SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
May 27, 2013, morning, v
No aids.
Questions on the exam: Christer Borell, telephone number 0705292322 Each problem is worth 3 points.

1. (Binomial Model: $S(0)=B(0)=1, T=2, u=-d=\ln 2$, and $r=0)$. A European-style financial derivative pays the amount Y at time of maturity $T=2$, where

$$
Y=\left\{\begin{array}{c}
0 \text { if } S(0)=S(2), \\
S(1) \text { if } S(0) \neq S(2) .
\end{array}\right.
$$

(a) State the time zero price $\Pi_{Y}(0)$ of the derivative.
(b) The portfolio strategy h replicates Y. State $h(0)=\left(h_{S}(0), h_{B}(0)\right)$.
(Please, do not hand in any solutions, just answers!)

Solution. (a) We have

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}}=\frac{1}{3}
$$

and

$$
q_{d}=\frac{e^{u}-e^{r}}{e^{u}-e^{d}}=\frac{2}{3}
$$

Moreover, if $v(t)=\Pi_{Y}(t)$ and $s=S(0)$,

$$
\left\{\begin{array}{c}
v(2)_{\mid X_{1}=u, X_{2}=u}=s e^{u} \\
v(2)_{\mid X_{1}=u, X_{2}=d}=0 \\
v(2)_{\mid X_{1}=d, X_{2}=u}=0 \\
v(2)_{\mid X_{1}=d, X_{2}=d}=s e^{d}
\end{array}\right.
$$

and, hence,

$$
\left\{\begin{array}{l}
v(1)_{\mid X_{1}=u}=e^{-r} q_{u} s e^{u}=q_{u} s e^{u-r} \\
v(1)_{\mid X_{1}=d}=e^{-r} q_{d} s e^{d}=q_{d} s e^{d-r} .
\end{array}\right.
$$

Now

$$
\Pi_{Y}(0)=e^{-r}\left(q_{u}^{2} s e^{u-r}+q_{d}^{2} s e^{d-r}\right)=s e^{-2 r}\left(q_{u}^{2} e^{u}+q_{d}^{2} e^{d}\right)=\frac{4}{9} s=\frac{4}{9} .
$$

(c) We have

$$
\left\{\begin{array}{l}
h_{S}(0) s e^{u}+h_{B}(0) B(0) e^{r}=q_{u} s e^{u-r} \\
h_{S}(0) s e^{d}+h_{B}(0) B(0) e^{r}=q_{d} s e^{d-r}
\end{array}\right.
$$

Thus

$$
h_{S}(0)=e^{-r} \frac{q_{u} e^{u}-q_{d} e^{d}}{e^{u}-e^{d}}=\frac{2}{9}
$$

and

$$
h_{B}(0)=s \frac{e^{u+d-2 r}}{B(0)} \frac{q_{d}-q_{u}}{e^{u}-e^{d}}=\frac{2}{9} s=\frac{2}{9} .
$$

2. (Black-Scholes Model) A European-style financial derivative has at time zero the price a and pays the amount

$$
Y=\left\{\begin{array}{c}
a+\xi \text { if } S(T) \geq S(0) \\
a \text { if } S(T)<S(0)
\end{array}\right.
$$

at time of maturity T, where a and T are given positive numbers and ξ is an unknown real number. Find ξ.

Solution. Put $Z=H(S(T)-S(0))$, where H is the Heaviside function. Now $Y=a+\xi Z$ and

$$
a=a e^{-r T}+\xi \Pi_{Z}(0) .
$$

Thus

$$
\xi=\frac{a\left(1-e^{-r T}\right)}{\Pi_{Z}(0)}
$$

Moreover, if $s=S(0)$,

$$
\Pi_{Z}(0)=e^{-r T} E\left[H\left(s\left(e^{\left(r-\frac{\sigma^{2}}{2}\right) T-\sigma \sqrt{T} G}-1\right)\right)\right]
$$

where $G \in N(0,1)$ and, hence,

$$
\Pi_{Z}(0)=e^{-r T} P\left[G \leq\left(\frac{r}{\sigma}-\frac{\sigma}{2}\right) \sqrt{T}\right]=e^{-r T} \Phi\left(\left(\frac{r}{\sigma}-\frac{\sigma}{2}\right) \sqrt{T}\right)
$$

Summing up, we have

$$
\xi=\frac{a\left(e^{r T}-1\right)}{\Phi\left(\left(\frac{r}{\sigma}-\frac{\sigma}{2}\right) \sqrt{T}\right)}
$$

3. (Black-Scholes Model) Suppose $K, T>0$ and $N \in \mathbf{N}_{+}$are given and consider a European-style derivative which pays the amount

$$
Y=\left(\left(\prod_{j=1}^{N} S\left(\frac{j T}{N}\right)\right)^{\frac{1}{N}}-K\right)^{+}
$$

at time of maturity T. Find the time zero price $\Pi_{Y}(0)$ of the derivative. $\left(\right.$ Hint: $\left.1^{2}+2^{2}+\ldots+N^{2}=\frac{1}{6} N(N+1)(2 N+1)\right)$

Solution. Set $S(0)=s$ to get

$$
\begin{gathered}
\Pi_{Y}(0)=e^{-r T} E\left[\left(s\left(\prod_{j=1}^{N} e^{\left(r-\frac{\sigma^{2}}{2}\right) \frac{j T}{N}+\sigma W\left(\frac{j T}{N}\right)}\right)^{\frac{1}{N}}-K\right)^{+}\right] \\
=e^{-r T} E\left[\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \frac{(N+1) T}{2 N}+\frac{\sigma}{N} \sum_{j=1}^{N} W\left(\frac{j T}{N}\right)}-K\right)^{+}\right] .
\end{gathered}
$$

Set $X=\sum_{k=1}^{N} W\left(\frac{k T}{N}\right)$. Clearly, X is a centred Gaussian random variable and to find its variance put

$$
Z_{j}=W\left(\frac{j T}{N}\right)-W\left(\frac{(j-1) T}{N}\right), j=1, \ldots, N
$$

Then

$$
X=\sum_{j=1}^{N}\left(\sum_{i=1}^{k} Z_{i}\right)=\sum_{\substack{1 \leq i \leq j \\ 1 \leq j \leq N}} Z_{i}=\sum_{i=1}^{N}(N-i+1) Z_{i}
$$

and

$$
\begin{gathered}
\operatorname{Var}(X)=\sum_{i=1}^{N}(N-i+1)^{2} \operatorname{Var}\left(Z_{i}\right) \\
=\frac{T}{N} \sum_{i=1}^{N}(N-i+1)^{2}=\frac{T}{6}(N+1)(2 N+1) .
\end{gathered}
$$

Thus

$$
\Pi_{Y}(0)=e^{-r T} E\left[\left(s e^{\left(r-\frac{\sigma^{2}}{2}\right) \frac{(N+1) T}{2 N}+\frac{\sigma}{N} \sqrt{\frac{(N+1)(2 N+1) T}{6}} G}-K\right)^{+}\right]
$$

where $G \in N(0,1)$. Now put

$$
\left\{\begin{array}{c}
a=\left(r-\frac{\sigma^{2}}{2}\right) \frac{(N+1) T}{2 N} \\
b=\frac{\sigma}{N} \sqrt{\frac{(N+1)(2 N+1) T}{6}}
\end{array}\right.
$$

so that

$$
\begin{gathered}
\Pi_{Y}(0)=e^{-r T} E\left[\left(s e^{a-b G}-K\right)^{+}\right] \\
=e^{-r T}\left(s e^{a} \int_{-\infty}^{c} e^{-b x-\frac{1}{2} x^{2}} \frac{d x}{\sqrt{2 \pi}}-K \int_{-\infty}^{c} e^{-b x-\frac{1}{2} x^{2}} \frac{d x}{\sqrt{2 \pi}}\right)
\end{gathered}
$$

where

$$
c=\frac{\ln \frac{s}{K}+a}{b}
$$

Summing up, we get

$$
\Pi_{Y}(0)=e^{-r T}\left(s e^{a+\frac{b^{2}}{2}} \Phi(c+b)-K \Phi(c)\right)
$$

with a, b, and c defined as above.
4. Let $\left(X_{n}\right)_{n=1}^{\infty}$ be an i.i.d. such that $P\left[X_{1}=1\right]=P\left[X_{1}=-1\right]=\frac{1}{2}$ and set

$$
Y_{n}=\frac{1}{\sqrt{n}}\left(X_{1}+\ldots+X_{n}\right), n \in \mathbf{N}_{+} .
$$

Prove that $Y_{n} \rightarrow G$, where $G \in N(0,1)$.
5. (Dominance Principle) Show that the map

$$
K \rightarrow c(t, S(t), K, T), K>0
$$

is convex.

