SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
May 21, 2012, morning, v.
No aids.
Each problem is worth 3 points.
Examiner: Christer Borell, telephone number 0705292322

1. (Binomial model) Suppose $T=2, e^{r}=\frac{1}{2}\left(e^{u}+e^{d}\right)$, and $B(2)=1$. A derivative of European type pays the amount

$$
Y=\left|\frac{S(2)}{S(1)}-\frac{S(1)}{S(0)}\right|
$$

at time of maturity T and the self-financing portfolio strategy $h(t)=\left(h_{S}(t), h_{B}(t)\right)$, $t=0,1,2$, replicates Y. Find $q_{u}, h_{S}(1)$, and $h_{B}(2 ; d)$.

Do not hand in any motivations of the answers!

Answer: $q_{u}=\frac{1}{2}, h_{S}(1)=0$, and $h_{B}(2 ; d)=-e^{d}$.

Solution. Computation of q_{u}. We have that

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=\frac{\frac{1}{2}\left(e^{u}+e^{d}\right)-e^{d}}{e^{u}-e^{d}}=\frac{1}{2} .
$$

Computation of $h_{S}(1)$. Set $\Pi_{Y}(t)=v(t)$. Then

$$
\left\{\begin{array}{c}
v(2)_{\mid X_{1}=u, X_{2}=u}=0 \\
v(2)_{\mid X_{1}=u, X_{2}=d}=e^{u}-e^{d} \\
v(2)_{\mid X_{1}=d, X_{2}=u}=e^{u}-e^{d} \\
v(2)_{\mid X_{1}=d, X_{2}=d}=0
\end{array}\right.
$$

and it follows that $v(1)=\frac{1}{2} e^{-r}\left(e^{u}-e^{d}\right)$. Thus $h_{S}(1)=0$.

Computation of $h_{B}(2 ; d)$. For short, set $\kappa_{S}=h_{S}(2 ; d)$ and $\kappa_{B}=h_{B}(2 ; d)$. Now

$$
\left\{\begin{array}{c}
\kappa_{S} S(0) e^{d} e^{u}+\kappa_{B} B(0) e^{r} e^{r}=e^{u}-e^{d} \\
\kappa_{S} S(0) e^{d} e^{d}+\kappa_{B} B(0) e^{r} e^{r}=0
\end{array}\right.
$$

and

$$
\kappa_{B}=h_{B}(2 ; d)=-\frac{e^{d}}{B(0) e^{2 r}}=-e^{d}
$$

2. (Black-Scholes model) Suppose $K, T>0$ are constants. A financial derivative of European type has the payoff

$$
Y=\left\{\begin{array}{c}
1 \text { if } S(T)>K, \\
-1 \text { if } S(T) \leq K,
\end{array}\right.
$$

at time of maturity T. Determine K such that $\Pi_{Y}(0)=0$.

Solution. Put

$$
g(x)=\left\{\begin{array}{c}
1 \text { if } x>K \\
-1 \text { if } x \leq K
\end{array}\right.
$$

and note that $Y=g(S(T))$. Now

$$
\Pi_{Y}(0)=e^{-r T} E\left[g\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} G}\right)\right]
$$

where $s=S(0)$ and $G \in N(0,1)$ and, hence,

$$
\begin{aligned}
\Pi_{Y}(0)=e^{-r T} & \left(P\left[s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} G}>K\right]-P\left[s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} G} \leq K\right]\right) \\
& =e^{-r T}\left(2 P\left[s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma \sqrt{T} G}>K\right]-1\right) \\
& =e^{-r T}\left(2 P\left[s e^{\left(r-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} G}>K\right]-1\right) \\
= & e^{-r T}\left(2 P\left[G \leq \frac{1}{\sigma \sqrt{T}}\left(\ln \frac{s}{K}+\left(r-\frac{\sigma^{2}}{2}\right) T\right)\right]-1\right) \\
= & e^{-r T}\left(2 \Phi\left(\frac{1}{\sigma \sqrt{T}}\left(\ln \frac{s}{K}+\left(r-\frac{\sigma^{2}}{2}\right) T\right)\right)-1\right)
\end{aligned}
$$

Accordingly from this, $\Pi_{Y}(0)=0$ if and only if

$$
\ln \frac{s}{K}+\left(r-\frac{\sigma^{2}}{2}\right) T=0
$$

that is,

$$
K=S(0) e^{\left(r-\frac{\sigma^{2}}{2}\right) T}
$$

3. (Black-Scholes model) Suppose $T>0$. A financial derivative of European type pays the amount

$$
Y=\max \left(\frac{S\left(\frac{T}{2}\right)}{S(0)}, \frac{S(T)}{S\left(\frac{T}{2}\right)}\right)
$$

at time of maturity T. Find $\Pi_{Y}(0)$.

Proof. Put $S(0)=s$ and $a=\frac{T}{2}$. We have

$$
\begin{gathered}
\Pi_{Y}(0)=e^{-r T} E\left[\max \left(\frac{s e^{\left(r-\frac{\sigma^{2}}{2}\right) a+\sigma W(a)}}{s}, \frac{s e^{\left(r-\frac{\sigma^{2}}{2}\right) T+\sigma W(T)}}{\left.s e^{\left(r-\frac{\sigma^{2}}{2}\right) a+\sigma W(a)}\right)}\right)\right] \\
=e^{-r T} E\left[\max \left(e^{\left(r-\frac{\sigma^{2}}{2}\right) a+\sigma W(a)}, e^{\left(r-\frac{\sigma^{2}}{2}\right) a+\sigma(W(T)-W(a))}\right)\right] \\
=e^{-\left(r+\frac{\sigma^{2}}{2}\right) a} E\left[\max \left(e^{\sigma \sqrt{a} G}, e^{\sigma \sqrt{a} H}\right)\right] \\
=e^{-\left(r+\frac{\sigma^{2}}{2}\right) a} E\left[e^{\sigma \sqrt{a} \max (G, H)}\right]
\end{gathered}
$$

where $G, H \in N(0,1)$ are independent. Moreover,

$$
\begin{gathered}
P[\max (G, H) \leq x]=P[G \leq x, H \leq x] \\
\quad=P[G \leq x] P[H \leq x]=\Phi^{2}(x) .
\end{gathered}
$$

Hence

$$
\begin{gathered}
E\left[e^{\sigma \sqrt{a} \max (G, H)}\right]=\int_{-\infty}^{\infty} e^{\sigma \sqrt{a} x} \frac{d}{d x} \Phi^{2}(x) d x \\
=2 \int_{-\infty}^{\infty} e^{\sigma \sqrt{a} x} \Phi(x) \varphi(x) d x .
\end{gathered}
$$

Now introduce $b=\sigma \sqrt{a}$ and note that

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{b x} \Phi(x) \varphi(x) d x=e^{\frac{b^{2}}{2}} \int_{-\infty}^{\infty} \Phi(x) \varphi(x-b) d x \\
=e^{\frac{b^{2}}{2}} \int_{-\infty}^{\infty} \Phi(b-x) \varphi(x) d x
\end{gathered}
$$

But

$$
\int_{-\infty}^{\infty} \varphi(y-x) \varphi(x) d x=\frac{1}{\sqrt{2}} \varphi\left(\frac{y}{\sqrt{2}}\right)
$$

since $G+H \in N(0,2)$ and by integration from $y=-\infty$ to $y=b$ we get

$$
\int_{-\infty}^{\infty} \Phi(b-x) \varphi(x) d x=\int_{-\infty}^{b} \frac{1}{\sqrt{2}} \varphi\left(\frac{y}{\sqrt{2}}\right) d y=\Phi\left(\frac{b}{\sqrt{2}}\right) .
$$

Hence

$$
\int_{-\infty}^{\infty} e^{b x} \Phi(x) \varphi(x) d x=e^{\frac{b^{2}}{2}} \Phi\left(\frac{b}{\sqrt{2}}\right)
$$

and

$$
\begin{aligned}
\Pi_{Y}(0) & =2 e^{-\left(r+\frac{\sigma^{2}}{2}\right) a} e^{\frac{\sigma^{2} a}{2}} \Phi\left(\frac{\sigma \sqrt{a}}{\sqrt{2}}\right) \\
& =2 e^{-\frac{r T}{2}} \Phi\left(\frac{\sigma \sqrt{T}}{2}\right)
\end{aligned}
$$

4. Let $\left(X_{n}\right)_{n=1}^{\infty}$ be an i.i.d. such that $P\left[X_{1}=1\right]=P\left[X_{1}=-1\right]=\frac{1}{2}$ and set

$$
Y_{n}=\frac{1}{\sqrt{n}}\left(X_{1}+\ldots+X_{n}\right), n \in \mathbf{N}_{+} .
$$

Prove that $Y_{n} \rightarrow G$, where $G \in N(0,1)$.
5. Consider two stock price processes $\left(S_{1}(t)\right)_{t \geq 0}$ and $\left(S_{2}(t)\right)_{t \geq 0}$ and suppose the stochastic process $S=\left(S_{1}(t), S_{2}(t)\right)_{t \geq 0}$ is a bivariate geometric Brownian motion with volatility $\left(\sigma_{1}, \sigma_{2}\right)$ and correlation ρ, where $\sigma_{1}, \sigma_{2}>0$ and $-1<$ $\rho<1$.
(a) Suppose $T>0$ and $Y=g\left(S_{1}(T), S_{2}(T)\right)$, where the payoff function $g \in \mathcal{P}_{2}$ is positively homogeneous of degree one.

For any fixed $t<T$, state the time t price $\Pi_{Y}(t)=u\left(t, S_{1}(t), S_{2}(t)\right)$ of a European derivative with payoff Y at time of maturity T. Do not hand in any motivations of the price formula!
(b) Find $\Pi_{Y}(t)$ if $t<T$ and $Y=\left(S_{1}(T)-S_{2}(T)\right)^{+}$.

