SOLUTIONS

OPTIONS AND MATHEMATICS

(CTH[mve095], GU[MMA700])
August 31, 2013, morning, v
No aids.
Questions on the exam: Christer Borell, telephone number 0705292322
Each problem is worth 3 points.

1. The random variables X and Y are independent and uniformly distributed on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Find the density function and characteristic function of the random variable $X+Y$.

Solution. The density function of X and Y equals

$$
f(x)=\left\{\begin{array}{c}
1 \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\
0 \text { otherwise }
\end{array}\right.
$$

and we conclude that the density function g of $X+Y$ is even and

$$
\begin{gathered}
g(x)=\int_{-\infty}^{\infty} f(x-y) f(y) d y=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x-y) d y \\
=\int_{x-\frac{1}{2}}^{x+\frac{1}{2}} f(t) d t=\left\{\begin{array}{c}
0 \text { if } x>1, \\
1-x \text { if } 0 \leq x \leq 1
\end{array}\right.
\end{gathered}
$$

Thus $g(x)=(1-|x|)^{+}$for every real number x.
The independence of X and Y implies that

$$
\begin{aligned}
& c_{X+Y}(\xi)=E\left[e^{i \xi(X+Y)}\right]=E\left[e^{i \xi X} e^{i \xi Y}\right]=E\left[e^{i \xi X}\right] E\left[e^{i \xi Y}\right] \\
= & \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{i \xi x} d x\right)^{2}=\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos \xi x d x\right)^{2}=\frac{4 \sin ^{2}(\xi / 2)}{\xi^{2}} \text { if } \xi \in \mathbf{R} \backslash\{0\}
\end{aligned}
$$

and, in addition, $c_{X+Y}(0)=1$.
2. (Binomial Model: T periods and $d<r<u$) A European-style financial derivative pays the amount

$$
Y=\sum_{t=1}^{T}(S(t)-S(t-1))^{+}
$$

at time of maturity T. Find the time zero price $\Pi_{Y}(0)$ of the derivative.

Solution. As usual let

$$
q_{u}=\frac{e^{r}-e^{d}}{e^{u}-e^{d}} \text { and } q_{d}=\frac{e^{u}-e^{r}}{e^{u}-e^{d}} .
$$

Put $Y_{i}=(S(i)-S(i-1))^{+}, i=1, \ldots, T$. A European-style derivative paying Y_{i} at time T has the price $\Pi_{Y_{i}}(i)=Y_{i} e^{-r(T-i)}$ at time i and the price

$$
\begin{gathered}
\Pi_{Y_{i}}(i-1) \\
\left.=e^{-r(T+1-i)}\left\{q_{u}\left(S(i-1) e^{u}-S(i-1)\right)^{+}\right)+q_{d}\left(\left(S(i-1) e^{d}-S(i-1)\right)^{+}\right)\right\}
\end{gathered}
$$

at time $i-1$. Note that

$$
\Pi_{Y_{i}}(i-1)=A e^{-r(T+1-i)} S(i-1)
$$

where

$$
A=q_{u}\left(e^{u}-1\right)^{+}+q_{d}\left(e^{d}-1\right)^{+} .
$$

Hence

$$
\Pi_{Y_{i}}(0)=A e^{-r(T+1-i)} S(0)
$$

and

$$
\Pi_{Y}(0)=A S(0) \sum_{i=1}^{T} e^{-r(T+1-i)}=A \frac{1-e^{-r T}}{e^{r}-1} S(0) .
$$

3. (Black-Scholes Model) Suppose a, T, and K are given positive numbers. A European-style financial derivative has the payoff

$$
Y=\min \left((S(T)-K)^{+},(K+2 a-S(T))^{+}\right)
$$

at time of maturity T. Moreover suppose $0 \leq t<T$ and $\tau=T-t$. (a) Find $\Delta(t)$ ($=$ the delta of the derivative at time t). (b) Show that $\Delta(t) \geq 0$ if $K \geq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$ and $\Delta(t) \leq 0$ if $K+2 a \leq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$.

Solution. First note that

$$
\begin{gathered}
Y=\min \left(a,(S(T)-K)^{+}-\min \left(a,(S(T)-K-a)^{+}\right)\right. \\
=(S(T)-K)^{+}-2(S(T)-K-a)^{+}+(S(T)-K-2 a)^{+} .
\end{gathered}
$$

We next introduce

$$
d_{1}(x)=\frac{1}{\sigma \sqrt{\tau}}\left(\ln \frac{S(t)}{x}+\left(r+\frac{\sigma^{2}}{2}\right) \tau\right), x>0,
$$

and use the known delta of a European-style call to get

$$
\Delta(t)=\Phi\left(d_{1}(K)\right)-2 \Phi\left(d_{1}(K+a)\right)+\Phi\left(d_{1}(K+2 a)\right) .
$$

Now introduce the function $f(x)=\Phi\left(d_{1}(x)\right), x>0$, and note that

$$
\Delta(t)=f(K)-2 f(K+a)+f(K+2 a) .
$$

Moreover,

$$
f^{\prime}(x)=-\varphi\left(d_{1}(x)\right) \frac{1}{\sigma \sqrt{\tau} x}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x)= & -d_{1}(x) \varphi\left(d_{1}(x)\right) \frac{1}{(\sigma \sqrt{\tau} x)^{2}}+\varphi\left(d_{1}(x)\right) \frac{1}{\sigma \sqrt{\tau} x^{2}} \\
& =\varphi\left(d_{1}(x)\right) \frac{1}{(\sigma \sqrt{\tau} x)^{2}}\left(-d_{1}(x)+\sigma \sqrt{\tau}\right) .
\end{aligned}
$$

Thus $f^{\prime \prime}(x) \geq 0$ if $d_{1}(x) \leq \sigma \sqrt{\tau}$ or, stated more explicitely, $f^{\prime \prime}(x) \geq 0$ if $x \geq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$. Therefore $f(x)$ is convex for $x \geq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$ and we conclude that $\Delta(t) \geq 0$ if $K \geq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$. In a similar way $f^{\prime \prime}(x) \leq 0$ if $x \leq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$ and it follows that $\Delta(t) \leq 0$ if $K+2 a \leq S(t) e^{\left(r-\frac{\sigma^{2}}{2}\right) \tau}$.
4. (Dominance Principle) State and prove the Put-Call Parity relation.
5. (Black-Scholes Model) Let

$$
S(t)=S(0) e^{\alpha t+\sigma W(t)}, t \geq 0
$$

and suppose $0<t_{1}<\ldots<t_{n}$ and $a_{1}<b_{1}, \ldots, a_{n}<b_{n}$. Prove that

$$
\begin{gathered}
P\left[a_{1}<S\left(t_{1}\right)<b_{1}, \ldots, a_{n}<S\left(t_{n}\right)<b_{n}\right] \\
=\int_{A_{1} \times \ldots \times A_{n}} \ldots \prod_{k=1}^{n}\left\{\frac{1}{\sqrt{2 \pi\left(t_{k}-t_{k-1}\right)}} e^{-\frac{\left(x_{k}-x_{k-1}\right)^{2}}{2\left(t_{k}-t_{k-1}\right)}}\right\} d x_{1} \ldots d x_{n},
\end{gathered}
$$

where $x_{0}=0, t_{0}=0$, and

$$
\left.A_{k}=\right] \frac{1}{\sigma}\left(\ln \frac{a_{k}}{S(0)}-\alpha t_{k}\right), \frac{1}{\sigma}\left(\ln \frac{b_{k}}{S(0)}-\alpha t_{k}\right)[, k=1, \ldots, n .
$$

