SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
January 19, 2013, morning V
No aids.
Each problem is worth 3 points.
Questions on the exam: Christer Borell 0705292322

1. (Dominance Principle) Consider a forward contract on S with delivery date T and denote by K the forward price $S_{\text {for }}^{T}(0)$ at time zero. A Europeanstyle call on S with strike price K and time of maturity T has the time zero price a crowns. Find the time zero price of a European-style put with strike price K and time of maturity T.

Solution. By the Put-Call Theorem

$$
S(0)-c(0, S(0), K, T)=K e^{-r T}-p(0, S(0), K, T)
$$

and

$$
K=S_{\text {for }}^{T}(0)=S(0) e^{r T}
$$

Now as

$$
c(0, S(0), K, T)=a
$$

we have

$$
p(0, S(0), K, T)=a
$$

2. (Black-Scholes model) Consider a European-style derivative paying the amount

$$
Y=\sqrt{S(T / 2) S(T)}
$$

at time of maturity T. Find $\Pi_{Y}(t)$ if $0 \leq t<T$.

Solution.

Case $T / 2 \leq t<T$. Let $\tau=T-t, s=S(t)$, and $G \in N(0,1)$. Since $a=S(T / 2)$ is known,

$$
\begin{gathered}
\Pi_{Y}(t)=e^{-r \tau} E\left[\left(\sqrt{a s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} G}}\right]\right. \\
=\sqrt{a s e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}} e^{-r \tau} E\left[e^{\frac{\sigma}{2} \sqrt{\tau} G}\right] \\
=\sqrt{a s} e^{\frac{1}{2}\left(r-\frac{\sigma^{2}}{2}\right) \tau-r \tau+\frac{\sigma^{2}}{8} \tau}=\sqrt{a s} e^{-\frac{1}{2} r \tau-\frac{\sigma^{2}}{8} \tau} \\
=b(t) \sqrt{S(t)}
\end{gathered}
$$

where

$$
b(t)=\sqrt{S(T / 2)} e^{-\left(\frac{1}{2} r+\frac{\sigma^{2}}{8}\right)(T-t)} .
$$

Case $0 \leq t<T / 2$. We have

$$
\Pi_{Y}(T / 2)=S(T / 2) e^{-\left(\frac{1}{4} r+\frac{\sigma^{2}}{16}\right) T}
$$

and, hence,

$$
\Pi_{Y}(t)=S(t) e^{-\left(\frac{1}{4} r+\frac{\sigma^{2}}{16}\right) T}
$$

3. Let $Z(t)=\left(Z_{1}(t), Z_{2}(t)\right), t \geq 0$, be a standard Brownian motion in the plane. Find

$$
\operatorname{Var}\left(\max \left(Z_{1}(t), Z_{2}(t)\right)\right)
$$

Solution. Set $X=\max \left(Z_{1}(t), Z_{2}(t)\right)$. Since $Z_{1}(0)=Z_{2}(0)=0, \operatorname{Var}(X)=0$ if $t=0$. Next assume $t>0$. The random variables $Z_{1}(t), Z_{2}(t) \in N(0, t)$ are independent and

$$
P[X \leq x]=P\left[Z_{1}(t) \leq x\right] P\left[Z_{2}(t) \leq x\right]=\Phi^{2}(x / \sqrt{t})
$$

Hence

$$
f_{X}(x)=2 \varphi(x / \sqrt{t}) \Phi(x / \sqrt{t}) / \sqrt{t}
$$

and

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=2 \sqrt{t} \int_{-\infty}^{\infty} x \varphi(x) \Phi(x) d x
$$

$$
\begin{gathered}
=2 \sqrt{t}\left\{[-\varphi(x) \Phi(x)]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} \varphi^{2}(x) d x\right\} \\
=2 \sqrt{t} \int_{-\infty}^{\infty} \varphi^{2}(x) d x \\
=2 \sqrt{t} \int_{-\infty}^{\infty} \varphi(\sqrt{2} x) d x / \sqrt{2 \pi}=\sqrt{t / \pi}
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
E\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=2 t \int_{-\infty}^{\infty} x^{2} \varphi(x) \Phi(x) d x \\
=2 t\left\{[-\varphi(x) x \Phi(x)]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} \varphi(x)(\Phi(x)+x \varphi(x)) d x\right\} \\
=2 t \int_{-\infty}^{\infty} \varphi(x)(\Phi(x)+x \varphi(x)) d x \\
=2 t \int_{-\infty}^{\infty} \varphi(x) \Phi(x) d x=t
\end{gathered}
$$

Thus

$$
\operatorname{Var}(X)=t\left(1-\frac{1}{\pi}\right)
$$

a formula which also holds if $t=0$.
4. Consider a single-period binomial model and assume $d<r<u$. A derivative pays the amount $Y=f(X)$ at time 1 , where $X=\ln (S(1) / S(0))$. Find a portfolio $h=\left(h_{S}, h_{B}\right)$ which replicates Y.
5. (Black-Scholes model) Suppose $0 \leq t<T<\infty$. A simple European-style derivative paying the amount $Y=g(S(T))$ at time of maturity T has the price $v(t, S(t))$ at time t, where

$$
v(t, s)=e^{-r(T-t)} E\left[g\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma \sqrt{T-t} G}\right)\right]
$$

and $G \in N(0,1)$. Find the time- t price of a European-style call with strike price K and time of maturity T.

