Y =
nX
i=1

(S(ti)�KS(ti�1))+:

Find �Y (0):

5.5 Implied volatility
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Consider a call on S with strike K and time of maturity T in the Black-
Scholes model: If the residual time � is strictly positive,

@c

@�
= s'(d1)

p
� = se�d

2
1=2

r
�

2�
> 0

and, moreover,

lim
�!0+

c(t; s;K; T ) = lim
�!0+

e�r�E
h
(se(r�

�2

2
)�+�

p
�G �K)+

i
= max(0; s�Ke�r� )

and
lim
�!1

c(t; s;K; T ) = lim
�!1

�
s�(d1)�Ke���(d2)

	
= s:

The parameter � that makes our theoretical call price agree with the market
price is called implied volatility and is denoted by �imp: If the Black-Scholes
model gives a perfect description of real option markets the implied volatility
would be more or less independent of the residual time � and the strike price
K: However, statistical investigations show that the implied volatility often
deviates signi�cantly from a constant function of (� ;K) and, in addition,
behaves like a random function with non-negligible variance. This makes it
plausible to model the volatility as a stochastic process.
If we �rst assume the log-priceX(t) = lnS(t) = �t+�W (t) is a Brownian

motion with drift as usual, then

X(t+�t)�X(t) = ��t+ �(W (t+�t)�W (t))

and it is tempting to write

dX(t) = �dt+ �dW (t)

and

X(t)�X(0) =
Z t

0

�du+

Z t

0

�dW (u):

Here it is simple to understand the �rst integralZ t

0

�du

if � is replaced by a stochastic process (�(u))u�0. However, in a context like
here, given t the path

�(u); 0 � u � t
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only depends on the known information Ft at time t: We then say that
the drift process (�(u))u�0 is non-anticipating. Generally, the de�nition of
information in mathematics requires measure theory and falls beyond the
scope of these lecture notes. Here let us only remark that the drift process is
non-anticipating, if for each t, �(t) is a deterministic function of the historical
stock price process (S(u))0�u�t.
If 0 = t0 < t1 < ::: < tn = t and (�(u))u�0 is a non-anticipating stochastic

process, which is constant in each subinterval [tk�1; tk[, k = 1; :::; n; we de�neZ t

0

�(u)dW (u) =
nX
k=1

�(tk)(W (tk+1)�W (tk)):

The stochastic integral Z t

0

�(u)dW (u)

may be de�ned for much more general non-anticipating integrands but we
have not the appropriate mathematical machinery to go any further here.
Statistical investigations support that the probability density of a log-

price increment X(t + �t) � X(t) has more mass close to an estimated
expectation of the increment than in the Black-Scholes model, when the
increment is Gaussian. In fact, this phenomenon is very natural since there
are transaction costs, taxes, and other frictions on the real market.
There is a variety of di¤erent stochastic volatility models. So called lo-

cal volatility models and many other models are discussed in the Gatherhal
book "The Volatility Surface" (see References; Books in Mathematical Fi-
nance). In the Hobson-Rogers model [HR] �(t) is small if the stock price
changes have been small the nearest period back in time and it is larger in
the opposite case. At present, the Heston model [H] seems to be one of the
most popular stochastic volatility models on the option markets. In Heston�s
model the volatility process depends on more random sources than the stock
price process.

Exercises

1. Assume the Black-Scholes model and show that

@2c

@�2
=
sd1d2
�

'(d1)
p
� :
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Conclude that the map � ! c(t; s;K; T ) is convex in the interval ]0; �0]
and concave in the interval [�0;1[ , where

�0 =

r
2

�
j ln se

r�

K
j:

5.6 Problems with solutions

1. (Black-Scholes model) A derivative of European type pays the amount

Y = S(T ) +
1

S(T )

at time of maturity T: Find �Y (t) for all 0 � t < T:

Solution. We have
�Y (t) = �S(T )(t) + � 1

S(T )
(t):

Here, if � = T � t; s = S(t); and G 2 N(0; 1);

�S(T )(t) = e
�r�E

h
se(r�

�2

2
)�+�

p
�G
i

= se�
�2

2
�E
h
e�
p
�G
i
= se�

�2

2
�e

�2

2
� = s:

Moreover,

� 1
S(T )
(t) = e�r�E

�
1

se(r�
�2

2
)�+�

p
�G

�

= e�r�
e�(r�

�2

2
)�

s
E
h
e��

p
�G
i

=
e�(2r�

�2

2
)�

s
e
1
2
�2� =

1

s
e(�

2�2r)�

and it follows that
�Y (t) = S(t) +

1

S(t)
e(�

2�2r)� :
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2. (Black-Scholes model) Suppose T > 0; N 2 N+; h =
T
N
; and tn = nh;

n = 0; :::; N; and consider a derivative of European type paying the amount

Y =

N�1X
n=0

(ln S(tn+1)
S(tn)

)2 at time of maturity T . Find �Y (0):

Solution. First consider a derivative paying the amount Yn = (ln
S(tn+1)
S(tn)

)2 at

time T: Since Yn is known at time tn+1; �Yn(tn+1) = Yne
�r(T�tn+1): Note that

S(tn+1) = S(tn)e
(���2

2
)h+�(W (tn+1)�W (tn))

where W (tn+1)�W (tn) 2 N(0; h): Thus, if G 2 N(0; 1);

�Yn(tn) = e
�rhE

"
e�r(T�tn+1)

�
(r � �

2

2
)h+ �

p
hG

�2#

= e�r(T�tn)
�
(r � �

2

2
)2h2 + �2h

�
and since the expression for �Yn(tn) is known at time 0;

�Yn(0) = e
�tnre�r(T�tn)

�
(r � �

2

2
)2h2 + �2h

�

= e�rT
�
(r � �

2

2
)2h2 + �2h

�
:

Now it follows that

�Y (0) =

N�1X
n=0

�Yn(0) = Ne
�rT

�
(r � �

2

2
)2h2 + �2h

�

= Te�r�
�
�2 + h(r � �

2

2
)2
�
:

3. (Black-Scholes model) A derivative of European type pays the amount

Y = 1 + S(T ) lnS(T )
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at time of maturity T: (a) Find �Y (t): (b) Find a hedging portfolio of the
derivative at time t:

Solution. (a) If s = S(t); � = T � t; and G 2 N(0; 1); then

�Y (t) = e
�r�E

�
1 + se(r�

�2

2
)�+�

p
�G

�
ln s+ (r � �

2

2
)� + �

p
�G

��

= e�r� + s

�
ln s+ (r � �

2

2
)�

�
e�

�2

2
�E
h
e�
p
�G
i
+ s�

p
�E
h
Ge�

�2

2
�+�

p
�G
i

= e�r� + s

�
ln s+ (r � �

2

2
)�

�
+ s�

p
�

Z 1

�1
xe�

�2

2
�+�

p
�x�x2

2
dxp
2�

= e�r� + s

�
ln s+ (r � �

2

2
)�

�
+ s�

p
�

Z 1

�1
xe�

(x��
p
�)2

2
dxp
2�
=

= e�r� + s

�
ln s+ (r � �

2

2
)�

�
+ s�

p
�

Z 1

�1
(y + �

p
�)e�

y2

2
dxp
2�

= e�r� + s

�
ln s+ (r � �

2

2
)�

�
+ s�2�

= e�r� + s ln s+ s(r +
�2

2
)�

= e�r� + S(t) lnS(t) + S(t)(r +
�2

2
)�

(b) A portfolio with

hS(t) =

�
@

@s

�
e�r� + s ln s+ s(r +

�2

2
)�

��
js=S(t)

= 1 + (r +
�2

2
)� + lnS(t)

units of the stock and
hB(t)

= (e�r� + S(t) lnS(t) + S(t)(r +
�2

2
)� � S(t)(1 + (r + �

2

2
)� + lnS(t)))=B(t)

= (e�r� � S(t))=B(t)
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units of the bond is a hedging portfolio at time t:

4. (Black-Scholes model) Suppose 0 < t0 < T and K > 0: A �nancial
derivative of European type pays the amount Y = ( S(T )

S(t0)
� K)+ at time of

maturity T: Find the delta of the option at time t if (a) 0 < t < t0 (b)
t0 < t < T:

Solution. We �rst solve Part (b). Note that

Y =
1

S(t0)
(S(T )�KS(t0))+

and, accordingly from this, if t0 � t < T;

�Y (t) =
1

S(t0)
c(t; S(t); KS(t0); T )

=
1

S(t0)

�
S(t)�(d1(t))�KS(t0)e�r(T�t)�(d2(t))

	
where

d1(t) =
ln S(t)

KS(t0)
+ (r + �2

2
)(T � t)

�
p
T � t

and

d2(t) =
ln S(t)

KS(t0)
+ (r � �2

2
)(T � t)

�
p
T � t

:

In particular,
�Y (t0)

= �(
� lnK + (r + �2

2
)(T � t0)

�
p
T � t0

)�Ke�r(T�t0)�(
� lnK + (r � �2

2
)(T � t0)

�
p
T � t0

)

and, moreover, from the known delta of a European call we get

�(t) =
1

S(t0)
�(
ln S(t)

KS(t0)
+ (r + �2

2
)(T � t)

�
p
T � t

); if t0 < t < T:

We next treat Part (a). If s = S(t) and 0 < t < t0;

�Y (t) = e
�r(t0�t)�Y (t0)
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since �Y (t0) is known at time t: Moreover, �Y (t) is independent of s and we
have

�(t) = 0; if 0 < t < t0:

3. (Black-Scholes model) Suppose 0 < a < K: A �nancial derivative of
European type has the payo¤ Y = g(S(T )) at time of maturity T; where
g(x) =j x � K j if x =2 ]K � a;K + a[ and g(x) = 0 if x 2 ]K � a;K + a[ :
Find a hedging portfolio for the derivative.

Solution. If A � ]0;1[ ;

1A(x) =

�
1 if x 2 A
0 if x =2 A:

Now

g(x) = (K � a� x)+ + a1]0;K�a](x) + (x�K � a)+ + a1[K+a;1[(x)

= K � a� x+ (x�K + a)+ + a� a1]K�a;1[(x)

+(x�K � a)+ + a1[K+a;1[(x):

= K � x+ (x�K + a)+ � a1]K�a;1[(x)

+(x�K � a)+ + a1[K+a;1[(x):

Hence, if � = T � t > 0; s = S(t); and G 2 N(0; 1);

v(t; s) =def �Y (t) = Ke
�r� � s+ c(t; s;K � a; T )

�ae�r�E
h
1]K�a;1[(se

(r��2

2
)���

p
�G)
i
+ c(t; s;K + a; T )

+ae�r�E
h
1[K+a;1[(se

(r��2

2
)���

p
�G)
i

= Ke�r� � s+ c(t; s;K � a; T ) + c(t; s;K + a; T )

�ae�r�
Z
x<

ln s
K�a+(r�

�2
2 )�

�
p
�

'(x)dx+ ae�r�
Z
x�

ln s
K+a

+(r��2
2 )�

�
p
�

'(x)dx
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= Ke�r��s+c(t; s;K�a; T )+c(t; s;K+a; T )�ae�r��(
ln s

K�a + (r �
�2

2
)�

�
p
�

)

+ae�r��(
ln s

K+a
+ (r � �2

2
)�

�
p
�

):

Recall that

c(t; s;K; T ) = s�(
ln s

K
+ (r + �2

2
)�

�
p
�

)�Ke�r��(
ln s

K
+ (r � �2

2
)�

�
p
�

)

and
@c

@s
= �(

ln s
K
+ (r + �2

2
)�

�
p
�

):

Now

hS(t) =
@v

@s
= �1 + �(

ln s
K�a + (r +

�2

2
)�

�
p
�

) + �(
ln s

K+a
+ (r + �2

2
)�

�
p
�

)

� ae
�r�

s�
p
�
'(
ln s

K�a + (r �
�2

2
)�

�
p
�

) +
ae�r�

s�
p
�
'(
ln s

K+a
+ (r � �2

2
)�

�
p
�

)

where, as said above, s = S(t): Moreover,

hB(t) =
v(t; s)� hS(t)S(t)

B(t)
:
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CHAPTER 6

Several sources of randomness

Introduction

To begin with in this chapter we are going to price the option on the maxi-
mum of two stock prices and the option to exchange one stock for another.
Furthermore, we will price a call on a foreign equity, struck in domestic
currency. In both cases we will proceed in Black-Scholes like models.
Besides this chapter will illustrate how several sources of randomness and

high-dimensional Brownian motion enter in various multi-asset models of
standard type.

6.1 Bivariate Geometric Brownian Motion

We start with two important de�nitions. Two random vectorsX = (X1; :::; Xm) =
(Xk)

m
k=1 and Y = (Y1; :::; Yn) = (Yk)

n
k=1,in R

m and Rn ; respectively, are said
to be independent if

E [f(X)g(Y )] = E [f(X)]E [g(Y )]

for all continuous functions f :Rm !R and g :Rn !R such thatE [j f(X) j] <
1 and E [j g(Y ) j] < 1 (for n = 1 it can be proved that this de�nition is
equivalent to the de�nition given in Chapter 3): Moreover, two stochastic
processes X = (X(t))t2T and Y = (Y (u))u2U are said to be independent if
(X(t))t2T0 and (Y (u))u2U0 are independent for every �nite subset T0 of T and
every �nite subset U0 of U:
Throughout this section Z1 = (Z1(t))t�0 and Z2 = (Z2(t))t�0 denote two

independent standard Brownian motions with continuous sample paths and
Z(t) = (Z1(t); Z2(t)); t � 0: The process Z = (Z(t))t�0 is called a standard
Brownian motion in the plane.
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If a = (a1; a2) and b = (b1; b2) are vectors in the plane, let a�b = a1b1+a2b2
be the dot product of a and b and j a j=

p
a � a the length of a: A vector in

R2 is often identi�ed with a column matrix.

Theorem 6.1.1. Suppose the vectors ai = (ai1; ai2) 2 R2 ; i = 1; 2; and let
A = (aik)1�i;k�2: Moreover, set X = AZ, that is, X(t) = (X1(t); X2(t))t�0;
where

X1(t) = a11Z1(t) + a12Z2(t)

X2(t) = a21Z1(t) + a22Z2(t):

Then
E [Xi(t)] = 0; i = 1; 2

Var(Xi(t)) =j ai j2 t; i = 1; 2
and

Cov(X1(s); X2(t)) = (a1 � a2)min(s; t):
:

PROOF Let i = 1 or 2: Then E [Xi(t)] = ai1E [Z1(t)] + ai2E [Z2(t)] = 0 and

Cov(X1(s); X2(t)) = E [X1(s)X2(t)]

= a11a21E [Z1(s)Z1(t)] + a11a22E [Z1(s)Z2(t)]

+a12a21E [Z2(s)Z1(t)] + a12a22E [Z2(s)Z2(t)]

= a11a21min(s; t) + a12a22min(s; t) = (a1 � a2)min(s; t)
since E [Z1(s)Z2(t)] = E [Z1(s)]E [Z2(t)] = 0: Moreover, if i = 1 or 2;

Var(Xi(t)) = E
�
X2
i (t)

�
= a2i1E

�
Z21(t)

�
+ 2ai1ai2E [Z1(t)Z2(t)] + a

2
i2E

�
Z22(t)

�
=j ai j2 t:

This proves Theorem 6.1.1.
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Corollary 6.1. If a is a unit vector in the plane, a � Z is a real-valued
standard Brownian motion.

Suppose two stock price processes S1 = (S1(t))t�0 and S2 = (S2(t))t�0 are
governed by geometric Brownian motions: The stock with the price process
(Si(t))t�0 will be called the i : th stock for i = 1; 2: Thus, by assumption,
there are standard Brownian motions (W1(t))t�0 and (W2(t))t�0 such that

S1(t) = S1(0)e
�1t+�1W1(t)

and
S2(t) = S2(0)e

�2t+�2W2(t)

where �1; �2 2 R and �1; �2 > 0. In particular,

E [W1(t)] = E [W2(t)] = 0

and
E [W1(s)W1(t)] = E [W2(s)W2(t)] = min(s; t):

To de�ne a correlation between the stock price process, we assume there
is a standard Brownian motion Z = (Z1; Z2) = (Z1(t); Z2(t))t�0 in the plane
and a real number � 2 ]�1; 1[ such that�

W1(t) = Z1(t)

W2(t) = �Z1(t) +
p
1� �2Z2(t):

Under all these assumptions the joint stock price process S = (S1(t); S2(t))t�0
is called a bivariate geometric Brownian motion with volatility (�1; �2) and
correlation �: If so, it is readily seen that the process (S2(t); S1(t))t�0 is a
bivariate geometric Brownian motion with volatility (�2; �1) and correlation
�:
In general, we do not have the mathematical machinery required to price

options on (S1; S2) but there are some important special cases, which may
be reduced to options on one stock by assuming appropriate conditions on
the payo¤.
Suppose g 2 P2 is positively homogenous of degree one, that is

g(�x1; �x2) = �g(x1; x2); � > 0
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and consider an option of European type on (S1; S2) with the payo¤

g(S1(T ); S2(T ))

at the termination date T . To �nd a natural price of this derivative we
take stock 2 as a numéraire and denominate the �rst stock in terms of the
chosen numéraire. In terms of the new numéraire stock 1 and 2 get the price
processes

S(t) =
S1(t)

S2(t)
; t � 0

and
B(t) = 1; t � 0:

respectively, and, in addition, the option pays f(S(T )) units of stock 2 at
the termination date T; where

f(x) = g(x; 1)

as
g(x1; x2) = x2g(

x1
x2
; 1):

Moreover, setting

�� =
q
�21 � 2��1�2 + �22

we have
S(t) = S(0)e(�1��2)t+��W�(t):

Here, in view of Theorem 6.1.1, the process

W�(t) =
1

��

n
(�1 � ��2)Z1(t)� �2

p
1� �2Z2(t)

o
; t � 0

is a standard Brownian motion in R. Thus we are in a Black-Schole like
model with interest rate zero and a natural price of the option at time t
equals v(t; S(t)) where

v(t; s) = E

�
f(se�

�2�
2
�+��

p
�G)

�
and � = T � t is the residual time: Thus in the original price unit the option
price at time t equals u(t; S1(t); S2(t)) with

u(t; s1; s2) = s2v(t;
s1
s2
):
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In particular, no bond is needed for the pricing of the option or, stated
otherwise, the option price is (explicitely) independent of the interest rate.
If t < T iterated di¤erentiation yields the following derivatives

@u

@s1
=
@v

@s
(t;
s1
s2
)

@2u

@s21
=
1

s2

@2v

@s2
(t;
s1
s2
)

@2u

@s1@s2
= �s1

s22

@2v

@s2
(t;
s1
s2
)

@u

@s2
= v(t;

s1
s2
)� s1

s2

@v

@s
(t;
s1
s2
)

@2u

@s22
=
s21
s32

@2v

@s2
(t;
s1
s2
)

and we conclude that

�21s
2
1

@2u

@s21
+ 2��1�2s1s2

@2u

@s1@s2
+ �22s

2
2

@2u

@s22

= s2�
2(
s1
s2
)2
@2v

@s2
(t;
s1
s2
):

In the limit case r = 0 the Black-Scholes di¤erential equation reduces to

@v

@t
+
�2

2
s2
@2v

@s2
= 0

and it follows that

@u

@t
+
1

2

�
�21s

2
1

@2u

@s21
+ 2��1�2s1s2

@2u

@s1@s2
+ �22s

2
2

@2u

@s22

�
= 0:

In addition
ujt=T = g:

The following example is due to Margrabe [MAR] :
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Example 6.1.1. Consider the option to change stock 2 for stock 1 at time
T: Now

g(x1; x2) = max(0; x1 � x2)

and
f(x) = max(0; x� 1):

Thus, t < T;
v(t; s) = s�(d1)� �(d2)

where

d1(s) =
ln s+

�2�
2
�

��
p
�

and

d2(s) =
ln s� �2�

2
�

��
p
�

:

At time t the option price equals u(t; S1(t); S2(t)), where

u(t; s1; s2) = s2v(t;
s1
s2
)

= s1�(d1(
s1
s2
))� s2�(d2(

s1
s2
)):

Example 6.1.2. Consider the European option on the maximum of the
prices of stock 1 and stock 2 at time T: Now

g(x1; x2) = max(x1; x2)

and, since
g(x1; x2) = x2 +max(0; x1 � x2)

we get
u(t; s1; s2) = s1�(d1(

s1
s2
)) + s2(1� �(d2(

s1
s2
)))

which reduces to

u(t; s1; s2) = s1�(d1(
s1
s2
)) + s2�(d1(

s2
s1
)):
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Example 6.1.3. Consider a European call on the US IBM stock with the
price process (U(t))t�0 in US dollars with the termination date T and the
strike price K Swedish crowns. We assume the Swedish market o¤ers a bond
with the price process

B = (B(0)ert)t�0

where r is the positive constant interest rate. If � = (�(t))t�0 is the exchange
rate Swedish crowns per US dollars, then at maturity the payo¤ is

(U(T )�(T )�K)+ Swedish crowns.

To price this contingent claim on the Swedish option market, we assume
(U; �) is a bivariate geometric Brownian motion with volatility (�U ; ��) and
correlation �. Thus, let

U(t) = U(0)e�U t+�UWU (t)

and
�(t) = �(0)e��t+��W�(t)

where �
WU(t) = Z1(t)

W�(t) = �Z1(t) +
p
1� �2Z2(t)

and �U ; �� 2 R; �U ; �� > 0 � 2 ]�1; 1[ : Here as above Z = (Z1; Z2) is a
standard Brownian motion in the plane.
The process

S(t) = U(t)�(t); t � 0
can be viewed as the price process of a traded Swedish security and

S(t) = S(0)e(�U+��)t+�+W+(t)

where
W+(t) =

1

�

n
(�U + ���)Z1(t) +

p
1� �2��Z2(t)

o
and

�+ =
q
�U 2 + 2��U�� + �2� :

Now since (W+(t))t�0 is a standard Brownian motion, the Black Scholes call
price applies and, if the residual time � = T � t > 0; we get the following
option price in Swedish crowns, namely

U(t)�(t)�(d1)�Ke�r��(d2)
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where

d1 =
ln U(t)�(t)

K
+ (r +

�2+
2
)�

�+
p
�

and

d2 =
ln U(t)�(t)

K
+ (r � �2+

2
)�

�+
p
�

:

To check the price let us consider a European exchange option on the US
option market paying the amount

(U(T )� K

B(T )
B(T )=�(T )) US dollars

at the termination date T: Here the process

(
K

B(T )
B(t)=�(t))t�0

can be viewed as the price process of a traded US security. Still assuming that
(U; �) is a bivariate geometric Brownian motion with volatility � = (�S; ��)
and correlation �; (U; 1=�) is a bivariate geometric Brownian motion with
volatility (�S; ��) and correlation ��: Thus at time t < T; Example 6.1.2
says that the price in US dollars of the contract equals

U(t)�(
1

�+
p
�
(ln

U(t)
K
B(T )

B(t)=�(t)
+
�2+
2
�))

� K

B(T )
B(t)��1(t)�(

1

�+
p
�
(ln

U(t)
K
B(T )

B(t)=�(t)
�
�2+
2
�)):

Finally, multiplying this expression by �(t) to obtain the option price in
Swedish crowns at time t; after some simpli�cations, we get the same price
as above.
If U is as above, a contingent claim of European type which pays the

amount
Y = max(0; U(T )�K)

Swedish crowns at the termination date T cannot be handled by the methods
in these lecture notes.

Exercises
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1. Suppose G1; G2 2 N(0; 1) are independent and set�
X1 X2

�
=
�
G1 G2

�� 1 2
1 1

�
and �

Y1 Y2
�
=
�
G1 G2

�� p
2 3=

p
2

0 1=
p
2

�
:

Show that the processes (Xk)
2
k=1 and (Yk)

2
k=1 are equivalent in distrib-

ution.

2. Suppose g 2 P2 is positively homogeneous of degree one and consider
a derivative of European type with the payo¤

Y = g(S1(T ); S2(T ))

at the termination date T; where the joint stock price process (S1; S2)
is a bivariate geometric Brownian motion. Show that

�Y (t) � g(S1(t); S2(t))

if g is convex.

3. Suppose Z = (Z1(t); Z2(t))t�0 is a standard Brownian motion in the
plane. Find

E
h
j Z1(t)� Z2(t) j e(Z1(t)+Z2(t))

2
i
if 0 � t < 1

4
:

(Answer: 2
q

t
�(1�4t) )

6.2 A single-period model with n+ 1 assets

Next we will give an introduction to the well knownMarkowitz mean-variance
approach to portfolio selection, which appeared in 1952. The presentation
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is rather brief and mainly serve as an example of an application of covari-
ance analysis and high-dimentional probability (for applications to real stock
market data, see e.g. [DGU ]).
Consider a so called single-period model with n+1 asset price processes.

The time set consists of the points t = 0 and t = T and the asset price
processes are denoted by

Si = (Si(t))t=0;T ; i = 1; :::; n; n+ 1:

As usual the return of the i:th asset is de�ned by

Ri =
Si(T )� Si(0)

Si(0)
; i = 1; :::; n; n+ 1:

Here the �rst n assets are risky and the (n + 1):th asset is a bond with the
corresponding return Rn+1 which is known at time 0: To emphasize that Rn+1
is deterministic we sometimes write Rn+1 = r:
Next we consider an investor with wealth K > 0 at time zero, who wants

to distribute this wealth among the n + 1 assets. To this end suppose the
amount �i is invested in the i:th asset at time zero so that

n+1X
i=1

�i = K:

The number of shares invested in the i:th asset is equal to

ai =
�i
Si(0)

; i = 1; :::; n; n+ 1

and the corresponding fractions of the capital invested in the assets are given
by the quantities

�i =
�i
K
=
aiSi(0)

K
; i = 1; :::; n; n+ 1:

Note that
n+1X
i=1

�i = 1:

Now if V (t) denotes the portfolio value at time t it follows that

V (0) = K =

n+1X
i=1

aiSi(0)
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and

V (T ) =
n+1X
i=1

aiSi(T ):

As
Si(T ) = Si(0)(1 +Ri); i = 1; :::; n; n+ 1

the return of the portfolio equals

R =
V (T )� V (0)

V (0)
=

n+1X
i=1

aiSi(0)

K
Ri

and

R =
n+1X
i=1

�iRi:

Moreover,

E [R] =
n+1X
i=1

�iE [Ri]

and, since Rn+1 = r = E [Rn+1] ;

R� E [R] =
n+1X
i=1

�i(Ri � E [Ri]) =
nX
i=1

�i(Ri � E [Ri]):

Thus, with
�i = E [Ri] ; i = 1; :::; n

we have

Var(R) =
nX

i;j=1

�i�jE
�
(Ri � �i)(Rj � �j)

�
or

Var(R) =
nX

i;j=1

�i�jcij

where
C = (cij)1�i;j�n = (Cov(Ri; Rj))1�i;j�n:

Note that C = C|; that is, the matrix C is symmetric. Throughout this
chapter it will be assumed that the covariance matrix C is invertible and we
write

C�1 = (c�1ij )1�i;j�n:
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In the so called mean-variance approach to portfolio selections in the
above single-period model it is optimal to maximize the function

f(�1; :::; �n+1) = E [R]� �Var(R)

under the constraint
n+1X
i=1

�i = 1

where � is a strictly positive constant, which quanti�es the risk aversion of
the investor. Solving for �n+1 the investor will maximize the function

g(�1; :::; �n) =def f(�1; :::; �n; 1�
nX
i=1

�i)

= r +
nX
i=1

�i(�i � r)� �
nX

i;j=1

�i�jcij

over all reals �1; :::; �n: It is customary to introduce


 = 1� 2�

so that 
 < 1 and, hence
g(�1; :::; �n)

= r +
nX
i=1

�i(�i � r)�
1� 

2

nX
i;j=1

�i�jcij:

As
@g

@�i
= �i � r � (1� 
)

nX
j=1

�jcij; i = 1; :::; n

the equations
@g

@�i
= 0; i = 1; :::; n

yield 24 �1:
�n

35 = C�1

1� 


24 �1 � r:
�n � r

35 :
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It turns out that this necessary condition for a maximum is also a su¢ cient
condition. In fact, introduce24 �̂1:

�̂n

35 =def C�1

1� 


24 �1 � r:
�n � r

35
and let

g(�1; :::; �n) = g(�̂1 + (�1 � �̂1); :::; �̂n + (�n � �̂n))

= a+
nX
1

bi(�i � �̂i)�
1� 

2

nX
i;j=1

(�i � �̂i)(�j � �̂j)cij

for appropriate real numbers a; b1; :::; bn: Here, clearly

a = g(�̂1; :::; �̂n)

and

bi =
@g

@�i
(�̂1; :::; �̂n); i = 1; ::; n:

Thus b1 = ::: = bn = 0 and we get

g(�1; :::; �n) � g(�̂1; :::; �̂n)

since
nX

i;j=1

(�i � �̂i)(�j � �̂j)cij = Var(
nX
i=1

(�i � �̂i)Ri) � 0:

Next let

�̂0 =

24 �̂1:
�̂n

35 ;
� =

24 �1:
�n

35
and introduce the following n by 1 matrix

1n =

24 1:
1

35 :
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From now on we assume
1|n�̂

0 6= 0:
Stated otherwise, as

�̂0 =
C�1

1� 
 (�� r1n)

we assume
� =def 1

|
nC

�1(�� r1n) 6= 0
or

r 6= 1|nC
�1�

1|nC�11n
:

De�nition 6.2.1. The Markowitz portfolio �M is an n + 1 by 1 matrix,
where the last row is zero and the remaining �rst rows are given by the n by
1 matrix 1

�
C�1(�� r1n): The latter matrix is denoted by �0M : Thus

�0M =
1

�
C�1(�� r1n):

Note that the vector �0M satis�es the equation (�0M)
|1n = 1:

Theorem 6.2.1. (Tobin�s Mutual Fund Theorem) The optimal portfo-
lio

�̂ =def

2664
�̂1
:
�̂n
�̂n+1

3775
is given by the equation

�̂ =
1

1� 


2664
Pn

j=1 c
�1
1j (�j � r)
:Pn

j=1 c
�1
nj (�j � r)
0

3775+
2664

0
:
0

1�
Pn

i=1 �̂i

3775
=

� �
1�
�

0
M

1� 1
1�
1nC

�1(�� r1n)

�
:
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The mutual fund theorem implies that regardless of the risk aversion
parameter � the investor will mix the Markowitz portfolio and the bond in
appropriate proportions to get the optimal portfolio selection.

Example 6.2.1. (The Capital Asset Pricing Model (CAPM)) Let

RM = (�M)
|

24 R1
:

Rn+1

35 = (�0M)|
24 R1:
Rn

35
be the return of the Markowitz portfolio. Solving for � in the de�nition of
�0M in De�nition 6.2.1 yields

� = �C�0M + r1n

and we have
�M =def E [RM ] = (�

0
M)

|�

= (�0M)
|(�C�0M + r1n) = �Var(RM) + r:

Moreover, if e1; :::; en denotes the standard basis in Rn (= the space of all n
by 1 matrices with real entries),

�i = e
|
i � = e

|
i (�C�

0
M + r1n)

= �e|iC�
0
M + r = �Cov(Ri; RM) + r; i = 1; :::; n:

Hence
Cov(Ri; RM)
Var(RM)

=
�i � r
�M � r

; i = 1; :::; n

or

�i � r =
Cov(Ri; RM)
Var(RM)

(�M � r); i = 1; :::; n:

Now de�ning

�i =
Cov(Ri; RM)
Var(RM)

; i = 1; :::; n



135

we have the remarkable relations

�i � r = �i(�M � r); i = 1; :::; n

and, in particular,

�̂0 =

24 �̂1:
�̂n

35 = �M � r
1� 
 C

�1

24 �1:
�n

35 :

Exercises

1. Prove that �̂0 ! 0 as 
 # �1:

2. Let A be a symmetric invertible n by n matrix such that x|Ax � 0
if x is an n by 1 matrix. Prove that x|Ax > 0 if x 6= 0 (Hint: Write
A = P |DP; where P is an orthogonal matrix and D a diagonal matrix
possessing strictly positive diagonal entries.)

3. Compute the standard variation
q
Var(R̂) of the optimal return R̂ =Pn+1

i=1 �̂iRi: Simplify the answer for n = 1:

6.3 Two continuous time models

In this section we will consider n stock price processes

(Si(t))t�0; i = 1; :::; n

and one bond price process
B(t); t � 0

in continuous time. However, �rst it is in order to state some dei�nitions.
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A �nite number of n random vectors Xi = (Xi1; :::; Ximi
) = (Xik)

mi
i=1 in

Rmik ; i = 1; :::; n; are said to be independent if

E

"
nY
i=1

fi(Xi)

#
=

nY
i=1

E [fi(Xi)]

for all continuous functions fi :Rmi !R such that E [j fi(X) j] < 1 for
every i = 1; :::; n: Moreover, n stochastic processes Xi = (X(t))t2Ti ; i =
1; :::; n; are said to be independent if the processes (X(t))t2Ti0 are indepen-
dent for all �nite subsets T0i; i = 1; :::; n; of T:

De�nition 6.3.1. Let Wi(t); t � 0; i = 1; :::; n; be independent standard
Brownian motions and set

W (t) =

24 W1(t)
:

Wn(t)

35 ; t � 0:
The process W = (W (t))t�0 is called an n-dimensional standard Brownian
motion. Let � be an invertible n by n matrix with real entries and denote by
�i = [�i1:::�in] the i:th row of � and set j �i j=

p
�2i1 + :::+ �

2
in: Furthermore,

let � be an n by 1 matrix and denote by �i the i:th row of �:
(a) The model is said to be Brownian if

Si(t) = Si(0)(1 + �it+ �iW (t)); t � 0; i = 1; :::; n

and
B(t) = B(0)(1 + rt); t � 0

for an appropriate r > 0:
(b) The model is said to be log-Brownian if

Si(t) = Si(0)e
(�i� 1

2
j�ij2)t+�iW (t)); t � 0; i = 1; :::; n

and
B(t) = B(0)ert; t � 0

for an appropriate r > 0:
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The matrix � in De�nition 6.3.1 is called a volatility matrix.
Stock prices are hardly Brownian motions or log-Brownian motions but

such a picture may be of value locally in time. Stated more explicitly, if

0 < T1 < T2 < ::: < TN

and the mesh size max1�k�N(Tk � Tk�1) is su¢ ciently small it may be a
good approximation to assume that the stock prices are Brownian motions
or log-Brownian motions in each time interval [Tk�1; Tk] ; k = 1; :::; n:
Suppose the return of the bond during the period from t = Tk�1 to t = Tk

is known at time Tk�1 for k = 1; :::; N and introduce the stock returns in the
k:th period, namely

Rki =
Si(Tk)� Si(Tk�1)

Si(Tk�1)
; i = 1; :::; n:

An investor who applies the Markowitz theory in each period from t =
Tk�1 to t = Tk for k = 1; :::; N has the possibility to estimate the model
parameters in the k:th period immediately before this period starts. This is
a very natural approach as the volatility of stock prices often change from
one period to another. Note, however, that statistical estimates of the vector
parameter � have very big variances (cf Chapter 4, Section 2) and to evade
this problem is by no means simple.

Exercises

1. Consider the Markowitz single-period problem for Brownian asset prices.
Show that the Markowitz portfolio does not depend on the length T of
the period.

2. Let � and W (t); t � 0; be as in De�nition 6.3.1. Show that �i
j�ijW (t);

t � 0; is a standard Brownian motion for every i = 1; :::; n:

6.4 Problems with solutions
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1. Suppose Z = (Z1(t); Z2(t))t�0 is a standard Brownian motion in the plane.
Find

E
�
ejZ1(t)+Z2(t)j

�
:

Solution. The process X(t) = 1p
2
Z1(t) +

1p
2
Z2(t); t � 0; is a standard

Brownian motion since ( 1p
2
)2 + ( 1p

2
)2 = 1: Hence X(t) 2 N(0; t) and it

follows that

E
�
ejZ1(t)+Z2(t)j

�
= E

h
e
p
2jX(t)j

i
= E

h
e
p
2tjGj

i
where G 2 N(0; 1): Thus

E
�
ejZ1(t)+Z2(t)j

�
=

Z 1

�1
e
p
2tjxj�x2

2
dxp
2�
= 2

Z 0

�1
e�

p
2tx�x2

2
dxp
2�

= 2et
Z 0

�1
e�

1
2
(x+

p
2t)2 dxp

2�
= 2et

Z p
2t

�1
e�

1
2
x2 dxp

2�
= 2et�(

p
2t):

2. Suppose Z = (Z1(t); Z2(t))t�0 is a standard Brownian motion in the plane

and de�ne R(t) =j Z(t) j=
p
Z21(t) + Z

2
2(t); t � 0. Find E

h
e�R

2(t)
i
if t > 0

and � < 1
2t
:

Solution. Suppose t > 0; � < 1
2t
; and G 2 N(0; 1): Then

E
h
e�R

2(t)
i
= E

h
e�Z

2
1 (t)e�Z

2
2 (t)
i
= E

h
e�Z

2
1 (t)
i
E
h
e�Z

2
2 (t)
i

= (E
h
e�tG

2
i
)2

and setting � = �t;

E
h
e�G

2
i
=

Z 1

�1
e�x

2

e�
x2

2
dxp
2�

=

Z 1

�1
e�

x2

2
(1�2�) dxp

2�
=

Z 1

�1
e�

y2

2
dyp

2�(1� 2�)

=
1p
1� 2� :
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Hence,

E
h
e�R

2(t)
i
=

1

1� 2�t :

3. Let Z(t) = (Z1(t); Z2(t)); t � 0; be a standard Brownian motion in the
plane and suppose T > 0: Set U = e2Z1(T ) and V = eZ1(T )+Z2(2T ). (a) Find
E [U ] ; E [V ] ; Var(U); Var(V ); and Cov(U; V ): (b) Find an a 2 R such that
Var(U � aV ) � Var(U � xV ) for every x 2 R?

Solution. (a) In the following we will use that

a1Z1(t1) + a2Z2(t2) 2 N(0; a21t1 + a22t2)

for all a1; a2 2 R and t1; t2 � 0: Hence, if G 2 N(0; 1);
E [U ] = E

h
e2
p
TG
i
= e2T ;

E [V ] = E
h
e
p
3TG
i
= e

3
2
T ;

Var(U) = E [U2]� (E [U ])2 = E
h
e4
p
TG
i
� e4T = e8T � e4T ;

Var(V ) = E [V 2]� (E [V ])2 = E
h
e2
p
3TG
i
� e3T = e6T � e3T ;

Cov(U; V ) = E [UV ]� E [U ]E [V ] = E
h
e
p
11TG

i
� e2T e 32T = e 112 T � e 72T :

(b) Set U0 = U � E [U ] and V0 = V � E [V ] : We have

f(x) =def Var(U � xV ) = E
�
(U0 � xV0)2

�
= E

�
U0

2
�
� 2xE [U0V0] + x2E

�
V0
2
�

= (x
p
E [V02]�

E [U0V0]p
E [V02]

)2 + E
�
U0

2
�
� ( E [U0V0]p

E [V02]
)2:

Hence
min f = f(a)

where

a =
Cov(U; V )
Var(V )

=
e
11
2
T � e 72T

e6T � e3T
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=
e
5
2
T � e 12T
e3T � 1 =

e
1
2
T (eT + 1)

e2T + eT + 1
:

4. Let T > 0 and consider two stock price processes�
S1(t) = S1(0)e

�1t+�1W1(t); 0 � t � T
S2(t) = S2(0)e

�2t+�2W2(t); 0 � t � T
governed by a bivariate geometric Brownian motion with correlation para-
meter � 2 ]�1; 1[ : A portfolio is long 1000 shares of the �rst stock and short
1000S1(0)
S2(0)

shares of the second stock. Consequently, the corresponding portfo-
lio A is of value zero at time zero, that is VA(0) = 0: Find P [VA(T ) > 0] ;
E [VA(T )] ; and E [(VA(T ))2] :

Solution. We have

VA(T ) = K(e
�1T+�1W1(T ) � e�2T+�2W2(T ))

where K = 1000S1(0): Hence

P [VA(T ) > 0] = P
�
e�1T+�1W1(T ) > e�2T+�2W2(T )

�
= P [�1W1(T )� �2W2(T ) > (�2 � �1)T ] :

Set X� = �1W1(T )� �2W2(T ) 2 N(0; �2�T ); where
�2�T =def E

�
(�1W1(T )� �2W2(T ))

2
�
= (�21 � 2��1�2 + �22)T:

Now

P [VA(T ) > 0] = �(
(�2 � �1)

p
Tp

�21 � 2��1�2 + �22
):

Moreover, if G 2 N(0; 1);

E
�
e�G
�
= e

�2

2 ; � 2 R
and it follows that

E [VA(T )] = K(e
(�1+

1
2
�21)T � e(�2+ 1

2
�22)T )

and
E
�
(VA(T ))

2
�

= K2E
�
e2�1T+2�1W1(T ) � 2e(�1+�2)T+�1W1(T )+�2W2(T ) + e2�2T+2�2W2(T )

�
= K2(e2(�1+�

2
1)T � 2e(�1+�2+ 1

2
�21+��1�2+

1
2
�22)T + e2(�2+�

2
2)T ):
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CHAPTER 7

Dividend-Paying Stocks

Introduction

Suppose a stock has the price process S = (S(t))t�0 and pays the dividend
D > 0 at time t�: We have the convention that S(t��) and S(t�+) exist,
S(t�) = S(t�+) and

S(t��)� S(t�) = D:
In particular, the process S is no longer continuous and the Black-Scholes
option pricing must be modi�ed, which is the subject of this chapter. Clearly,
dividends are something very important and quantitative analysts spend lots
of time to price options on dividend-paying stocks.

7.1 A Seek for Portfolios with a Geometric Brownian Motion Dy-
namics

Consider a European derivative on S with the payo¤ g(S(T )) at the termi-
nation date T and, in addition, suppose g 2 P : First suppose there is only
one dividend during the life time of the option and this occurs at time t�:
Moreover, assume S is a geometric Brownian motion restricted to the time
interval [t�; T ] and denote the corresponding volatility by �: Let t < t� be
the present date. We then try to �nd a portfolio A containing only the stock
and bond such that process

S�(�) =

�
VA(�); t � � < t�
S(�); t� � � � T

is governed by a geometric Brownian motion with volatility �: In particular,

VA(t
��) = S(t�):
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By selling the portfolio A immediately before time t� and using the payment
obtained to buy the stock at time t� when the dividend is detached, the
process (S�(�)) t���T can be viewed as the price process of a traded security.
Therefore, as g(S(T )) = g(S�(T )); it is natural to de�ne

�g(S(T ))(t) = e
�r�E

h
g(s�e(r�

�2

2
)�+�

p
�G)
i
js�=S�(t)

Here, as usual, � = T � t.
First assume the dividend paid equals

D = �S(t��)

where � 2 ]0; 1[ is a real number known at time t:To determine the portfolio
A suppose S is governed by a geometric Brownian motion with volatility �
before time t�: If A as a portfolio containing (1� �) units of the stock, it is
natural to assume that S� is a geometric Brownian motion with volatility �
and

�g(S(T ))(t) = e
�r�E

h
g((1� �)se(r��2

2
)�+�

p
�G
i
js=S(t)

; t < t�:

Consequently, a dividend in terms of fractions of the stock price is very simple
to handle.
Next suppose the dividend paid at time t� is a �xed amount D in Swedish

crowns. To handle this case we assume that the process

S(�)�Der(��t�); t � � � t�

is a geometric Brownian motion with volatility � and letA be a portfolio con-
sisting of a stock and a short position in the bond corresponding to D=B(t�)
units. Now

s� = S(t)�Der(t�t�)

and assuming that S� is a geometric Brownian motion with volatility �,

�g(S(T ))(t) = e
�r�E

h
g((s�Der(t�t�))e(r��2

2
)�+�

p
�G
i
js=S(t)

To �nd an approximate option price based on the binomial approximation
at time t; de�ne h = �=N ,

tn = t+ nh; n = 0; 1; :::; N
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and

vNj = g(s
�e(N�2j)�

p
h); j = 0; 1; :::; N :

Next at the times tn; n = N�1; N�2; ::::; 1; 0; we compute the corresponding
option prices

vnj = e
�rh(quv

n+1
j + qdv

n+1
j+1 )

for j = 0; 1; :::; n, where

qu = 1� qd =
erh � e��

p
h

e�
p
h � e��

p
h
:

The quantity v00 approximates �g(S(T ))(t).
The price of the corresponding American option has not been de�ned in

this text but intuition leads us to the following algorithm. First let gnj =for

j = 0; 1; :::; n and, as above, let vNj = g(s�e
(N�2j)�

p
h); j = 0; 1; :::; N : Next

at the times tn; n = N � 1; N � 2; ::::; 1; 0; we compute the corresponding
option prices

vnj = max(g
n
j ; e

�rh(pvn+1j + qvn+1j+1 ))

for j = 0; 1; :::; n: Finally, the quantity v00 approximates the American option
price at time t:
Finally, in this chapter we will discuss two qualitative properties of dividend-

paying American calls and puts.

Exercises

1. A forward starting European put on S has the payo¤

max(0; S(T0)� S(T ))

at the termination date T: Suppose T0 < t� < T , 0 < � < 1; and that
the stock pays the dividend �S(t��) at time t�: Find the call price for
t < t�:

2. A European derivative on S has the payo¤ max(S(T ); K) at the ter-
mination time T: The stock pays the dividend D at time t�; where D
is a known amount at time t < t�: Find the price of the derivative at
time t:
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3. A European derivative on S has the payo¤ g(S(T )) at maturity T;
where g 2 P :
(a) Suppose there are times t < t1 < ::: < tn < T and, at each tk;
the dividend paid is �S(tk�): Moreover, let A be a dynamic portfolio
with exactly (1 � �)k units of the stock in the interval [tn�k; tn�k+1[ ;
k = 0; 1; :::; n; where t0 = t and tn+1 = T: Suppose the portfolio process
(VA(�))t���T is a geometric Brownian motion with volatility �. Moti-
vate the following de�nition, namely

�g(S(T ))(t) = e
�r�E

h
g((1� �)nse(r��2

2
)�+�

p
�G)
i
js=S(t)

:

(b) Suppose � > 0 and that the dividend paid in the interval [t; t+ dt[
equals �S(t)dt for each t: Suppose the stock price is governed by a
geometric Brownian motion with volatility �: Motivate the following
de�nition, namely

v(t; s) = e�r�E
h
g(se(r���

�2

2
)�+�

p
�G)
i

4. Suppose the dividend paid at time t� is a �xed amount D in Swedish
crowns and assume, in contrast to the assumptions above, that the
process

S�(�) =

�
S(�); t � � < t�

S(�) +Der(��t
�); t� � � � T

is a geometric Brownian motion with volatility �: Find the price of a
call on S with strike K and termination date T:

7.2 A Property of the American Call when the underlying pays
a dividend

Consider an American call on S with strike K and time of maturity T , let
t < t1 < t

� < T and suppose the stock pays the dividendD in Swedish crowns
at time t�: Only assuming the dominance principle in Chapter 1, we claim
that it is not optimal to exercise the option in the interval [t; t1] : Indeed, if
t1 < t2 < t

�;
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C(t2; S(t2); K; T ) � S(t2)�K

or

C(t2; S(t2); K; T ) � S(t2)�
K

B(t2)
B(t2)

and an application of the dominance principle yields

C(�; S(�); K; T ) � S(�)� K

B(t2)
B(�) > S(�)�K if � � t1:

However, in some cases it is optimal to exercise the call immediately before
the dividend is detached.
Since it is not optimal to exercise the option in the interval [t�; T [,

C(t�; S(t�); K; T ) = c(t�; S(t�); K; T ):

The exercise value at time t�� equals

S(t��)�K

and, accordingly from this,

C(t��; S(t��); K; T ) = max(S(t��)�K; c(t�; S(t�); K; T ))

or, since S(t��) = S(t�) +D;

C(t��; S(t��); K; T ) = max(S(t�)� (K �D); c(t�; S(t�); K; T )):

Now we assume the stock price is governed by a geometric Brownian
motion with volatility � in the time interval [t�; T ] and recall that

@c

@s
= �(d1) < 1:

Therefore there is at most one positive number sC such that

S(t�)� (K �D) > c(t�; S(t�); K; T )) if S(t�) > sC

and
S(t�)� (K �D) < c(t�; S(t�); K; T )) if S(t�) < sC :



146

If such a number sC exists and

S(t��) > sC +D

it is optimal to exercise the option at time t� � : On the other hand, if
� � = T � t� and

D � K(1� e�r��)

it is not optimal to exercise the option at time t�� regardless of the value on
S(t��). To see this, we observe that

S(t�)� (K �D) � S(t�)�Ke�r��

and

c(t�; S(t�); K;T )) = e�r�
�
E
h
max(0; se(r�

�2

2
)��+�

p
�G �K)

i
js=S(t�)

= E
h
max(0; se�

�2

2
��+�

p
�G � e�r��K)

i
js=S(t�)

=

Z 1

�1
max(0; S(t�)e�

�2

2
��+�

p
�x � e�r��K)'(x)dx

>

Z 1

�1
(S(t�)e�

�2

2
��+�

p
�x � e�r��K)'(x)dx

= S(t�)�Ke�r�� :

Thus
c(t�; S(t�); K;T )) > S(t�)� (K �D):

7.3 A Property of the American Put when the underlying pays
a dividend

Consider an American put on S with strike K and time of maturity T and
suppose the stock pays the dividend D in Swedish crowns at time t�; where
t� < T: The dividend D is known at time t0; where t0 < t�. If

D � K(er(t��t0) � 1)
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we claim that it is not optimal to exercise the put in the time interval ]t0; t�[.
It is enough to prove that P (t; S(t); K; T ) > K � S(t) if t 2 ]t0; t�[ : In fact,
if t 2 ]t0; t�[ and P (t; S(t); K; T ) = K � S(t), let A be a portfolio consisting
of long positions in the American put and the stock, and a short position in
the bond corresponding to �K=B(t) units. Then

VA(t) = (K � S(t)) + S(t)�K = 0:

However,

VA(t
�) = D + P (t�; S(t�); K; T ) + S(t�)� K

B(t)
B(t�)

� D + (K � S(t�)) + S(t�)� K

B(t)
B(t�)

= D +K � K

B(t)
B(t�)

= D +K(1� er(t��t)) > D +K(1� er(t��t0)) � 0
which contradicts (a slightly more general version of) the dominance principle
(than we stated in Chapter 1). Hence P (t; S(t); K;T ) > K � S(t) and it is
not optimal to exercise the American put in the time interval ]t0; t�[ :

Problems with solutions

1. (Black-Scholes model) Suppose 0 < T0 < t� < T and 0 < � < 1 and
consider a derivative of European type with the payo¤

Y =j S(T )� S(T0) j

at time of maturity T: Find �Y (0) if the stock pays the dividend �S(T0) at
time t�:

Solution. First note that

Y = 2(S(T )� S(T0))+ � S(T ) + S(T0):
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If s0 = S(T0) and

g(x) = 2(x� s0)+ � x+ s0

then

�Y (T0) = �g(S(T ))(T0)

= e�r(T�T0)E
h
g((s0 � �s0e�r(t

��T0))e(r�
�2

2
)(T�T0)+�

p
T�T0G)

i
= e�r(T�T0)E

h
g((s0(1� �e�r(t

��T0))e(r�
�2

2
)(T�T0)+�

p
T�T0G)

i
where G 2 N(0; 1): Hence

�Y (T0) = 2c(T0; s0(1� �e�r(t
��T0)); s0; T )� s0(1� �e�r(t

��T0)) + s0e
�r(T�T0)

and we get

�Y (T0) = S(T0)
�
(1� �e�r(t��T0))A� e�r(T�T0)B � 1 + �e�r(t��T0) + e�r(T�T0)

	
where

A = 2�(
ln(1� �e�r(t��T0)) + (r + �2

2
)(T � T0)

�
p
T � T0

)

and

B = 2�(
ln(1� �e�r(t��T0)) + (r � �2

2
)(T � T0)

�
p
T � T0

):

Since A and B are independent of S(T0) we conclude that

�Y (0) = S(0)
�
(1� �e�r(t��T0))A� e�r(T�T0)B � 1 + �e�r(t��T0) + e�r(T�T0)

	
:
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