SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
September 1, 2012, morning, v.
No aids.
Each problem is worth 3 points.
Questions on the exam: Christer Borell 0705292322

1. (Binomial model with $T=2, u=-d>0$, and $\left.e^{r}=\frac{1}{2}\left(e^{u}+e^{d}\right)\right) \mathrm{A}$ derivative of European type pays the amount

$$
Y=\left|\frac{S(T)}{S(0)}-1\right|
$$

at time of maturity T. Find $\Pi_{Y}(0)$.

Solution. We have that

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=\frac{\frac{1}{2}\left(e^{u}+e^{d}\right)-e^{d}}{e^{u}-e^{d}}=\frac{1}{2}
$$

and if $v(t)=\Pi_{Y}(t)$,

$$
\left\{\begin{array}{c}
v(2)_{\mid X_{1}=u, X_{2}=u}=e^{2 u}-1 \\
v(2)_{\mid X_{1}=u, X_{2}=d}=0 \\
v(2)_{\mid X_{1}=d, X_{2}=u}=0 \\
v(2)_{\mid X_{1}=d, X_{2}=d}=1-e^{-2 u} .
\end{array}\right.
$$

Now

$$
\left\{\begin{array}{c}
v(1)_{\mid X_{1}=u}=\frac{e^{-r}}{2}\left(e^{2 u}-1\right) \\
v(1)_{\mid X_{1}=d}=\frac{e^{-r}}{2}\left(1-e^{-2 u}\right)
\end{array}\right.
$$

and

$$
\begin{aligned}
& \Pi_{Y}(0)=e^{-r}\left(\frac{e^{-r}}{4}\left(e^{2 u}-1\right)+\frac{e^{-r}}{4}\left(1-e^{-2 u}\right)\right) \\
= & \frac{e^{-2 r}}{4}\left(e^{2 u}-e^{-2 u}\right)=\frac{e^{2 u}-e^{-2 u}}{\left(e^{u}+e^{-u}\right)^{2}}=\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}} .
\end{aligned}
$$

2. Let $Z(t)=\left(Z_{1}(t), Z_{2}(t)\right), t \geq 0$, be a standard Brownian motion in the plane. Find

$$
\operatorname{Var}\left(e^{Z_{1}(t)}-e^{Z_{2}(t)}\right)
$$

Solution. The random variables $Z_{1}(t), Z_{2}(t) \in N(0, t)$ are independent and

$$
E\left[e^{a G}\right]=e^{\frac{a^{2}}{2}}
$$

if $G \in N(0,1)$ and $a \in \mathbf{R}$. Accordingly from these properties,

$$
E\left[e^{Z_{1}(t)}-e^{Z_{2}(t)}\right]=e^{\frac{t}{2}}-e^{\frac{t}{2}}=0
$$

and

$$
\begin{gathered}
E\left[\left(e^{Z_{1}(t)}-e^{Z_{2}(t)}\right)^{2}\right]=E\left[e^{2 Z_{1}(t)}\right]-2 E\left[e^{Z_{1}(t)} e^{Z_{2}(t)}\right]+E\left[e^{2 Z_{2}(t)}\right] \\
=2 e^{2 t}-2 E\left[e^{Z_{1}(t)}\right] E\left[e^{Z_{2}(t)}\right]=2 e^{2 t}-2 e^{t}
\end{gathered}
$$

The above formulas give

$$
\operatorname{Var}\left(e^{Z_{1}(t)}-e^{Z_{2}(t)}\right)=2 e^{t}\left(e^{t}-1\right)
$$

Alternative solution. Since $e^{Z_{1}(t)}$ and $-e^{Z_{2}(t)}$ are independent

$$
\begin{aligned}
& \operatorname{Var}\left(e^{Z_{1}(t)}-e^{Z_{2}(t)}\right)=\operatorname{Var}\left(e^{Z_{1}(t)}\right)+\operatorname{Var}\left(-e^{Z_{2}(t)}\right) \\
& =2 \operatorname{Var}\left(e^{Z_{1}(t)}\right)=2\left(E\left[e^{2 Z_{1}(t)}\right]-\left(E\left[e^{Z_{1}(t)}\right]\right)^{2}\right) \\
& =2 e^{2 t}-2 e^{t}=2 e^{t}\left(e^{t}-1\right)
\end{aligned}
$$

3. (Black-Scholes model) A stock price process $(S(t))_{t \geq 0}$ is governed by the equation

$$
S(t)=S(0) e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W(t)}, t \geq 0
$$

where $\mu>r$. If T and K denote strictly positive real numbers, show that

$$
E\left[(S(T)-K)^{+}\right]>e^{r T} c(0, S(0), K, T)
$$

Solution. If $a>0$ and

$$
f(x, a)=\left(S(0) e^{\left(a-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} x}-K\right)^{+}, x \in \mathbf{R}
$$

then

$$
E\left[(S(T)-K)^{+}\right]=\int_{-\infty}^{\infty} f(x, \mu) \varphi(x) d x
$$

and

$$
e^{r T} c(0, S(0), K, T)=\int_{-\infty}^{\infty} f(x, r) \varphi(x) d x
$$

Since $\mu>r$ we have $f(x, \mu) \geq f(x, r)$ with strict inequality if

$$
x<\frac{1}{\sigma \sqrt{T}}\left(\ln \frac{S(0)}{K}+\left(\mu-\frac{\sigma^{2}}{2}\right) T\right) .
$$

Hence

$$
\int_{-\infty}^{\infty} f(x, \mu) \varphi(x) d x>\int_{-\infty}^{\infty} f(x, r) \varphi(x) d x
$$

which proves that

$$
E\left[(S(T)-K)^{+}\right]>e^{r T} c(0, S(0), K, T)
$$

Alternative solution. For any strictly positive real number a the BlackScholes theory yields

$$
\begin{gathered}
f(a)={ }_{\text {def }} e^{-a T} \int_{-\infty}^{\infty}\left(S(0) e^{\left(a-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} x}-K\right)^{+} d x \\
=S(0) \Phi\left(d_{1}(a)\right)-K e^{-a T} \Phi\left(d_{2}(a)\right)
\end{gathered}
$$

where

$$
d_{1}(a)=\frac{\ln \frac{S(0)}{K}+\left(a+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}
$$

and

$$
d_{2}(a)=\frac{\ln \frac{S(0)}{K}+\left(a-\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}=d_{1}(a)-\sigma \sqrt{T} .
$$

Hence

$$
f^{\prime}(a)=S(0) \varphi\left(d_{1}(a)\right) \frac{1}{\sigma \sqrt{T}}-K e^{-a T} \varphi\left(d_{2}(a)\right) \frac{1}{\sigma \sqrt{T}}+K T e^{-a T} \Phi\left(d_{2}(a)\right) .
$$

But

$$
S(0) \varphi\left(d_{1}(a)\right)-K e^{-a T} \varphi\left(d_{2}(a)\right)=0
$$

(cf the proof of Theorem 5.3.1 in the textbook) and we get

$$
f^{\prime}(a)=K T e^{-a T} \Phi\left(d_{2}(a)\right) .
$$

Hence

$$
\frac{d}{d a}\left(e^{a T} f(a)\right)=T e^{a T} f(a)+K T \Phi\left(d_{2}(a)\right)>0
$$

and if $\mu>r$, we get

$$
E\left[(S(T)-K)^{+}\right]=e^{\mu T} f(\mu)>e^{r T} f(r)=e^{r T} c(0, S(0), K, T)
$$

4. (Dominance principle) Show that the map

$$
K \rightarrow c(t, S(t), K, T), K>0
$$

is convex.
5. (Black-Scholes model) Suppose K, T, and σ are strictly positive real numbers.
(a) Let $S=(S(t))_{t \geq 0}$ be a stock price process with volatility σ. State the price of a European call on S with maturity T and strike price K.
(b) Suppose the value of one US dollar at time t equals $\xi(t)$ Swedish crowns and that the price process $(\xi(t))_{0 \leq t \leq T}$ is a geometric Brownian motion with volatility σ. Moreover, denote by r_{f} and r the US and Swedish interest rates, respectively.

Consider the right but not the obligation to buy one US dollar at the price K Swedish crowns at time T. Use Part (a) to derive the price of this derivative at time t expressed in Swedish crowns.

