OPTIONS AND MATHEMATICS (CTH[*mve*095], GU[*MMA*700]) **ASSIGNMENTS 2013**

(must be handed in at the latest Thursday, April 25, 2013 at 15^{00})

1. (Dominance principle) Suppose K, T > 0 and the prices $S(0), c(0, S(0), \frac{K}{2}, T), c(0, S(0), K, T)$, and $c(0, S(0), \frac{3K}{2}, T)$ are known. Find the time zero price of a European-style derivative paying

$$Y = \max(0, \frac{1}{2}K - |S(T) - K|)$$

at the termination date T.

2. (Multi-period binomial model, d < r < u) Suppose α is a real number. A financial European-style derivative has the payoff

$$Y = S(T)^{\alpha}$$

at time of maturity T. (a) Find $\Pi_Y(t)$ for t = 0, ..., T - 1. (b) The portfolio strategy h replicates Y. Find $h(0) = (h_S(0), h_B(0))$.

3. Suppose A and B are finite unions of subintervals of the real line and let X and Y be a random variables. Show that the random variables $1_A(X)$ and $1_B(Y)$ are positively correlated if and only if the random variables $1_{A^c}(X)$ and $1_{B^c}(Y)$ are positively correlated.

4. Suppose $D = \{(x, y); 0 < x < 1 \text{ and } y > 0\}$ and let (X, Y) be a random vector in the plane with the density function

$$f(x,y) = 1_D(x,y)(3x^2y+1)e^{-y}/2$$

For which real t is the variance Var(X - tY) minimal?

5. Suppose $X, Y \in N(0, 1)$ are independent. Find the characteristic function of the random variable X(Y + 1).